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Abstract: This paper presents AutoMEMSR , a numerical
simulation environment to efficiently analyze the behavior of
large real-world MEMS designs. By automating surface-based
model generation, meshing and field solver tools, it is possible
to rapidly model large complex MEMS devices.

1 Introduction

Because MEMS devices utilize multiple energy domains, they
are inherently difficult to design, analyze and optimize. This
work addresses the verification of user-created designs by sim-
ulating the interacting 3D physical fields. Only by numeri-
cally solving the partial differential equations (PDE) describ-
ing these fields can an accurate representation of the MEMS
device be obtained [Ljung (1996), Bächtold(1997)].

This premise of this work is to robustly automate the numeri-
cal solution of these fields, allowing both beginner and expert
MEMS designers to rapidly design and optimize their devices.
This entails that the simulator must be capable of modeling
and analyzing realistic, very large systems with complex ge-
ometries. Further, the multi-physics PDE solver must be fast,
accurate and fully adaptive.

Simulating large, realistic MEMS models has previously been
prohibitive due to both the extensive user effort required to
generate models and the computational cost of such analyses.
This work robustly automates efficient and accurate MEMS
analysis by eliminating substantially all user interaction re-
quired to generate accurate 3D simulations of devices de-
scribed by photolithographic masks. This automatic procedure
allows large, realistic MEMS devices to be accurately sim-
ulated in less than one hour on personal computers [Coyote
(1999)] using the AutoMEMS computer aided design (CAD)
software.

1.1 Automation

To accomplish these goals, it is necessary to automate several
steps, including: (1) generating 3D model from photolitho-
graphic masks, (2) applying boundary conditions and material
properties to model, (3) discretizing the model, and (4) solving
the (coupled) PDEs on the model.

The steps shown in Fig. 1 have been successfully automated in
AutoMEMS by using a boundary element method (BEM) dis-
cretization and solver. The ovals depict user input, while rect-
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Figure 1 : Data flow to simulate a MEMS device.

angles are automated steps that do not require any user inter-
action. Other MEMS simulators [Intellisense (1997), Gilbert
(1995), ISE (1997)] use a combination of the finite element
method (FEM) and BEM to simulate coupled multi-physics
problems but are unable to automate each step. Further, the
computational scaling of these previous simulators prevents
their use in solving large, realistic MEMS devices.

1.2 Solving 3D fields with BEM

Because BEM only discretizes the boundaries or surfaces of
the 2D or 3D geometry, the resulting BEM model is both very
compact and easy for the user to generate. Practically any 3D
solid model can be automatically robustly discretized into a
valid BEM model.

BEM has the capability to solve linear, non-linear and time-
varying partial differential equations (PDE). BEM solves for
both the state and gradient of a PDE field. For example, in a
electrostatic problem, the state is the potential and the gradient
is the electrostatic flux. In a thermal problem, the state is the
temperature and the gradient is the heat flux. In a elastostatic
problem, the state is the displacement (x, y, z components) and
the gradient is the traction (similar to stress with x, y, z compo-
nents). Thus BEM allows extremely accurate results when the
user is interested in capacitance or stress concentration factors.

For linear field analysis, the traditional BEM method [Brebbia
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(1994)] based on linear superpositions of Green function solu-
tions enables solutions to Laplace, Navier, Stokes fields. The
computational scaling of the traditional BEM method scales as
O(N2) where N is the number of BEM nodes. For non-linear
and time-varying analysis, the dual reciprocity boundary ele-
ment method [Partridge (1992)] can be used.

To enable rapid solutions, the more efficient multipole accel-
erated Fast BEM method is used where both memory and
cputime scales as O(N logN). This allows large, realistic
geometric models to be rapidly simulated on standard PCs.
To guarantee accurate solutions, error indicators and adaptive
meshing are used to automatically refine the BEM model to a
user specified solution accuracy on the state and gradients.

2 Typical application

The steps to simulate a MEMS comb-finger resonator using
AutoMEMS are shown to demonstrate the functionality of the
developed CAD tools.

A complete BEM model comprises a surface panel discretiza-
tion of a 3D geometry, defined sets of surface panels called
regions, material properties and boundary conditions applied
to predefined regions.

The appropriate PDE is then solved using fast multipole accel-
erated BEM method. Error indicators evaluate the solved state
and gradient PDE values to determine the global accuracy of
the result. Where needed, the mesh is then automatically re-
fined using p- and h-type refinement. P-type refinement in-
creases the polynomial order of the element shape function,
and h-type refinement splits an element into multiple pieces to
reduce the element size.

2.1 Automatic geometry generation

By emulating MEMS process flows, it is possible to gener-
ate realistic 3D models [Elliot (1995), Scheckler (1992), Pelka
(1991), Strasser (1995), Ljung (1998)] of a MEMS device
given a 2D mask layout and process description.

AutoMEMS allows the user to generate planar and conformal
3D models from a standard IC or MEMS mask layout (e.g.
CIF or GDSII format) in conjunction with a table-based de-
scription of the fabrication. This information includes deposi-
tion order, deposition thickness and material name. There is
no limitation on the number of layers, dielectrics or boundary
conditions.

To illustrate the automated model building, meshing and simu-
lation, consider a simple MEMS electrostatic comb-finger res-
onator is shown in Fig. 2.

2.1.1 Specify process information

The process description assumes that every step consists of (a)
planar deposition of a material indicated by a mask pattern,
and (b) planar deposition of a specified dielectric everywhere

Figure 2 : Photolithographic CIF mask of a comb-drive res-
onator

Figure 3 : Process description window

else. As a result, if no mask pattern exists on a layer, then only
dielectric is deposited. The user must specify the layer names,
bottom height, thickness and dielectric constants as shown in
Fig. 3 to completely specify a planar VLSI fabrication process.

The process description emulates typical planar VLSI fabrica-
tion steps, it does not attempt to simulate the physics behind
each fabrication step. As a result, the generated AutoMEMS
model may not exactly coincide with an actual fabricated de-
vice since some effects (e.g. non-homogeneous sputtering,
voids, chamfered edges, curved surfaces, non-vertical edges)
are ignored.

2.1.2 Extrusion

For every photolithographic mask layer, a boolean union op-
eration is performed to combine all the polygons in the mask
layout. Each resulting n-sided polygon is then extruded and
offset using the thickness and height specified in the process
description. To support vias and anchors, boolean operations
are also used to identify if the resulting 3D objects on different
layers intersect. If a surface separates two identical materials,
then the surface is eliminated, but if a surface forms a mate-
rial interface between dissimilar materials, then the surface is
retained.

2.2 Automatic meshing

Since AutoMEMS uses BEM, the discretization of a 3D model
is substantially simplified since only the surfaces need to
be identified and discretized which enables robust automatic
mesh generation. The top and bottom surfaces of the extruded
3D geometry are discretized into triangular panels using De-
launey meshing while the vertical surfaces are discretized into
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Figure 4 : AutoBEM display of generated 3D model

Figure 5 : User created regions on comb-finger model

quadrilateral panels. This set of panels forms the initial BEM
surface mesh. An example of the resulting discretized 3D
model is shown in Fig. 4.

Rather than apply boundary conditions to the discretized mesh,
AutoMEMS defines boundary conditions on sets of surfaces
called regions. Using the graphic user interface (GUI), the
user grouped several surfaces together to form several non-
intersecting regions as shown in Fig. 5. If annotated GDSII
layout masks are used to generate the model, then the region
names are automatically identified from the masks.

The boundary conditions and material properties are speci-
fied in table-based GUI windows completing the AutoMEMS
model generation. Arbitrary dielectric domains are supported,
such as infinite surrounding space, silicon oxide and silicon
nitride. Various applied boundary conditions are supported,
including Neuman, Dirichlet, mixed and floating.

Figure 6 : Solved electrostatic flux on comb-finger resonator

Figure 7 : Calculated charge, capacitance and forces for vari-
ous resonator deflections

2.3 Field solver

By specifying the boundary conditions on the regions, the
problem has been completely defined and the unknown field
state or gradient can be solved using the BEM field solver.
Fig. 6 shows the magnitude of the electrostatic flux after a
simulation, where the color variations indicate that the elec-
trostatic flux is concentrated in the comb-finger tips.

The electrostatic forces and charges for each panel and each
region are available in the simulation results. On a typical PC
(e.g. 500 MHz Pentium III processor, 128MB RAM), the en-
tire flow from Fig. 2 to Fig. 6 takes about 2 minutes. By chang-
ing the displacement of the moving resonator, it is possible to
efficiently create a table-based model of the resonator for sys-
tem simulations as shown in Fig. 7.
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Table 1 : Performance improvement achieved

Sandia BEM [Womble (1994)] Coyote AutoMEMS Comment
Computer massively parallel personal computer
CPU 1,900 Intel i860 1 Intel PentiumIII 2,000� cheaper?
Method naive BEM multipole accelerated BEM improved algorithms
Combined Capacity 50E3 panels 20E6 panels 400� larger problems
Combined Speed 1.4E5 panels/hour 1.2E6 panels/hour 9� faster

2.4 Coupled electro-mechanical simulations

By creating both electrostatic and mechanical boundary condi-
tions, it is possible to easily create coupled electromechanical
MEMS simulations. Typically an electrostatic simulation is
first solved, and the solved electrostatic gradient is used to cal-
culate a mechanical traction. Using this inherited traction, the
mechanical model is solved to obtain the new mechanical state
(i.e. displacement). The electrostatic model typically inher-
its the new displacement and the cycle iterates until a suitable
successful convergence criteria (e.g. small change in displace-
ment, small change in capacitance) or failure criteria (e.g. col-
lision, number of iterations, amount of cputime) are satisfied.
The AutoMEMS GUI uses “wizards” to help create these cou-
pling scenarios and convergence criteria.

Fig. 8 depicts an example of a series of coupled simulation
steps of a torsional MEMS micromirror. The driving elec-
trodes create an electrostatic torque deflecting the paddle. A
typical use of numerical simulations is to calculate the electro-
static torque as a function of voltage and deflection as well as
the pull-in voltage. Creating the model, specifying the initial
boundary conditions, specifying the convergence criteria and
running the coupled simulations near the pull-in voltage takes
approximately 1 hour on a 500 MHz Pentium III processor.

2.5 Summary

The AutoMEMS software can efficiently generate 3D mod-
els given photolithographic masks of MEMS devices and an-
alyze the coupled partial differential equations (usually elec-
trostatic and elastostatic) to determine the behavior of the
MEMS device. A large MEMS device such as Analog De-
vices’ ADXL50 accelerometer in Figure 16 contains about
35,000 BEM panels including all the etch-holes. The Au-
toMEMS software has demonstrated peak speeds exceeding
1,250,000 panels/hour per cpu (500MHz Pentium III). The
AutoMEMS software fully supports symmetric multiprocess-
ing (SMP) machines with a near linear scaling for every added
cpu. The largest model successfully solved contained over 20
million BEM panels.

Compared to a 1994 Gordon-Bell Prize winning BEM paper
[Womble (1994)] using parallel supercomputers, AutoMEMS
has demonstrated approximately 9 times speedup and 400
times larger model sizes using a single standard personal com-
puter. The remainder of this paper discusses the technological
developments underlying these capabilities and performance.

3 Technology

The technology underlying the surface-based AutoMEMS
modeling, meshing and analysis is based on the boundary ele-
ment method (BEM). BEM is a very accurate integral method
in contrast to the more common differential finite element
method (FEM). Both FEM and BEM methods are numerical
methods to solve partial differential equations. However, the
BEM approach requires a significantly smaller model, and re-
quires smaller computer resources enabling the simulation of
extremely large, complex models.

Assuming that both FEM and BEM use polynomial order p
element shape functions, then the BEM numerical solution is
typically more accurate. FEM calculates a polynomial order p
approximation to the state and numerically differentiates this
to obtain a polynomial order p� 1 approximation to the gra-
dient. In contrast, BEM simultaneously calculates polynomial
order p approximations to both the state and gradient.

As a result, engineering values (e.g. capacitance, electro-
static force, mechanical stress concentration factors) which are
based on the gradient are more accurate [Brebbia (1984)] with
integral-based BEM models.

The mathematics underlying the naive BEM and multipole ac-
celerated BEM are first presented. Refinement methods in-
cluding error indicators and heuristic meshing goals are next
described. To reduce the actual degrees of freedom a devel-
opment called constrained BEM (CBEM) is next described.
Finally tunnel acceleration, a method to reduce the geometric
complexity of the model, is presented.

3.1 Naive boundary element method

The boundary element method [Brebbia (1984)] uses Green’s
Functions to describe the effects of loadings on the entire do-
main. Using the divergence theorem, the BEM equation is
expressed in terms of integrals on the boundary of the domain

c �u(ξ) =
Z

Γ
q(x) �u�(ξ;x) �dx�

Z
Γ

u(x) �q�(ξ;x) �dx (1)

with the known state boundary condition u(x) = u(x) on the
Dirichlet boundary x 2 ΓD, and the known gradient boundary
condition q(x) = q(x) on the Neumann boundary x 2 ΓN . The
appropriate Green’s functions are denoted u� and q�. A simple
2D BEM model is shown in Fig. 9.

The integral coefficients in Eq. 1 are calculated for all node
pairs for each boundary segment. This coefficient genera-
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Figure 8 : Coupled MEMS micromirror simulations

Figure 9 : 2D BEM model with constant elements

tion is very computationally expensive because the naive BEM
method calculates interactions with all node pairs resulting in
a O(N2) computational scaling.

All the integral coefficients are assembled into the dense matri-
ces H and G describing the effect of the states u and gradients
q, respectively.
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2
4
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uN�1

3
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2
4
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3
5 (2)

The known states u and gradients q specified in the boundary
conditions are inserted into the above equation resulting in a
standard linear system which can be solved for the unknowns.

A �

2
4

x0
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xN�1

3
5=

2
4

b0
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bN�1

3
5 (3)

Given a BEM solution on the boundary of the domain, post-
processing can be used to calculate the state or gradient on
arbitrary points in the domain or on the boundary. This capa-
bility is also used to evaluate error-estimators on the boundary.

3.2 Multipole accelerated BEM

The naive BEM can be dramatically accelerated by using mul-
tipole accelerated BEM [Greengard (1988), Nabors (1991),
Bächtold(1997)] which clusters distant nodes together using
multipole expansions eliminating the need to calculate all the
boundary integrals.
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Figure 10 : Clustering of distant nodes reduces required num-
ber of computations

Figure 11 : Hierarchical decomposition level 1

Nodes in close physical proximity are calculated directly using
Eq. 1, while distant clustered boundary integrals are now com-
puted using multipole expansions. As an example, the gradient
integral in Eq. 1 can be approximated by

Z
Γ

q(x)u�(ξ;x)dx �
p

∑
n=0

an �Mn(ξ� c) (4)

where Mn is a multipole function, an is the appropriate weight-
ing value and c is the center of expansion of the multipole.

This allows integral evaluation by clusters instead of one el-
ement at a time, introducing sparsity into BEM. Further, it is
possible to decompose each cluster into hierarchical clusters,
where the multipole coefficients depend only on the multipole
coefficients of the lower cluster [Greengard (1988)]. Fig. 11-
Fig. 13 illustrates the hierarchical decomposition and cluster-
ing of a sample comb-finger MEMS device. Several hundred
decomposition levels are typically used.

Instead of the naive BEM computational scaling of O(N2),
MA-BEM dramatically reduces the computational effort and
cputime required for accurate analysis to a O(N logN) com-
putational scaling, where N are the number of BEM nodes.

Figure 12 : Hierarchical decomposition level 2

The approximation introduced with multipole expansions have
known error bounds [Greengard (1988)] dependent on the
cluster radius and level of hierarchical clusters, therefore ap-
propriate multipoles can be chosen which result in tight error
bounds to allow very accurate simulation results.

3.3 Element refinement

BEM calculates very accurate solutions to PDEs. There are
essentially only two sources of error in these calculations: (1)
numerical integration accuracy and (2) geometric discretiza-
tion accuracy. Coyote uses an automatic identification of the
integration accuracy using Gaussian-Legendre integration to
obtain fast and efficient numerical integration. The second
item reflects that the model may have curved surfaces (approx-
imated as a p-order polynomial) or that the state or gradient
may vary nonlinearly (approximated as a p-order polynomial).

Currently this tool only supports BEM elements with straight
edges or planar faces with constant, bilinear, biquadratic or
bicubic shape functions. The extensions to support curved
edges or surfaces are straightforward, but require considerably
more complex numerical and analytical singular integrations.

To capture the effects of a nonlinearly varying solutions, the
model discretization must be allow an accurate “fit” to the
physical solution. For example, if the user a priori knows that
the result varies logarithmically, then he shouldn’t expect a
good fit with a single linear element interpolation. However, a
very good fit may be obtained using several linear elements or
only a few quadratic elements.

To ensure consistently accurate simulations, Coyote has devel-
oped an automatic method to mesh and refine the BEM model.
This allows the user to specify a desired accuracy (e.g. 2%
error on the states/gradients, or a 1% error on the capacitance)
and then let the software refine the mesh until this accuracy is
achieved.
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Figure 13 : Hierarchical decomposition level 3

Figure 14 : Automatic mesh refinement based on error indica-
tors

3.3.1 Error indicators

To achieve this automatic mesh refinement, the initial mesh is
solved and then post-processing evaluates the states and gradi-
ents at points inside each element. For example, if a particular
element is a triangle with a bilinear shape function, then the
state/gradient error indicator evaluations [Bächtold, Korvink
(1997)] on the surface should map closely to a plane face. If
they do not, then this indicates that the size of the element
should be reduced (h-refinement) or that the polynomial shape
function of the element should be increased (p-refinement). If
all error indicators show that the elements are well-formed,
then the adaptive refinement is finished and the results are re-
ported to the user. If some elements have too large errors, then
the model is again refined until all errors are below the user-
specified limits.

To illustrate this automatic adaptive mesh refinement, con-
sider the initial BEM mesh of a MEMS comb-finger shown
in Fig. 14. The number of dots on each element indicate the
order of the shape function. A single dot indicates that the el-
ement is a constant element, 4 dots indicate a bilinear shape

Figure 15 : ADXL50 model generated from layout

Figure 16 : Detail of the adaptively refined ADXL50 moving
proof mass. Note the automatic concentration of nodes at the
comb-finger tips and anchors

function, 9 dots indicate a biquadratic shape function and 16
dots indicate a bicubic shape function.

After 6 iteration cycles, the refined mesh is visible in Figure
14. Note that intuitively the electrostatic flux will vary greatly
along the comb-finger tips, and the automatic mesh refinement
has captured this behavior by refining these elements. Ele-
ments with small errors are not refined. This error indicator
driven refinement approach is substantially faster than refining
all elements for large models.

Adjacent elements with mixed orders are also valid CBEM
meshes, as can be seen in Fig. 18 which demonstrates a large
bicubic element adjacent to several smaller bilinear elements.
Only the unconstrained nodes are degrees of freedom and
solved using BEM. In contrast, the constrained nodes are auto-
matically identified from the geometry and interpolated from
the BEM solution.
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Figure 17 : CBEM model allows discontinuous meshes using
constrained nodes.

3.3.2 Heuristic meshing

The meshed model of the ADXL50 accelerometer [Analog
(1999)] is easily generated using the procedure outlined in
“Automatic Geometry Generation”. Note the high fidelity of
the model, including the etch-holes.

Similar to the comb-drive resonator, it is expected that the
electrostatic flux will be concentrated along the edges and cor-
ners since physics dictates that there is a flux singularity along
sharp edges. Since the capacitance of the fingers is obtained
by integrating the electrostatic charge, it is important to effi-
ciently model the comb-fingers.

Using the automatic error indicators described in “Element Re-
finement”, the software identifies which elements have large
relative errors and only refines those identified elements. This
effect can also be cheaply replicated using heuristics based on
the variation in normals of adjacent BEM elements. This can
efficiently be used to identify panels on edges or corners for
refinement. This results in a very efficient method to generate
well meshed model as can be seen in Fig. 16 which will ensure
high-accuracy capacitance simulations.

3.4 Constrained boundary element method

Constrained mesh refinement provides the benefits of both
continuous and discontinuous BEM meshes. This allows for
simple discontinuous subdivision of existing elements (See
Fig. 17) while still resulting in continuous nodal solutions. The
Constrained Boundary Element Method (CBEM) [Bächtold,
Ljung (1998)] identifies and solves for unconstrained nodes
in a manner similar to BEM, while the identified constrained
nodes are assigned nodal values based on interpolation of the

Figure 18 : 3D CBEM model showing how mixed order and
mixed size elements can legally be combined.

solved constrained nodes. Using CBEM enables simple mesh
refinement while still allowing for continuous states and gradi-
ents. As a result, the degrees of freedom of the system are re-
duced to the number of unconstrained nodes, typically reduc-
ing the DOF by a factor of 4-6. This implies that the cputime
and memory requirements are also reduced by 4-6� with no
accuracy loss.

CBEM supports general mesh geometries and allows
anisotropic mixed-order element refinement. Further, unlike
multipole acceleration, the reduction in DOF is Greens’s func-
tion independent and valid for all BEM simulations, includ-
ing electrostatic, thermal, elastostatic, thermoelastic, poisson,
stokes and coupled fields. CBEM is fully automatic, and no
user intervention is required. Experimental results show that
minimal additional computation cost is incurred to interpolate
the constrained nodal values. The CBEM model of the ac-
celerometer in Fig. 19 has approximately one quarter the num-
ber of degrees of freedom compared to a standard BEM model,
and as a result, the CBEM model is solved in approximately
one-quarter the time compared to the fast BEM approach.

3.5 Tunnel acceleration

While fast constrained BEM has a very good computational
scaling of O(N logN), the number of BEM panels N can still
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Unconstrained “free” nodes
Constrained node

Figure 19 : CBEM model of accelerometer reduces degrees
of freedom by 6x, which reduces the cputime by 4x compared
to fast multipole accelerated BEM

be very large for large, complex models. To achieve even faster
computations, it is possible to automatically selectively elim-
inate geometry which does not significantly contribute to the
solution. This method is called “tunnel acceleration”.

BEM solves for a 3D field and enforces that the field value
is zero at infinity. For many problems, the field’s region of
interest is much closer to the geometry than infinity, perhaps
limited to within 20 microns of the region of interest. After
heuristically determining a tunnel radius, the field solution on
the tunnel surface should be zero (to approximate infinity). If
the result is not negligible, then the tunnel radius was too small
and the method is repeated with a larger tunnel radius. Fig. 20
shows a portion of a VLSI interconnect where an aggressor net
is surrounded by a tunnel (dark gray) and the remaining geom-
etry is discarded (light gray). The self and cross capacitances
of the aggressor net to all the victim nets can be extracted in
about 10 seconds on a typical PC using tunneling acceleration.

Depending on the geometry of the problem, tunnel accelera-
tion can provide memory and cputime reductions of more than
40x while other problems are not accelerated at all. By com-
paring the charge results for various tunnel radii, we have veri-
fied that the tunnel algorithms can result in less than 1% errors
for electrostatic simulations.

Similarly to VLSI interconnects, MEMS can also be acceler-
ated using tunnel acceleration. Fig. 21 depicts the elements in
the tunnel around the driver finger region, and Fig. 22 shows
the calculated electrostatic flux in this area. The sense comb-

Figure 20 : Geometric truncation using a “tunnel” around the
field of interest.

fingers are not included in the tunnel making the BEM model
significantly smaller. This electrostatic field simulation for
the drive interdigitated comb-fingers allows rapid capacitance
coupling and electrostatic force calculations to be calculated
in 20 seconds on a typical PC.

4 Summary

By automating the model generation, mesh refinement and
analysis, this work enables the rapid and accurate analysis of
large, realistic MEMS devices to be performed by users with-
out extensive numerical simulation training. This work can
similarly be used to automatically calculate cross-capacitances
in large 3D submicron integrated circuits.
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