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Abstract: We present three techniques to accurately model
the thermomechanical response of microsystem components:
a new, accurate and stable Kirchhoff-Love multi-layered plate
model implemented as an Argyris finite element, a model
for the amplitude fluctuations of vibrational modes in micro-
mechanical structures within a gaseous environment, and the
consistent refinement of a finite element mesh in order to max-
imize the computational accuracy for a given mesh size. We
have implemented these techniques in our in-house MEMS fi-
nite element program and accompanying Monte Carlo simu-
lator. We demonstrate our approach to dynamic modeling by
computing the thermomechanical response of a CMOS AFM
beam.
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1 Introduction

Dynamic microsystems provide the designer with a wide spec-
trum of techniques in the time and frequency domains for both
sensing and actuation. They also fit naturally in systems, es-
pecially integrated circuits, where the signal conditioning is
performed using advanced designs for noise reduction, offset
and drift compensation. They also pose new problems for their
simulation, due to the strong coupling between different en-
ergy domains, to the scaling of the physical phenomena, to the
large aspect-ratio of the components, and to their typical time
constants.

Semiconductor technology produces mechanical microsystem
components shaped into plate or beam-like structures and
composed of multi-layer sandwiches. It is essential to have a
reliable, stable discretization scheme for these thermally pre-
stressed material stacks that enables the use of small meshes.
To further reduce the computational cost for a given degree
of accuracy, methods are needed to automatically adapt the
computational mesh there where the accuracy is required. As
microsystem components reduce in size, they tend to become
mesoscopic, and as a result the characterization of random
fluctuations inherent in physical processes becomes important.

In this paper we address these aspects. We are driven by the
need to design and characterize a noise-suppressing, CMOS-
based atomic force microscope beam [Lange, Akiyama, Ha-
gleitner, Tonin, Hidber, Niedermann, Staufer, de Rooij, Brand,
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and Baltes (1999)]. To this end we have designed and im-
plemented a new multi-layer Kirchhoff-Love plate finite el-
ement that exhibits a high degree of accuracy and is largely
insensitive to the quality of the finite element mesh. In Sec. 2
we develop the three-dimensional Lagrangian thermomechan-
ics in a form that lends itself to the derivation of plate the-
ory. In Sec. 3 the 3D model is specialized to the case of ther-
momechanical plates by deriving a weak form from the La-
grangian partial differential equations. The discretization for
the element is done following a conforming finite element in-
terpolation, and is implemented using Argyris elements [Ar-
gyris, Fried, and Scharpf (1968)]. With the new model, we are
able to accurately extract the vibrational modes of the AFM
beams. In Sec. 4 we apply the Dissipation-Fluctuation theorem
to thermomechanical structures and obtain the noise behavior
of the AFM beam when randomly excited by a gaseous envi-
ronment. Using the vibrational modes of the beam as a starting
point, amplitude fluctuations are computed with a Monte Carlo
technique. In Sec. 5 we discuss finite element mesh adap-
tivity as a process that requires an error estimator, a refine-
ment strategy and a mesh splitting method. In Sec. 6 the tech-
niques presented are combined and applied to a CMOS AFM
beam currently under development [Lange, Akiyama, Hagleit-
ner, Tonin, Hidber, Niedermann, Staufer, de Rooij, Brand, and
Baltes (1999)].

2 Three-dimensional thermomechanics

The model presented here is derived in the context of the con-
tinuum hypothesis, whereby any physical quantity is repre-
sented by a field that defines its value at any position in space.
Even at the level of microsystems, the continuum hypothesis
is by far justified, for the characteristic lengths of the system
are more than two orders of magnitude larger than the molecu-
lar size or than the crystalline step [Nathan and Baltes (1999)].
Nevertheless, the quantities involved in the continuum theory
are closely related to the quantities in the solid-state theory. In
a crystal, the cohesive energy of the lattice, given by the sum
of the binding energies of the ions, becomes in the continuum
limit the (Helmholtz) free energy of the body. In the crystal,
the physical quantities are associated with the ions forming the
lattice, which is discrete in nature. Therefore mi, xi, and ui de-
scribe the mass, the position, and the displacement of the ion
with index i. Similarly, the binding energy is evaluated at the
discrete positions given by the displaced positions of the ions.
For the continuum case, the displacement is described by the
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field u(x) whereas the mass and the free energy are represented
by their densities ρ(x) and φ(x).

2.1 Lagrangian and hamiltonian formulation

The lattice lagrangian [Ashcroft and Mermin (1976)]

L̂L =
1
2 ∑

i
mi (ẋi + u̇i)

2 � 1
2 ∑

i j
φ (xi +ui�x j �u j) (1)

becomes in the limit the continuum lagrangian

L̂ =
Z

Ω

�
ρu̇2=2�φ(u)

�
d3x (2)

The displacement maps a point x onto the point x0 = x+u (x)
and the vector dx between two infinitesimally close points is
mapped onto the differential dx0 = dx+dx �∇u. The notation
adopted is that the dot signifies the contraction between tensors
and the dyadic notation signifies the tensor product [Gibbs and
Wilson (1901)]. The notation for the symmetrization of a sec-
ond order tensor A is introduced as

AS =
A+AT

2
(3)

in analogy with the transposition. The deformation of the solid
medium is given by the change of the distance between two
infinitesimally close vectors, namely

�
dx0
�2� (dx)2 = 2 dx �

�
(∇u)S +

1
2
(∇u) � (∇u)T

�
� dx (4)

The symmetric second-order tensor inside the square brackets
determines the state of the deformation and defines the (Green-
St. Venant) tensor ε

ε = (∇u)S +
1
2

∇u � (∇u)T (5)

which is a non linear function of ∇u. For a non-dispersive
elastic continuum, the (Helmholtz) free energy density φ (ε;T )
is a function of the strain and of the temperature, the lat-
ter dependency implying an anharmonic binding energy. The
derivatives of the free energy define the static (second Piola-
Kirchhoff) stress tensor and the entropy density

σ = ∂φ=∂ε (6)

η = �∂φ=∂T (7)

The internal energy is minus the Legendre transform of the
free energy with respect to the temperature

e = φ�T∂φ=∂T (8)

which is expressed as a function of the independent variables
ε, T as

e(ε;T ) = φ (ε;T )+Tη (ε;T) (9)

Taking its derivative with respect to the temperature deter-
mines the clamped, i.e. at constant strain, heat capacity

c =
∂e
∂T

=
∂φ
∂T

+η+T
∂η
∂T

= T
∂η
∂T

(10)

Taking the total time derivative of the entropy yields the rela-
tion

η̇(ε;T) =
∂η
∂T

Ṫ +
∂η
∂ε

: ε̇ = c
Ṫ
T
� ∂2φ

∂T∂ε
: ε̇ = c

Ṫ
T
� ∂σ

∂T
: ε̇

(11)

The role of the temperature as the pivot for the Legendre trans-
form between the internal and the free energy, makes the tem-
perature act like a rate in the lagrangian density stemming from
Eq. 2

L (q; q̇;∇q) =
1
2

ρu̇2�φ (ε;T) (12)

Introducing θ as the time primitive of the temperature, i.e. sat-
isfying T = θ̇, the four-dimensional vector q is

q = (u;θ) (13)

The Euler-Lagrange equations

d
dt

�
∂L
∂q̇

�
+∇ �

�
∂L

∂∇q

�
� ∂L

∂q
= 0 (14)

applied to the lagrangian density (Eq. 12) yield the system of
PDEs8><
>:

ρü�∇ �
�

∂φ
∂∇u

�
= 0

η̇ = 0

(15)

The first equation expresses the conservation of momentum
and is further manipulated using the identity�

∂φ
∂∇u

�
i j
=

∂φ
∂εkl

∂εkl

∂u j;i
= [σ � (1+∇u)]i j (16)

into

ρü�∇ � [σ � (1+∇u)] = 0 (17)

Even in the presence of a material with linear constitutive rela-
tions, this equation is nonlinear, partly because of the non lin-
earity of the strain ε with respect to the displacement u, partly
because of the contraction between the stress and the gradi-
ent of the displacement inside the argument of the divergence.
The second equation of the system (Eq. 15) signifies that the
process is adiabatic, and thanks to the thermodynamic identity
(Eq. 11), can be used to get the equation for the temperature

cṪ = T
∂σ
∂T

: ε̇ (18)
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The hamiltonian density H is defined by the Legendre trans-
form of the lagrangian density,

H =
∂L
∂q̇

� q̇�L = ρu̇2 +Tη�L =
1
2

ρu̇2 + e (19)

which, not surprisingly, coincides with the energy density. Ac-
tually, the hamiltonian density as a function of the generalized
coordinate field (u;θ) and of its conjugate moments (ρu;η),
can be taken as the starting point and the lagrangian density
(Eq. 12) can be recovered via a Legendre transform.

The Hamilton principle

δ
Z t2

t1
Ldt = 0 (20)

equivalent to the system (Eq. 15) can be extended for a dissi-
pative system experiencing external solicitations, by including
the action associated with the virtual work W of the additional
generalized forces.

δ
Z t2

t1
Ldt +

Z t2

t1
Wdt = 0 (21)

2.2 The weak form

Depending of the type of phenomena that are taken into con-
sideration the expression for the virtual work W can vary con-
siderably. For the virtual work of the mechanical forces, con-
sidering only the effect of an impressed volume force density
and of a surface boundary force density acting on the boundary
of the solid, the virtual work is

WM =
Z

Ω
fv �δud3x+

Z
∂Ω

fs �δudS (x) (22)

If the heat transfer is considered as the only irreversible pro-
cess in the solid, its virtual work is given in terms of the in-
bound entropy flow and in terms of a net increase of entropy

WT =
Z

Ω

∇T � k �∇T
T 2 δθ d3x�

Z
∂Ω

n �Q
T

δθ dS (x) (23)

The first of the two integrals is a quadratic form in which the
Fourier law for heat transfer has been used. The fact that it ex-
presses the net generation of entropy, which must be positive
in accordance with the second law of thermodynamics, poses a
thermodynamic constraint on the positivity of the thermal con-
ductivity second-order tensor. The second integral in Eq. 23
represents the interaction with the environment by means of
the heat flux Q, and using the theorem of the divergence, can
be put in the form of a volume integral. Eventually the thermal
virtual work has the form

WT =
Z

Ω

�
∇T � k �∇T

T 2 �∇ �
�

Q
T

��
δθ d3x

=
Z

Ω

�
∇T � (k �∇T +Q)

T 2 � ∇ �Q
T

�
δθ d3x

=�
Z

Ω

∇ �Q
T

δθ d3x

(24)

Carrying out the variational derivative in Eq. 21 yields the sys-
tem8<
:

ρü�∇ � [σ � (1+∇u)] = fv + fsδ∂Ω

η̇+
∇ �Q

T
= 0

(25)

The second equation can be expressed in terms of the temper-
ature thus yielding from Eq. 11 the equation

cṪ = T
∂

∂T
(σ) : ε̇�∇ �Q (26)

Also the so-called weak form of the thermomechanical initial-
condition boundary-value problem stems directly from Eq. 21.
Indeed, using the anti-symmetry of the time-derivative inside
the integral, the variation of the action can be cast as

δ
Z t2

t1
Ldt = δ

Z t2

t1

Z
Ω

�
ρu̇2=2�φ

�
d3xdt

=
Z t2

t1

Z
Ω
(ρu̇ �δu�σ : δε+ηδT )d3xdt

=
Z t2

t1

Z
Ω
(�ρu �δu�σ : δε� η̇δθ)d3xdt

(27)

Using the more expressive formalism of the inner product in
L2 (Ω), the space of square integrable tensor valued functions,
or its generalization for distributions, for the variation of the
action, the variational principle Eq. 21 is then recast as
Z t2

t1
[(ρü;δu)+(σ;δε)+(η̇;δθ)]dt =

Z t2

t1
Wdt (28)

Since this equation must be satisfied for all possible variations
of the independent fields, the two expressions under integra-
tion must be equal, and the weak form is then

(ρü;δu)+(σ;δε)+(η̇;δθ) = ( fv;δu)+( fs;δu)∂Ω

+
�
∇T � k �∇T=T 2;δθ

�� (Q �n;δθ)Ω
(29)

2.3 Constitutive parameters

For a linear material the constitutive equation (Eq. 6) becomes

σ = A :(ε�αT ) (30)

where A is the fourth-order elastic tensor, σ the stress, α is the
second-order thermal expansion tensor, and for convenience
T is the offset temperature from the stress-free temperature
T0. The derivative of the constitutive equation (Eq. 30) with
respect to a component of the strain

Ai jkl =
∂σi j

∂εkl
=

∂2φ
∂εkl∂εi j

(31)

yields the symmetry between the first and the second pair of
indices

Ai jkl = Akli j (32)
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Integrating the stress (Eq. 30) with respect to the strain and
using the symmetries of the elastic tensor the yields the free
energy

φ (ε;T ) =
1
2

ε : A : ε� ε : A : αT +φ0(T ) (33)

The strain tensor is symmetric by the definition (Eq. 5), and
therefore the elastic tensor exhibits the symmetry of the last
two indices

Ai jkl = Ai jlk (34)

which combined with Eq. 32 yields the symmetry of the first
two indices

Ai jkl = A jikl (35)

These symmetries reduce the number of independent parame-
ters in the elastic tensor from 81 to 36, and further constraints
are introduced by the Neumann principle, which states that all
the tensors expressing material properties, such as the elastic
tensor, must be invariant with respect to the point-group sym-
metries of the material [Nye (1985)]. Similar considerations
hold for the thermal expansion coefficient, which must be sym-
metric, as is implied by the constitutive equation (Eq. 30). In
the case of an isotropic material only two independent param-
eters are left in the elastic tensor whereas only one parame-
ter is left in the thermal expansion coefficient. In terms of the
Young modulus E and the Poisson ratio ν [Landau and Lifshitz
(1986)]

Ai jkl =
E

1+ν

�
1
2

δikδ jl +
1
2

δilδ jk +
ν

1�2ν
δi jδkl

�
(36)

thermal expansion coefficient simply reduces to a scalar, and
the stress-strain relation becomes

σ =
E

1+ν

�
ε+

ν trε
1�2ν

�
� EαT

1�2ν
(37)

3 Multi-layered kirchhoff-love plates

Either the lagrangian formulation (Eq. 21) or the weak formu-
lation (Eq. 29) of three-dimensional thermomechanics can be
taken as the starting point for further development such as lin-
earization or limit operations. In particular, plate models are
obtained as the asymptotic case for one of the dimensions of
the solid vanishing (Fig. 1). These operations of limit and lin-
earization are in general non commutative. Terms neglected in
the linearization might have been dominant in the limit. There-
fore to get the linear theory of plates it is necessary first to
deduce the non-linear theory and then to linearize it. In the
asymptotic case for plates, the unknown field is assumed a pri-
ori to have a polynomial dependence with respect to the trans-
verse variable z. The degree of this polynomial is specified
but does not have to be the same for all the components of the

field. In general, each component is interpolated in the z di-
rection using a finite set of linearly independent functions as
in the ansatz

w3D (x; z) = ∑
i

wi (x)vi (z) (38)

Across the thickness the field is interpolated with a set of shape
functions vi. Their coefficients wi vary depending on the po-
sition x of their projection on the middle-plate surface. In-
creasing the number of these functions (i.e. increasing the de-
gree in the case of polynomials) yields a hierarchy of models
of increasing order, whence the name of hierarchic plate the-
ories [Babuska, Szabo, and Actis (1992)], in a very similar
fashion to hierarchic finite elements [Zienkiewicz and Taylor
(1989)]. The Kirchhoff-Love theory [Kirchhoff (1850, 1876);

Nonlinear 3D

Linearization of ε Thickness → 0

Linear 3D Nonlinear Plates

Linear Plates

Linearization of ε

VariationalPDE

Figure 1 : Hierarchy of models for elastodynamics.

Love (1934)] represent the lowest level of this hierarchy, as the
transverse displacement w is kept constant across the thickness
and the in-plane displacement is taken with a linear depen-
dency on z. Additionally, it is necessary to satisfy the con-
straint that the coefficient of z be the opposite of the gradient
of w, expressing the geometrical statement that lines normal
to the middle plane keep their orthogonality in the deformed
state. The ansatz for the three-dimensional displacement is

u3D =

�
u (x)� z∇w (x)

w (x)

�
(39)

For Reissner-Mindlin plates, the through-thickness behavior is
assumed as given by

u3D =

�
u (x)� zϑ (x)

w (x)

�
(40)

which differs from the Kirchhoff-Love [Reissner (1944, 1945,
1985); Mindlin (1951)] model in the independence of the
z-coefficient on the in-plane displacement. The Reissner-
Mindlin plate has received much attention because, contrary
to Kirchhoff plate theory, C0-continuity is sufficient to for-
mulate finite element discretizations. This non-conforming
approximation requires a reduced-order integration to retain
proper flexibility for the plate. This means that instead of
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using a Gaussian quadrature over the element, where the or-
der of the quadrature is chosen to give exact results for the
highest polynomial degree of the shape functions, a quadra-
ture that guarantees exact results only for a lower polynomial
degree is chosen, thus suppressing higher-order displacement
behavior. Indeed, without uniform or selective reduced in-
tegration, elements incur “locking”, a phenomenon in which
the normal-integrated C0-element fails to reproduce the Kirch-
hoff solution expected in the thin-plate limit. However, wider
computing experience with the reduced-integration elements
disclosed ill-conditioned behavior erratically dependent on el-
ement shapes and mesh patterns, an undesirable characteris-
tic for elements intended for use in general-purpose software.
Consequently a rich literature has flourished suggesting sev-
eral methods to overcome these problems. On the other hand,
the common place that the Reissner-Mindlin theory is “better”
than the Kirchhoff-Love theory, is not yet fully substantiated
[Ciarlet (1997)]. Therefore we took the decision to use the
more sophisticated finite elements of class C1 applied to the
simpler Kirchhoff-Love theory, so as to achieve a conforming
approximation, which is mathematically sounder and effects a
higher degree of reliability of the simulated results.

z

x1

x2

h

Ω

Figure 2 : The three-dimensional geometry of a plate.

3.1 The 3D theory in the language of plates

Describing the three-dimensional geometry of the plate as in
Fig. 2

Ω3D = Ω�
�
�h

2
;

h
2

�
=

�
(x; z) : x 2 Ω;�h

2
� z � h

2

�
(41)

the L2 product for an arbitrary pair of fields U , v on the solid
plate is then decomposed as

(u;v)Ω3D
=
Z h=2

�h=2
(u;v)Ω dz (42)

Henceforth the subscript Ω in the inner product and integration
extrema �h=2 shall be omitted. The boundary of the solid
plate is decomposed as

∂Ω3D = Ω�
�

h
2

�
+Ω�

�
h
2

�
+∂Ω�

�
�h

2
;

h
2

�
(43)

i.e. into its perimeter wall, and its lower and upper planes. The
boundary integral of a tensor A contracted with the normal is
then expanded as

(n;A)∂Ω3D
=
Z

Ω
dẑ �Ae0 dx+

�
n;
Z

Adz

�
∂Ω

; (44)

where the jump across Ω oriented along the normal to the plate
is defined as

dAe0 = A(x;h=2)�A(x;�h=2) (45)

and its higher moments as

dAen = dznAe0 =

�
h
2

�n

[A(x;h=2)� (�1)n A(x;�h=2)]

(46)

For any tensor field A(x; z) defined on the solid plate, its n-th
order moment is defined as

An (x) =
Z

znA(x; z) dz: (47)

Using these definitions it is possible to rewrite the inertial vir-
tual work as

WI = (ρü3D;δu3D)Ω3D

= (ρ0ü�ρ1∇ẅ;δu)+(ρ2∇ẅ�ρ1ü;∇δw)+(ρ0ẅ;δw)

(48)

and that for a body force decomposed in its transverse and in-
plane components as f3D = ( f ;g) the virtual work reads

WB = ( f3D;δu3D)Ω3D

= ( f0;δu)� ( f1;∇δw)+(g0;δw)
(49)

According to Eq. 5, the (Green-St. Venant) three-dimensional
strain is then

ε3D =

�
ε γ=2

γT=2 ε33

�
(50)

with

ε = (∇u)S +(∇w)(∇w)=2� z∇∇w

+(∇u) � (∇u)T =2� (z∇∇w)2 (51)

γ = (∇u� z∇∇w) �∇w (52)

ε33 = (∇w)2 (53)

3.2 Taking the plate limit

In the limit case the in-plane strain reduces to

ε = (∇u)S +(∇w)(∇w)=2� z∇∇w (54)

which at the middle plane gives

εm = (∇u)S +(∇w)(∇w)=2 (55)
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The variation of the in-plane strain is

δε = (∇δu)S +(∇w)(∇δw)� z∇∇δw: (56)

Imposing the additional condition of vanishing elastic reaction
in the transverse direction, implies that only the in-plane com-
ponents of the stress are different from zero

σ3D =

�
σ 0
0 0

�
(57)

Thus, the elastic virtual work is

WE = (σ3D;δε3D)Ω3D

=
�

σ0; (∇δu)S
�
� (σ1;∇∇δw)+(∇w �σ0;∇δw)Ω�T

(58)

which, by introducing the stress-strain relation, yields

WE =
�

A0 : εm�A1 : ∇∇w+σext
0 ; (∇δu)S

�
� �A1 : εm�A2 : ∇∇w+σext

1 ;∇∇δw
�

+
�
∇w � �A0 : εm �A1 : ∇∇w+σext

0

�
;∇δw

� (59)

3.3 Linearization

The virtual work of equation (Eq. 59) is non-linear. This
means that the variational problem resulting by adding these
terms to the other virtual works is non-linear. The lineariza-
tion acts on the in-plane strain at the middle surface εm and on
the third row of equation (Eq. 59):

WE;lin =
�

A0 : (∇u)S�A1 : ∇∇w+σext
0 ; (∇δu)S

�
�
�

A1 : (∇u)S�A2 : ∇∇w+σext
1 ;∇∇δw

�
+
�
∇w �σext

0 ;∇δw
� (60)

The resulting weak formulation for the mechanical plate is
then given by the sum

WI +WE =WB (61)

Its linearity depends on the elastic virtual work WE only. Ex-
plicitly, the linearized virtual work is

(ρ0ü�ρ1∇ẅ;δu)+ (ρ2∇ẅ�ρ1ü;∇δw)

+(ρ0ẅ;δw)+
�
∇w �σext

0 ;∇δw
�

+
�

A0 : (∇u)S �A1 : ∇∇w+σext
0 ; (∇δu)S

�
�
�

A1 : (∇u)S �A2 : ∇∇w+σext
1 ;∇∇δw

�
=( f0;δu)� ( f1;∇δw)+ (g0;δw)

(62)

The equation is discretized using finite elements by interpolat-
ing the fields u and w with a set of shape functions, and using
each of these shape functions as the test functions δu and δw.

For the in-plane displacement (for the transverse displacement
a similar relation holds) the unknown field is interpolated as

u (t;x)= ∑
i

ui (t)Ni (x) (63)

An approximation is conforming if the approximating func-
tion is in the same space as the approximated field, non-
conforming in the other case [Bernadou (1996)]. Inspecting
equation (Eq. 62) shows that because of the term

(A2 : ∇∇w;∇∇δw) (64)

the transverse displacement requires that also second deriva-
tives must be square integrable, i.e. w 2 H2 (Ω), so that, in
order to have a conforming discretization, the shape functions
must be elements of H2 (Ω). The Sobolev embedding theorem
then states that the shape functions must be of class C1 (Ω).
This can be achieved implementing the Argyris element of Fig.
3.

Value

Gradient

Directional
Derivative

Figure 3 : The Argyris Element [Argyris, Fried, and Scharpf
(1968)].

4 Fluctuations and noise

The excitation of a vibration response in a micro-beam is cre-
ated by coupling the various degrees of freedom of the gas-
system to a set of linear harmonic oscillators, that are formed
by the spectrum of the vibrational structure. This description
holds for a wide range of cases. The governing fluctuating
process at room temperature changes with the gas density, the
scattering rate for molecules impinging on the cantilever sur-
face growing with the density. Thus, the scattering rates of
the impinging gas-molecules are by orders of magnitude larger
than those stemming from the coupling with phonons or other
elementary excitations. The coupling clearly depends on the
mode spectrum of the respective degree of freedom. For a can-
tilever of length 100 µm and a quadratic cross section of 1 µm
by 1 µm the transition regime of the gas pressure for the trans-
verse vibration-modes is of the order of 10�5 bar [Yasamura,
Stowe, Chow, Pfafman, Kenny, and Rugar (1998)].

All beam-modes have the same thermal energy. Each mode’s
mean square amplitude is completely determined by the am-
bient temperature. According to the equipartition theorem,
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each mode carries the thermal energy kBT , where T is the
temperature and kB the Boltzmann constant, just as any ki-
netic degree of freedom of the gas molecules. Thus, the mean
square vibration-amplitude of the beam does not depend on
the ambient pressure. Differences between various environ-
mental conditions affect only the temporal behavior of the ran-
domly vibrating cantilever, and in particular the tempral cor-
relation functions of the mode amplitudes. Therefore, these
show significant changes under different pressure conditions
for a gaseous environment, thus characterizing the system and
the coupling to its environment. The calculation of the corre-
lation function by means of simulations is the subject of the
following sections.

4.1 Vibration modes of a micro-cantilever

To calculate the correlation function of the mode amplitudes
for a vibrating cantilever we first have to determine the vi-
bration mode functions. For very simple geometries this can
be done analytically, while for complex structures numerical
methods have to be applied. We consider a cantilever of length
l along the x-direction clamped at x = 0 and free at the other
end. Its cross section is rectangular with height h and width b.
We restrict the discussion to the transverse vibration of a bar
with rectangular cross section [Butt and Jaschke (1995)]. The
equation of motion for the transverse displacement field u for
the case of a thin and long (slender) bar is given by [Landau
and Lifshitz (1986)]

∂2u (x; t)
∂t2 +

Eh2

12ρ
∂4u (x; t)

∂x4 = 0; (65)

where E is the elastic modulus of the bar material and ρ is its
density. Together with the boundary conditions

ujx=0 =
∂u
∂x

����
x=0

=
∂2u
∂x2

����
x=l

=
∂3u
∂x3

����
x=l

= 0 (66)

this results in an eigenvalue problem for which the complete
time response is given by a superposition of eigenvectors with
a harmonic time dependence

u (x; t) = ∑
j

ξ j sin(ω jt +θ j)w j (x) (67)

The vibrational modes w j (x) are given by

w j(x) = [sin(k jl)+ sinh(k jl)] [cos(k jx)� cosh(k jx)]

� [cos(k jl)+ cosh(k jl)] [sin(k jx)� sinh(k jx)]
(68)

The vibration frequencies ω j read

ω j =

s
Eh2k4

j

12ρ
(69)

where the wave vectors k j must satisfy for the case of a
clamped-free beam considered here the condition

cos (k jl)cosh (k jl) = �1 (70)

The energy of the transverse vibration modes is given by

W =
Ebh3

24

Z l

0

�
∂2u (x; t)

∂x2

�2

dx+
ρbh

2

Z l

0

�
∂u (x; t)

∂t

�2

dx (71)

Inserting the superposition solution (Eq. 67) and using the or-

(a) (b)

Figure 4 : a) Gas molecules impinging on the micro-bar, b)
first four vibrational mode functions. The longitudinal exten-
sion is normalized to the length L of the bar.

togonality of the eigenvectors w j (and of their second deriva-
tives) yields the total vibrational energy [Butt and Jaschke
(1995)]

W =
K
2

∞

∑
j=0

ξ2
j (k jl)

4 sin2 (ω jt +θ j)
I j

3

+
1

2M

∞

∑
j=0

ξ2
j (Mω j)

2 cos2 (ω jt +θ j)I j

(72)

where M is the total cantilever mass and the spring constant K
is given by

K =
Ebh3

4l3 : (73)

The mean square displacement per mode is given by

I j =
1
l

Z l

0
w2

j dx: (74)

From Eq. 72 we see that the linear vibrating bar may be de-
scribed as an ensemble of non-interacting, i.e. decoupled, har-
monic oscillators. Note that this holds for arbitrary linear vi-
brating structures. Rewriting the total energy in terms of the
modal amplitudes and momenta

q j (t) = ξ j sin(ω jt +θ j) (75)

p j (t) = Mω jξ j cos (ω jt +θ j) (76)

yields

W =
K
2

∞

∑
j=0

q2
j (t)

(k jl)
4 I j

3
+

1
2M

∞

∑
j=0

p2
j (t)I j (77)
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For a harmonic oscillator with a quadratic form of the total en-
ergy as given in Eq. 77 we know that the equipartition theorem
holds. Therefore, a mean square vibration amplitude results
from the interaction with the gas molecules impinging on the
micro-bar as schematically shown in Fig. 4a.

4.2 Correlation functions of vibrational mode-amplitudes

The thermal motion of the gas molecules is completely random
and uncorrelated. The oscillator modes are well defined for a
given frequency ω j and wave vector k j as shown in Fig. 4b.
The continuous impinging of molecules on the cantilever sur-
face results in a random momentum transfer from the gas to
the cantilever and vice versa. Eventually this process yields a
mean square amplitude per mode of the form [Butt and Jaschke
(1995)]



q2

j

�
=

3kBT

(k jl)
4 KIj

(78)

which, remarkably, is independent from the species of the gas
molecules. The number of impacts per unit surface area and
per unit time interval is given by [Reif (1965)]

r =
N
V

r
kBT
2πm

=

r
P

2πmkBT
(79)

where N=V is the number density of gas molecules, T is the
temperature, m is the mass of a gas molecule and P the pres-
sure of the gas. This tells us that there is a significant depen-
dence on the specific gas to be reflected in the dynamics of the
amplitude q j (t). To illustrate this fact we derive the equations
of motion for a single mode from Eq. 72

q̇ j =
I j

M
p (80)

ṗ j = �I jMω2
jq+∆p (t) : (81)

Here ∆p (t) is a random function that results in a completely
uncorrelated noise source and a damping caused by the im-
pinging molecules. For the average momentum transfer,

h∆p (t)i= 0 (82)

holds. The resulting random momentum transfer per unit time
interval is ∆p = 2

p
mkBT , which is roughly twice the aver-

age momentum per molecule perpendicular to the cantilever
surface. This is a coarse-grained picture for the microscopic
processes. The distribution function of the molecules is taken
to be Maxwellian in momentum space and uniform in position
space.

4.3 Simulation procedure

In order to calculate the fluctuations in the vibrational mode
amplitudes in a realistic environment the molecules are as-
sumed to follow a Maxwellian distribution. Consider the fun-
damental transverse vibration mode ( j = 1, see Fig. 4a and

b). In order to perform a simple Euler-forward integration
of Eq. 81, we have to determine the momentum transfer on
the cantilever-mode for each time-step. This requires a se-
ries of random numbers, since Eq. 79 only provides us with
the total number of molecules impinging on the unit area in
a unit time interval. Taking the normal pressure of P = 1 bar
and a temperature T = 300 K of an air-like gas with molecu-
lar mass of roughly m = 30 amu (1 amu = 1:66�10�14 g, the
atomic mass unit) we get an impinging rate per unit area of
r = 9�1024 s�1m�2. This quantity has to be multiplied by the
surface area A of the cantilever that couples momentum into
the respective mode, which in our case is A = 2� 10�10 m2.
This yields a scattering-rate rsc = 9� 1014 s�1, which means
that, under the described normal conditions, a molecule hits
the active surface every 100 fs. The fact that molecules are
scattered from both faces of the active area means that the av-
erage momentum transfer has both signs, negative and posi-
tive, such that in a long time average the force acting on the
micro-cantilever is zero. We choose a time interval ∆t = r�1

sc
with one particle impinging on A. The first of the two random
numbers needed at every step is used to decide whether there is
a momentum transfer from the gas to the cantilever in the time
interval ∆t . Because of the homogeneity of the gas, the azimu-
tal angles and the polar angles of an impinging molecules are
uniformly distributed. The polar angle with respect to the ac-
tive area has no significance, while the cosine of the azimutal
angle is the determining factor once the linear momentum of
the impinging molecule is known. This linear momentum fol-
lows the Maxwellian distribution for the velocities of the gas
molecules. The second random number determines the value
of a component of their momenta normal to the surface of the
cantilever.

The mode amplitude is given by

ξ =

r
ω2m

2
q2 +

1
2m

p2 (83)

The correlation function C (τ) of the deviation of the mode
amplitudes ξ from its average value hξi is given by C (τ) =
h∆ξ(t)∆ξ(t + τ)i with ∆ξ(t) = ξ(t)�hξi. We now describe
the dynamics of ∆ξ(t) by a Langevin equation of the form
[Lax (1960)]

d∆ξ(t)
dt

= �γ∆ξ(t)+F(t) (84)

where γ is the damping constant and F(t) is the fluctuating
force for which

hF (t)i= 0 (85)

F (t)F

�
t 0
��

= 2Dδ
�
t � t 0

�
(86)

must hold [Lax (1960)]. Thus it can be shown [Reif (1965)]
that

C (τ) = h∆ξ(t)∆ξ(t + τ)i= h∆ξ(0)∆ξ(0)iexp (�τγ): (87)
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Figure 5 : Correlation functions of the vibrational am-
plitudes of the first mode for 4 different gas densities
(10�4;10�5;10�6;10�7kg m�3). The simulated gas environ-
ment was at T = 300 K and the molecular mass was 30 amu.
The bar geometry was taken as l = 100 µm, h= 1 µm, b= 1 µm,
and its density was 103kgm�3 while the elastic modulus was
taken as E = 100 GPa. The solid lines show the calculated
correlation functions and the dotted lines are exponential fits
according to Eq. 87.

Eq. 87 induces a natural way of extracting the damping con-
stant γ from the microscopic simulations. It is sufficient to ex-
tract the variance C (0) = h∆ξ(0)∆ξ(0)i and the initial slope
of C (τ) in order to have the exponential functions fitted as
shown in Fig. 5. This procedure is necessary because we do
not know the fluctuating forces of a corresponding Langevin
type behavior.

5 Mesh adaptivity

Two decades have passed since self-adaptive finite element
discretization methods were introduced into the engineering
literature [Zienkiewicz and Zhu (1987)]. They have gained in-
creasing importance for the numerical solution of partial dif-
ferential equations which arise from engineering applications.

The general idea is to obtain a numerical solution within a pre-
scribed tolerance for a minimum of effort expressed in terms
of storage capabilities and computational time needed by the
computing device at hand. The main tools are: a posteriori er-
ror estimators which give global and local information on the
error of the numerical solution; refinement strategies, used in
order to decide which regions have to be refined. The strategies
are usually based on an evaluation of local error information.
To complete the scheme, a geometric method is needed which
specifies aspects of how a given region has to be refined.

For parabolic problems the theory is not as developed as for
elliptic problems, and for hyperbolic problems the field is still
in its infancy [Verfürth (1996)]. Here we present a number
of tools most frequently used for the adaptive finite element
method. The ideas have been under constant development by
various authors over the last 20 years.

One of the difficulties often encountered while solving prac-
tical engineering problems (e.g. computational fluid dynam-
ics, elasticity, or semiconductor device simulation) is that the
overall accuracy of the numerical approximation is deterio-
rated by local singularities, caused, for example, by re-entrant
corners. Intuitively, a selective measure would be to refine the
discretization near critical regions by adding grid points to re-
gions where the solution is less regular. The question is then
how to identify these regions and how to keep a good balance
between refined and unrefined regions such that the overall ac-
curacy is optimal.

In general, the only data available to the analyst providing use-
ful indication of the error is the approximate solution itself.
Therefore, the challenge is to obtain an a posteriori estimate
of the error, i.e. following the initial approximate solution, un-
der the constraint that the calculation of the estimate should be
far less expensive than the computation of the numerical solu-
tion. Moreover, the error estimator should be local and should
yield reliable upper and lower bounds for the error in a suitable
norm. Such bounds ensure that the actual error and the error
estimate decrease at the same rate when the mesh is refined. In
particular, it can be proved that if an adaptive procedure is im-
plemented that reduces the error estimate then the error itself
is also decreased, and at the same rate as the estimate.

In conjunction with an a posteriori error estimator, an adaptive
mesh-refinement process has the following general structure
[Verfürth (1996)]:

1. Construct an initial coarse mesh S0 of finite elements rep-
resenting sufficiently well the geometry of the problem.
Set the iteration counter k = 0.

2. Solve the discrete problem on Sk.
3. For each finite element S in Sk compute an a posteriori

error estimate.
4. If the estimated global error is sufficiently small then

stop. Otherwise decide which elements have to be refined
and construct the next mesh Sk+1. Increment the counter
k and return to step 2.

This is the algorithm usually applied for stationary problems.
It has to be modified in case we deal with transient calcula-
tions:

1. Estimate the accuracy of the computed numerical solu-
tion every few time steps.

2. Couple the refinement process in space with a time step
size control.
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3. Partially coarsen the mesh if necessary.
4. Occasionally, a complete re-meshing could be desirable.

In both stationary and transient problems the refinement pro-
cess might be coupled with a moving point technique, which
keeps the number of grid points constant but changes their rel-
ative location [Ribbens (1989)].

5.1 A posteriori error estimates

There are in general several classes of methods with which
to obtain an a posteriori error estimate suitable for use with
adaptive finite element methods. We review the first one for
a model problem in the next sections [Babuska and Rein-
boldt (1978); Babuska, Zienkiewicz, Gago, and de A. Oliveira
(1986); Bank and Weiser (1985); Verfürth (1996)].

(1) residual estimates: Estimate the error of the computed nu-
merical solution by a suitable norm of its residual with respect
to the strong form of the differential equation.

(2) solution of local problems: Solve locally discrete prob-
lems similar to, but simpler than the original problem and use
appropriate norms of the local solutions for error estimation.

(3) hierarchical basis error estimates: Evaluate the residual of
the computed finite element solution with respect to another
finite element space corresponding to higher order elements or
to a refined grid.

(4) averaging methods: Use some local extrapolation or aver-
aging technique for error estimation. It has been shown that all
these techniques rely on a common principle: the error of the
computed finite element approximation may be represented as
a residual in the dual of an appropriate Banach space. The
norm of this residual must be calculated in a sufficiently accu-
rate and efficient way [Verfürth (1996)].

5.2 The model problem and its discretization

As a model problem we consider the two-dimensional Pois-
son partial differential equation (PDE) with mixed Dirichlet-
Neumann boundary conditions (BCs) [Verfürth (1996)]

�∆u = f in Ω (The PDE) (88)

u = 0 on ΓD (The Dirichlet BC) (89)

∂u
∂n

= g on ΓN (The Neumann BC) (90)

in a connected, bounded, polygonal domain Ω � RRR2 with
boundary ∂Ω = ΓD[ΓN , ΓD \ΓN = /0. We assume that ΓD is
closed relative to ∂Ω with non-null length and that f and g are
square integrable functions respectively on Ω and ΓN . For any
open subset Ω̄ of Ω with Lipschitz boundary ∂Ω̄ (i.e., physi-
cally plausible) we denote by L2

�
Ω̄
�
, and H1

�
Ω̄
�

the standard
Lebesgue and Sobolev-spaces equipped with the usual norms

kϕk0;Ω̄ =

�Z
Ω̄

ϕ2
�1=2

(91)

and

kϕk1;Ω̄ =

�Z
Ω̄

�
ϕ2 + j∇ϕj2

��1=2

(92)

In order to have a more compact notation, throughout this sec-
tion the integration variables and measures are omitted. Inte-
grations over Ω are intended with the measure d2x and those
on ΓN , ΓD with l(x). If Ω̄ = Ω, we omit the index Ω̄. We now
set the space of approximation functions X as

X :=
�

ϕ 2 H1 (Ω) : ϕ = 0 on ΓD
	

(93)

The weak formulation of Problem (88–90) is then finding u 2
X such that
Z

Ω
∇u �∇s =

Z
Ω

f s+
Z

ΓN

gs 8s 2 X (94)

which admits a unique solution. For a triangulation Th of Ω
such that any pair of triangles share at most a common edge
or vertex and the angles of all triangles are bounded from be-
low, it is possible to define a finite element discretization of
equation (5): Find uh 2 Xh such that
Z

Ω
∇uh �∇sh =

Z
Ω

f sh +
Z

ΓN

gsh 8sh 2 Xh (95)

where Xh denotes the space of all continuous, piecewise linear
finite element functions corresponding to the triangulation and
vanishing on ΓD. It is well known that also Eq. 95 admits a
unique solution. In order to keep the notational and technical
apparatus at a minimum we restrict ourselves to linear finite
elements. We end this section by introducing additional nota-
tions which will be needed for constructing and analyzing the
error estimators in the next section. For any triangle T 2 Th,
the set of its edges are denoted by E(T ). The set of all the
edges in the triangulation

Eh :=
[

T2Th

E (T ) (96)

is partitioned as

Eh = Eh;Ω [Eh;D[Eh;N (97)

where Eh;Ω, Eh;D and Eh;N indicate the edges in the interior of
Ω, on ΓD and on ΓN , respectively.

5.3 A residual error estimator

Let u 2 X and uh 2 Xh be the exact solutions of Eq. 94 and
Eq. 95. They satisfy the identity

Z
Ω

∇ (u�uh) �∇s =
Z

Ω
f s+

Z
ΓN

gs�
Z

Ω
∇uh �∇s 8s 2 X (98)
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The right hand side of Eq. 98 implicitly defines the residual of
uh as an element of the dual space of X. Since ΓD has positive
length, a Poincaré-Friedrichs inequality holds

ksk1 � cΩ k∇sk0 8s 2 X (99)

The constant cΩ depends only on Ω and on the length of
the Dirichlet-boundary. Inequality (Eq. 99) and the Cauchy-
Schwarz inequality then imply for all s 2 X , kwk1 = 1�

1

1+ c2
Ω

�
ksk1 � supw2X

Z
Ω

∇s �∇w� ksk1 (100)

Eq. 98 and Inequality (Eq. 100) imply the estimate

supw2X

�Z
Ω

f w+
Z

ΓN

gw�
Z

Ω
∇s �∇w

�
� ku�uhk1

� �1+ c2
Ω
� � supw2X

�Z
Ω

f w+
Z

ΓN

gw�
Z

Ω
∇s �∇w

�
(101)

Evaluating the sup-term in inequality (Eq. 101), observing that
the error is orthogonal to Xh and applying Clément’s Approxi-
mation Theorem gives the following estimate

1
c2 ku�uhk2

1 � ∑
T2Th

h2
T � k f k2

0;T + ∑
E2Eh;N

hE � kg�nE �∇uhk2
0;E

+ ∑
E2Eh;Ω

hE � kdnE �∇uhek2
0;E (102)

where the constant c essentially depends on the smallest an-
gle of the triangulation and hT and hE are the corresponding
diameters. The first sum on the right-hand side considers the
approximation error caused by the “driving force” f in the el-
ement interiors, whereas the second sum describes an error
which is introduced by the deviation of the approximated from
the prescribed normal flux on the boundary. The last term on
the right-hand side considers the jumps of the gradient along
a given edge in the domain interior (nE denotes the element
edge’s outward normal). Defining, for triangles and edges, the
averages

fT =
1
jT j
Z

T
f (x) (103)

gE =
1

hE

Z
E

g(x) (104)

finally yields a local error estimator only involving data known
from the geometry and a computed solution�ηR;T

c

�2
= h2

T � k fTk2
0;T + ∑

E2Eh;N\E(T )

hE � kgE �nE �∇uhk2
0;E

+
1
2 ∑

E2Eh;Ω\E(T )

hE � kdnE �∇uhek2
0;E (105)

Having deduced a reliable error estimator we now can continue
our search for a decision on which elements must be refined or
eventually be coarsened.

5.4 Refinement strategy

From heuristic arguments we know that among all partitions of
a linear finite element discretization, that one is optimal which
equilibrates the error. I.e., the errors in all elements should
be made equal. Among others, the most popular realization is
called the maximum strategy and is done in the following way
[Verfürth (1996)]: Suppose that for a given mesh a solution
and an error estimator ηT for each element has been computed.
Let η = maxT2Th ηT and split an element T if ηT � ζη where
ζ is a prescribed threshold, 0 < ζ < 1. This strategy, applied
iteratively, would continue indefinitely. A halting condition is
simple to add: stop if η � ηaccept.

5.5 Split patterns

The way in which the refinement process is performed, from a
geometrical point of view, depends on the kind of elements
present in the mesh. Difficulties arise from keeping shape
regularity and from handling hanging nodes. Many rules
have been established for the splitting of simplicial mesh con-
stituents, such as e.g. the “red”,“green” or “blue” refinement
for triangles.

We review a recursive algorithm for triangles which is based
on the longest edge bisection. It has been shown that only a
finite number of different angles occur during the refinement
process and therefore shape regularity is guaranteed [Bänsch
(1991), Rivara (1984), Rosenberg and Stenger (1975)]:

recursiveRefine(triangle element):
begin

repeat
if neighbor has non-compatible

refinement-edge
then recursiveRefine(neighbor);

until neighbor has compatible
refinement-edge;

bisect both triangles at the refinement-edge;
end

Compatibility is given if the neighbor element’s longest edge
is at the same time the longest edge of the target element or
is a part of the boundary. The terminating recursive algorithm
modifies the vicinity of the target element until its edge can be
split (see Fig. 6).

6 Results: the AFM beam

The Kirchoff-Love-Argyris finite element has been imple-
mented in our software environment for microsystem simu-
lation [Emmenegger, Taschini, Korvink, and Baltes (1998),
Emmenegger, Korvink, Bächtold, von Arx, Paul, and Baltes
(1998)]. When applied to a clamped-clamped beam using
20 triangular finite elements, the solution of the eigenprob-
lem yields mode shapes and frequencies matching the analyt-
ical solution within 1% up to the ninth mode. Subsequently
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Figure 6 : An elementary mesh consisting of 4 triangles from
which the shaded one is marked to be split along edge (a). The
dashed lines show how the recursive bisectioning algorithm
produces new triangles, continuing down the geometry until
the first edge (d) can be split, then backtracking to (c), (b)
and finally (a). The capital letters label the order in which
new edges are introduced on the return path of the recursive
algorithm (depth 4).

we used the elements to determine the first six free vibra-
tion modes and their associated resonance frequencies for a
CMOS AFM beam (Fig. 7]) [Lange, Akiyama, Hagleitner,
Tonin, Hidber, Niedermann, Staufer, de Rooij, Brand, and
Baltes (1999)].

Figure 7 : Vibrational modes of a micromachined CMOS
AFM beam.

Thermal analysis of the AFM beam allows us to demonstrate
the adaptive refinement process in a straightforward manner.
We therefore compute the solution to Poisson’s equation (the
heat equation). Fig. 8 shows the mesh after the 8th refinement
step where the error for a starting coarse mesh was reduced
by a factor of around five. We clearly see that the refinement
is deeper in regions close to singularities which arise from re-
entrant corners.

The decay of the correlation functions as shown in Fig. 5 must
be explained by the complete randomization of the oscillator
phase due to the impinging molecules. The momentum trans-
fer is taken as an instantaneous scattering process between the
gas molecule and the momentum of the vibrating bar. Thus
it enters only the momentum equation of the micro-bar [Lax
(1960)]. The higher the atmospheric pressure gets the faster
the correlation decays. This yields a damping of the vibra-
tional mode which has been observed by Yasamura, Stowe,
Chow, Pfafman, Kenny, and Rugar (1998). If more compli-
cated scattering processes are present the correlation function
will show more structure. The setup in Fig. 5 shows well sep-
arated time-scales between the molecular dynamics and the
vibrational angular frequency of about 1MHz. The scatter-
ing rate of the molecules with the micro-bar is 6 orders of
magnitude higher. The noise behavior may be determined by
investigating the correlation functions of observable quanti-
ties, taking into account different scattering processes [Greiner
and Korvink (1998)]. An exponential decay of the correlation
function stands for a single dominant process resulting in a sin-
gle time-scale. The structure in fluctuating forces thus must be
reflected in the correlation function of mode amplitude taken
as a random variable.

Figure 8 : Adaptive refinement for a mixed Neumann-
Dirichlet BVP for heat transfer.

7 Summary

Computing the dynamic response of thermomechanical mi-
crostructures requires a discretization scheme that enables ac-
curate numerical solutions on coarse unstructured grids. Ide-
ally, the grids may come from mesh generators that disregard
subsequent computational steps, so that no guarantee on mesh
quality may be assumed. Accuracy is obtained by subsequent
mesh refinement. In addition, mesh refinement is so con-
strained to ensure that the mesh quality keeps on improving
as well.
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An adaptive refinement scheme is indispensable to achieve the
high computational accuracy needed for microsystem applica-
tions. During the last two decades a posteriori error analy-
sis has been well developed for elliptical problems. Since the
complexity of simulation problems increases with computa-
tional resources, theoretical and technical approaches have to
be combined in a sophisticated way and tailored to real world
applications. Future work will concentrate on an extension of
error analysis to parabolic and hyperbolic problems and by the
demand for faster, more accurate and more reliable microsys-
tem simulation code. This can only be met by a combined ef-
fort of numerical analysis, computer science and microsystem
design.

With the aid of accurate noise predictions for real geometries
we will concentrate on the extraction of compact model damp-
ing parameters and geometrical design rules.
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