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Abstract: This work is based upon a careful rendering of
mechanics and mathematics to describe the phenomena that
influence the stress engendered by the Shallow Trench Iso-
lation process. The diffusion-reaction problem is posed in
terms of fundamental mass balance laws. Finite strain kine-
matics is invoked to model the large expansion of SiO2, di-
electrics are modelled as viscoelastic solids and annealing-
induced density relaxation of SiO2 is incorporated as a history-
dependent process. A levelset framework is used to describe
the moving Si/SiO2 interface. Sophisticated finite element
methods are employed to solve the mathematical equations
posed for each phenomenon. These include the incorporation
of discontinuity-resolving shape functions to describe jumps
in concentration of O2, methods to prevent oscillations of nu-
merical solutions and techniques that allow highly inhomoge-
neous deformation of a single element. The use of experimen-
tal data to rigorously obtain material properties is emphasized.
Mechanical properties of viscoelastic solids are extracted di-
rectly from stress-strain data, following which, parameters for
the diffusion-reaction problem are obtained. Qualitative and
quantitative validation of the models is presented; the latter by
comparison with micro-Raman spectroscopy measurements.

keyword: mechanics, diffusion, reaction, coupled, finite el-
ements

1 Introduction

Shallow Trench Isolation (STI) has increasingly displaced Lo-
cal Oxidation of Silicon (LOCOS) and its variants as the iso-
lation technology of choice for manufacture of integrated cir-
cuits. Future generations of devices are likely to witness a
greatly increased use of STI technology. The main advan-
tage of STI over LOCOS lies in its scalability. A drawback
lies in the fact that process steps such as etching, thermal ox-
idation, deposition and densification of gap-fill materials and
rapid thermal annealing contribute in large or small measure
to the creation and alteration of stress in the structure. Suffi-
ciently high stresses can lead to the generation of dislocations
in the substrate, in turn resulting in deleterious electrical ef-
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fects such as leakage currents or electrical shorting between
elements [Fahey, Mader, Stiffler, Mohler, Mis, and Slinkman
(1992)]. Even in the absence of dislocations, the strains asso-
ciated with certain stress fields lead to higher leakage currents
[Smeys, Griffin, Rek, deWolf, and Saraswat (1999)]. Finally,
the failure to achieve sufficient rounding of the substrate at
the trench’s top corner - a feature reflecting the influence of
stress on oxidation - has been related to corner leakage cur-
rents [Chang et al. (1997)]. There is clearly a need for accurate
modelling of stress. In order to provide a background for this
work, we begin with a review of earlier investigations into the
stress induced during processing of silicon.

The pioneering work of EerNisse (1979) established the fact
that stress is generated during the thermal oxidation of Silicon.
It was also recognized that the mechanical response changes
character with temperature; thermal growth over 1000ÆC re-
sults in low or vanishing stress. The stress is compressive in
nature and is caused by the fact that the molar volume of newly
formed SiO2 is 2:2� that of Silicon. When constrained by a
substrate and, possibly constrained by older SiO2 or other ma-
terials, this newly formed SiO2 is unable to expand to its natu-
ral volume and develops compressive stress. Pilling and Bed-
worth (1923) explained the stress in terms of the shear strain
created in the SiO2. Vermilyea (1957) extended the notion of
a “kink site” (proposed by Mott) to model the expansion of
SiO2. According to this model, the oxide expands in a one-
dimensional manner; i.e., perpendicular to the surface being
oxidized. This feature has been incorporated into most studies
of the problem up to this point.

Early attempts to model the mechanics of SiO2 were made
by Chin (1983) who adopted a viscous model with constant
viscosity. A linear elastic model was used by Hsueh and
Evans (1983) and an “incrementally” linear elastic model by
Needs, Jovic, Taylor, Board, and Cooke (1986). A nonlin-
ear viscous model was proposed by Rafferty (1989), based on
the Eyring-viscous model [Eyring (1936)]. Hsueh and Evans
(1983) carried out analytic calculations on oxidation of cylin-
ders using a linear Maxwell-viscoelastic model and Rafferty
(1989) extended it to a nonlinear viscoelastic model by re-
placing the constant viscosity with Eyring’s nonlinear viscous
model. This model has subsequently been used by many re-
searchers; Hu (1991); Fahey, Mader, Stiffler, Mohler, Mis,
and Slinkman (1992); Uchida, Fujinaga, Kotani, Kawazu, and
Miyoshi (1996); Senez, Collard, Ferreira, and Baccus (1996)
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to name a few. Navi and Dunham (1997) modelled the oxide
as a viscous, compressible fluid. The nonlinear (Eyring) vis-
cous model used in many of the above investigations was intro-
duced to mitigate the artificially high stress calculated using a
linear viscosity. It includes a threshold stress above which the
viscosity decays exponentially. More recently, Yu, Flinn, and
Bravman (1996) adopted a viscosity increasing linearly with
time in a Maxwell-viscoelastic model to fit stress-relaxation
data for thin oxide films. The stress levels observed in the thin
film experiments were too low to activate the decaying charac-
ter of calibrated Eyring viscosity models.

The above body of work is based on the infinitesimal strain
theory of mechanics, which holds for strains up to 5%. It is
a fundamental result of the mechanics of deformable bodies
that, beyond this range, the infinitesimal strain theory is in-
accurate. It fails to account for rotations and nonlinearities
inherent in the material behavior. For SiO2, an expansion ratio
of 2:2� over Silicon, implies strains of the order of 2:21=3�1
(as pointed out by Hu (1991)); thus casting the problem clearly
outside the realm of the infinitesimal strain theory. The inter-
ested reader is directed to classical works by Green and Zerna
(1954); Truesdell and Noll (1965); Malvern (1969); Chadwick
(1976); Gurtin (1981); Marsden and Hughes (1994); Ogden
(1984) among others that discuss the finite strain theory of me-
chanics.

The one-dimensional expansion of newly formed SiO2 fails to
model the experimentally observed curvature of wafers that
have thermal oxide grown on one surface. This aspect of
thermal oxidation, which, in fact, formed the experimental
basis of EerNisse’s pioneering study [EerNisse (1979)], ap-
pears to have been largely ignored in the models which fol-
lowed. While thermal oxidation of planar wafers at tempera-
tures above 1000ÆC results in low or nearly zero stress, there
exists, to the authors’ knowledge, little convincing evidence to
suggest that this is on account of one-dimensional oxide ex-
pansion. Rather, the reason is to be sought in the rapid viscous
(or viscoelastic) stress relaxation. More recently, Yu and co-
workers [Yu, Flinn, and Bravman (1997)] have reported the
curvature of wafers during thermal growth of SiO2 on one sur-
face. A three-dimensional expansion of SiO2 is necessary to
explain these results. It has been well established in the study
of thin films that the tendency for in-plane expansion of the
film (in this case, SiO2) causes curvature of the wafer away
from the film. This effect is exploited by way of Stoney’s for-
mula [Stoney (1909)] for the purpose of measuring thin film
mechanical properties.

The various viscous and viscoelastic models adopted in the
above works suffer from a common drawback: they necessar-
ily model a fluid, not a solid. This fact has been pointed out
by Hu (1991) and poses the following difficulty: In a struc-
ture with oxide that has ceased to flow, the model predicts
no stress. Non-zero stresses are approximated by resorting
to ad hoc models such as the time-dependent viscosity of Yu,

Flinn, and Bravman (1996, 1997) or by reporting the stress
that existed just before the flow ceased as in TSUPREM-4
(1996). Experiments such as those by Yu, Flinn and Bravman
(reproduced here in Fig. 3 and 4) demonstrate that the oxide
stress does indeed tend asymptotically to a non zero value at
temperatures below 900ÆC. From Stoney’s equation it follows
that the wafer curvature is constant when the stress becomes
constant; i.e., there is no flow. Without flow, any Maxwell-
viscoelastic model (with linear or nonlinear viscosity) calcu-
lates zero stress. There is a need for a model that can span the
range from fluid-like (stress depends on strain rate) to solid-
like (stress depends on strain and, possibly, strain rate) behav-
ior.

There are two origins of stress in the STI process in addition
to the expansion of thermal oxide: (i) Volume change of filler
materials (usually, TEOS) during densification and subsequent
thermal annealing and (ii) unequal coefficients of thermal ex-
pansion between dissimilar materials. A film, on being de-
posited undergoes shrinkage or expansion as a result of the as-
sociated chemical reactions. This process leads to stress when
the deposited film is bonded to a substrate or fills a trench.
Stademüeller (1992) has studied mechanisms of stress gener-
ation due to densification of various CVD films. The proper
modelling of this effect is crucial to calculations of the stress
associated with the STI process since relatively large amounts
of deposited trench-fill materials are used. When SiO2 is an-
nealed at temperatures at or higher than 950ÆC, a relaxation
is observed in its density. This phenomenon has been investi-
gated by Irene, Tierney, and Angilello (1982), who modelled it
on the basis of a Maxwell-viscoelastic solid. Later, Taniguchi,
Tanaka, and Hamaguchi (1990) provided a phenomenological
treatment, wherein the relaxation is modelled parametrized by
temperature. Since this density relaxation implies a gradual
expansion of oxide (beyond the initial 2:2� increase over Sil-
icon), it too must be accounted for while modelling the stress.
Indeed, for large annealing times, this process results in a vol-
ume increase of 3-4% at temperatures above 1000Æ C. The im-
portance of modelling the thermal mismatch stress should be
apparent since the process involves dissimilar materials and a
range of temperatures (for instance, while oxidation occurs at
temperatures over 1000Æ C, deposition takes place around 700Æ

C and etching at around 50Æ C). The temperature at which each
material is free of thermal strain must be determined and ac-
counted for to enable the correct calculation of stress due to
this effect.

Apart from the actual modelling of the mechanics, there are
important issues dealing with determination of material pa-
rameters. Traditionally, this has been carried out by calibra-
tion of computer code; i.e., adjustment of parameters to match
geometrical data such as thickness of oxide grown. A bench-
mark for this type of calibration is the work of Kao (1986) on
growth of oxide on cylinders and in holes. Admittedly, this ap-
proach is valid for parameters directly related to growth such
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as stress-free diffusivity and reaction rate, or the activation vol-
umes for diffusion and reaction. Typically however, this has
been extended to parameters in the mechanical model such as
the viscosity and, in the case of stress-dependent viscosity, to
the corresponding activation volume. This approach was fol-
lowed by Rafferty (1989); Senez, Collard, Ferreira, and Bac-
cus (1996) and others. Smeys, Griffin, and Saraswat (1995)
used an approximate integration of the Maxwell-viscoelastic
model to estimate the viscosity of nitride by comparison with
micro-Raman stress measurements. With this value fixed, the
remaining parameters were calibrated in the above manner.
The objection to this approach is that no direct measurement
of the stress is involved in extracting the mechanical param-
eters. It seems artificial that a mechanical parameter like the
viscosity should be chosen by fitting growth data. Further-
more, a number of parameter sets could potentially fit the same
data. These pitfalls were demonstrated by Smeys, Griffin, and
Saraswat (1995).

The stress-free diffusivity and reaction rate are calculated from
the Deal-Grove parameters [Deal and Grove (1965)] which, in
turn are established for planar oxidation. The assumption in-
volved here is that planar oxidation does not create intrinsic
oxide growth stresses. As observed by EerNisse (1979); Yu,
Flinn, and Bravman (1997), this assumption is fallacious. This
aspect has been alluded to earlier in this section. The values
extracted on the basis of planar oxidation are, in fact, the diffu-
sivity and reaction rate corresponding to the stress created by
planar oxidation. It follows that the true stress-free diffusivity
and reaction rate must also be recalculated.

While early investigations into the mechanics associated with
integrated circuits adopted analytic methods, the trend to-
ward numerical analysis has been growing [see Dutton (1983);
Rafferty (1989); Peng, Chidambarrao, and Srinivasan (1991);
Senez, Collard, Ferreira, and Baccus (1996); Uchida, Fuji-
naga, Kotani, Kawazu, and Miyoshi (1996); Cea and Law
(1996); Rueda, Cea, and Law (1997)] and references therein).
Increasingly, the Finite Element Method has been the spa-
tial discretization technique of choice. The relevance of the
above investigations to modelling of the STI process lies in
their treatment of thermal oxidation of Silicon. The relevant
mathematical models are solved as follows: The diffusion of
O2 through an existing layer of SiO2 is solved. The free sur-
face boundary condition is specified in terms of solubility of
the oxidant. The SiO2/Si interface is also treated as a bound-
ary across which the oxidant flux vanishes. The O2 diffusing
through to the interface reacts to form SiO2 causing the bound-
ary to advance further into Si. In a finite element setting, this
problem has been treated by specifying an element to be either
SiO2 or Si. This introduces a set of element edges that con-
form to the interface in its initial position. The interface veloc-
ity is calculated from the flux and definition of the interface is
updated after each time step. This procedure leads to two diffi-
culties from a computational standpoint: (i) The finite element

mesh must be updated after each timestep to redefine SiO2 and
Si regions - at high computational cost. (ii) The necessity of
having element edges that conform to the interface can result
in poor mesh quality as the problem progresses. With the SiO2

and Si regions of the mesh redefined after the solution of the
diffusion equation, the equation of mechanical equilibrium is
solved for the stresses engendered by the expanding oxide. In
cases where the oxide has been treated as an incompressible
material (e.g. TSUPREM-4 (1996)) finite element methods
have been employed that accurately treat the incompressible
limit of deformable bodies.

Following the above review of the field, the present study is
outlined: The mathematical and numerical formulation upon
which this work is based were developed by Rao and Hughes
(1999); Rao, Hughes, and Garikipati (1999). Enhancements
and refinements in the mechanics and computational meth-
ods (to appear in a separate publication) have been introduced
over this original work. The details of the formulations will
be avoided for the sake of brevity. The interested reader is
directed to the works appearing at the beginning of this para-
graph. Sec. 2 discusses the mathematical and numerical for-
mulations. Extraction of material parameters is dealt with in
Sec. 3. Validation, qualitative and quantitative, is presented in
Sec. 4, and Sec. 5 summarizes the paper with indications of
current and future investigations.

2 Mathematical and numerical formulations

This section describes the mathematical and numerical models
for physical phenomena associated with the STI process. The
mathematical models are discussed first. Since thermal oxi-
dation is an important component of the STI process, and has
been discussed extensively in the literature, the development
begins with this aspect and proceeds to others, more specific
to shallow trench isolation.

2.1 Mathematical models

Thermal oxidation of Silicon is carried out by introducing the
substrate in a dry or wet ambient of O2 at temperatures rang-
ing between 800ÆC and 1200ÆC. The oxidant dissolves in the
substrate and reacts with Si forming SiO2. Thereafter, for the
reaction to proceed, the oxidant must diffuse through the SiO2

to reach the Si/SiO2 interface. The reaction at the interface
yields newly formed SiO2; thereby the interface advances into
the Si. The newly formed SiO2 has a molar volume 2:2� that
of Si when unstressed; however, it is constrained by the sur-
rounding Si and SiO2 resulting in the development of stresses
in the structure.

2.1.1 Diffusion–reaction

Diffusion and reaction can be combined in the following
framework: Consider an observer who has no means of detect-
ing the fact that reactions are taking place. To such an observer
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the oxidizing species diffuses through SiO2 and arrives at the
interface which itself is moving at a certain velocity. The flux
of O2 has a discontinuity at the interface; it may either vanish
or decrease significantly. Such a setting is appropriate for the
application of generalized mass balance laws. Denoting the
flux of SiO2 by TTT ox, its concentration by ρox and the normal
to the interface pointing into Si by nnn, Rao and Hughes (1999)
have shown that the normal velocity of the interface into the
Silicon is given by

Vn =�
[[TTTox �nnn]]
[[ρox]]

: (1)

In the above equation, [[�]] denotes the discontinuity in the argu-
ment. Eq. 1 is a version of the well-known Rankine-Hugoniot
relationship which makes its appearance in classical compress-
ible fluid mechanics in the presence of shocks; i.e., disconti-
nuities in field quantities [see LeVeque (1992) for details].

The chemical reaction of oxidation at equilibrium is written
as:

Si+O2 *) Si02: (2)

Using the notation [SiO2] to denote the rate of formation of
SiO2 per unit interface area; i.e., a flux, chemical kinetics can
be invoked at equilibrium to write

[SiO2] = ksρi; (3)

where, ρi is the O2 concentration on the SiO2 side of the in-
terface. Observing that in Eq.3 and 1, �[SiO2] and [[TTTox �nnn]]
respectively denote the same quantity; namely, the discontinu-
ity in flux of SiO2, these equations are combined to give:

Vn =
ksρi

[[ρox]]
: (4)

Now, [[ρox]] = ρ+ox � ρ�ox, where the superscripts (�)+ and
(�)� denote the argument evaluated at the interface approached
from the Si and SiO2 regions respectively. Furthermore since
ρ+ox is negligible in comparison with ρ�ox, we have, using the
common notation N1 for ρ�,

Vn =�
ksρi

N1
: (5)

This completes our mathematical formulation of the chemical
kinetics of oxidation. The reaction constant ks is stress and
temperature-dependent. The particular form adopted for the
stress dependence will be discussed in Sec. 2.1.5

For the diffusion equation, assuming steady state conditions,
and recognizing the absence of sources, the differential equa-
tion to be solved is,

∇ � (D∇ρ) = 0; (6)

where, D is the diffusivity, ∇ is the gradient operator and
∇� is the divergence operator. Note that in Eq. 6 the diffus-
ing species is O2. In general, D is stress and temperature-
dependent. The stress dependence is discussed at the end of
Sec. 2.1.5. The diffusion equation is to be solved over SiO2

and Si domains. Appropriate boundary conditions must be
specified in terms of concentration or flux. Flux and concen-
tration discontinuities are to be enforced at the interface.

2.1.2 Moving interface: level-set method

The above mathematical formulation of the diffusion-reaction
problem provides an expression, i.e., Eq. 5 for the interface
velocity. This velocity can be incorporated into a partial dif-
ferential equation dictating the evolution of the interface by
adopting the levelset formulation of Sethian (1996).

A scalar function ϕ(xxx; t) is introduced on the domain of inter-
est. The spatial position of the point in question is denoted
xxx and the current time is t . The function ϕ(xxx; t) is defined as
the signed minimum distance of any point from the interface.
Thus, points lying in the Si substrate have ϕ < 0, those on the
interface have ϕ = 0 and all others have ϕ > 0. Observe that
the function so introduced is a purely mathematical entity and
does not represent a quantity occurring in a physical process.
As the diffusion-reaction processes evolve ϕ changes with po-
sition and time. Beginning with the total time derivative of
ϕ(xxx; t) the following equation can be derived:

dϕ
dt

=
∂ϕ
∂t

�Vnk∇ϕk= 0: (7)

As in Sec. 2.1.1, Vn is the normal velocity of the interface,
∇ϕ is the gradient of ϕ; i.e., a vector, and, k � k denotes the
magnitude of a vector. Eq. 7 is a nonlinear partial differential
equation. It is sometimes called as the Hamilton-Jacobi equa-
tion and, in the context of advective flows would be referred
to as a nonlinear advection equation. It is a hyperbolic differ-
ential equation and its solution requires the specification of an
initial condition; i.e.,

ϕ(xxx;0) = ϕ0(xxx): (8)

2.1.3 Mechanics

The finite strain formulation which underlies the description
of the mechanics in this work will now be outlined. The moti-
vation for this setting is as follows: Each molecule of SiO2, on
being formed at the interface expands to a stress-free volume
that is 2:2� that of the consumed Si molecule. Accordingly,
every point in the SiO2 has a stress-free volumetric strain of
120% when compared with its undeformed state. Even under
a stress, the volumetric strain is expected to be very large. As
mentioned earlier in this work, it is well known that the in-
finitesimal formulation of mechanics loses mathematical and
physical validity beyond about 5% strain. Furthermore, with
finite rotations but no deformation of the material, this theory
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results in spurious non-zero stresses. The mechanics of the
oxidation problem thus place it well outside the regime of the
infinitesimal strain theory, and, the finite strain theory of me-
chanics must be applied.

Every material point is described by its position XXX , in the un-
deformed state, relative to a fixed cartesian reference frame.
Under a deformation the point’s new position, xxx, is given by

xxx =XXX +uuu(XXX); (9)

where, uuu is the displacement vector. The current position is
also denoted ϕ(XXX) = XXX +uuu(XXX). The fundamental measure of
strain is now introduced:

FFF =
∂xxx
∂XXX
; (10)

where, FFF is termed the deformation gradient. Additional mea-
sures of strain can be introduced, such as,

CCC =FFFTFFF ; (11)

where, CCC is called the Right Cauchy-Green tensor. Note that
this newly introduced strain is nonlinearly dependent upon the
displacement uuu. The volumetric expansion ratio is given by

J = det(FFF) =
p

det(CCC); (12)

where, J is called the jacobian of the deformation and must
remain positive.

The constitutive law that determines the stress developed in
viscoelastic materials is introduced now. The Standard Solid
Viscoelastic model [Simo (1985)] was adopted for the oxide.
A schematic representation of the model in terms of springs
and viscous dashpots in the one dimensional case appears in
Fig. 1.

Figure 1 : Schematic representation of the standard solid vis-
coelastic model for the one dimensional case

This model also makes an appearance in the literature un-
der the name of the “Poynting-Thomson Model” [Rekhson
(1986)]. For the model depicted in Fig. 1, it can be shown
that the one-dimensional stress-strain law is given by

σ(t) =
Z s=t

s=0

�
E∞ +Eexp[

�(t � s)
τ

]

�
ε̇(s)ds; (13)

where, τ = η=E is a relaxation time. The springs and dash-
pots appearing in Fig. 1 are, in the three dimensional case,
generalized to elastic moduli and viscous relaxation laws for

the stress. These parameters can be extracted from experimen-
tal data (see Sec. 3 for details). Higher order models are ob-
tained by adding Maxwell elements (i.e., a spring and dashpot
in series, in the above representation). This model has the de-
sirable characteristic of being able to span the entire range of
rate-dependent behaviour from a purely viscous fluid, through
a Maxwell Viscoelastic Fluid to a Viscoelastic Solid. Thereby,
the tendency of the oxide to flow more freely at higher tem-
peratures can be well represented. The Standard Solid Vis-
coelastic model has also been applied to Silicon Nitride for
this work.

Rather than specify a stress-strain law, we introduce a stored
energy function (the compressible Neo-Hookean stored energy
function [Ciarlet (1993)] suitably modified to account for vis-
coelasticity)

ψ(CCC;QQQ) =
1
2
(κlog[J])2 +

1
2

µ
h
J�2=3CCC : 1�1

i
| {z }

ψ̄

�
1
2

QQQ : (J�2=3CCC�1)+ψI(QQQ): (14)

In the above function, QQQ is a stress-like variable that models
the viscoelastic response through the equations

Q̇QQ+
1
τ

QQQ = γ
d
dt

�
DEV

�
2

∂
∂(J�2=3CCC)

ψ̄
��

QQQjt=0 = 0; (15)

where, the parameter γ is a three-dimensional generalization of
the ratio E=(E +E∞) of the one-dimensional model, and the
operator DEV(�) picks the deviatoric component of a tensor.
Details are provided in Simo and Hughes (1998). Additionally,
the function ψI(QQQ) is written as,

ψI(QQQ) =�γψ̄+
1
2

QQQ :
�

J�2=3CCC�1
�
; (16)

and provides the proper conditions at thermodynamic equilib-
rium. The symbol 1 denotes the identity tensor, κ and µ are,
respectively, the bulk and shear moduli and the symbol (�) : (�)
indicates contraction of the corresponding tensors. The se-
ries of Eq. 14—16 summarizes the Standard Solid Viscoelastic
model in the finite strain framework. The stress is now calcu-
lated as

SSS = 4
∂

∂CCC
ψ(CCC;QQQ): (17)

The stress SSS introduced above is the Second Piola-Kirchhoff
stress tensor and is related to the Cauchy stress by SSS =
FFF�1JσσσFFF�T , and, to the nominal stress PPP by PPP =FFFSSS.

We have chosen not to enter into a detailed discussion of the
viscoelastic model in the finite strain framework beyond the
above outline. The interested reader is directed to the work of
Simo and Hughes (1998) for an exhaustive treatment.
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The Law of Mechanical Equilibrium for the static case is writ-
ten as,

divPPP+ fff = 0; (18)

where, fff denotes the body force. Since the stress is related
to the displacement gradient, Eq. 18 can be restated with dis-
placement as the fundamental variable. Boundary conditions
are specified as,

uuuj∂Ωu
= ggg; PPPFFFT nnnj∂Ωt

= ttt; (19)

where, ∂Ωu and ∂Ωt are, respectively, the parts of the boundary
on which displacement and traction boundary conditions are
specified.

2.1.4 Expansion and the constitutive law

The expansion of thermally grown SiO2 to 2:2� the volume of
consumed Si is a fundamental material property of the oxide.
Since, in the framework of continuum mechanics, the consti-
tutive law is the proper vehicle for specification of material
properties, it is natural to incorporate the expansion phenom-
ena within this law. To arrive at such a law, we recall that
in the description of oxidation implied by our treatment of
the diffusion-reaction processes, Si material points are trans-
formed to oxide and instantaneously expand. In the absence of
hydrostatic pressure, the ratio of final to initial volume at the
end of this expansion is 2:2. Conversely, when the pressure is
non-zero, the volume ratio is different from 2:2. Another way
of looking at this argument is that a volume expansion ratio of
2:2 gives zero pressure, while any departure from this value
results in a pressure. Clearly, if the oxide has a volume ratio
greater than 2:2, it is being stretched by a tensile pressure and
vice-versa. Finally, we note that by definition, the volume ra-
tio we are referring to is the jacobian J. In order to formalize
the above arguments in mathematical language, a minor mod-
ification of the Neo-Hookean stored energy function in Eq. 14
is required. It is rewritten (using the same symbol ψ as,

ψ(CCC;QQQ) =
1
2
(κlog[J=2:2])2 +

1
2

µ
h
J�2=3CCC : 1�1

i
� J�2=3QQQ : CCC+ψI(QQQ): (20)

The stress is still given as before, by Eq. 17.

2.1.5 Stress dependence of diffusivity and reaction constant

The notions of stress-dependent diffusivity and reaction con-
stants were introduced in Sec. 2.1.1. The specific forms
adopted for the dependencies are discussed here. The diffu-
sivity and reaction constant are written as,

D = D0exp

�
pVd

kT

�

ks = ks0 exp

�
pVr

kT

�
; (21)

where, D0 and ks0 are the stress-free diffusivity and reaction
constant respectively, Vd and Vr are the activation volumes cor-
responding to diffusion and reaction respectively, k is Boltz-
mann’s constant and T is the temperature. The hydrostatic
pressure is p, defined by p = (σ11 +σ22 +σ33)=3, (where σσσ
is the Cauchy stress) and is negative in compression. In con-
trast with earlier studies of the oxidation problem the reaction
constant is enhanced or depressed by the pressure, p, rather
than the normal stress σnn [see Rafferty (1989); Uchida, Fu-
jinaga, Kotani, Kawazu, and Miyoshi (1996); Senez, Collard,
Ferreira, and Baccus (1996); Navi and Dunham (1997) and
references therein]. The justification for this difference fol-
lows: Earlier investigations treated the oxide expansion as a
one-dimensional movement of the interface normal to itself.
The stress opposing this expansion is the (compressive) nor-
mal stress σnn. The extra work to be performed in order to
overcome the activation barrier is given by σnnVr. In contrast,
this study assumes isotropic expansion of the oxide. The stress
component opposing such an expansion is the pressure in the
oxide. Following a line of reasoning identical to that just ad-
vanced, the work to be performed in overcoming the activation
barrier is pVr. Thus, it is this factor that enhances or depresses
the reaction constant. The choice of activation volumes will
be dealt with in Sec. 3.

In summary, this subsection presents precise mathematical for-
mulations of diffusion, reaction and mechanics. Importantly,
these formulations are based on very well established and clas-
sical concepts in continuum mechanics.

2.2 Numerical methods

This section discusses the numerical methods which are ap-
plied to the mathematical formulations outlined in Sec. 2.1.
This involves accurate numerical methods to treat the
Hamilton-Jacobi equation for movement of the interface, in-
terpolations capable of resolving discontinuous variations in
concentration, and large, inhomogeneous expansions of a ma-
terial. The finite element method is adopted as the basic dis-
cretization technique for all equations to be solved.

2.2.1 Numerical implementation of diffusion–reaction

For the diffusion-reaction problem, the primary variable is the
concentration of the oxidant. A finite element discretization
consisting of linear triangles is used. The concentration is
solved for at the finite element nodes. Standard, linear inter-
polation functions are used. Such interpolations cannot repro-
duce discontinuous concentrations. Since the concentration
of O2 is discontinuous at the Si/SiO2 interface, enhancements
that resolve discontinuities on the SiO2-Si interface must be
used in the interpolated field. The discontinuous interpolations
have local support within elements and do not require element
edges to be aligned with the Si/SiO2 interface. Importantly,
this ensures that the choice of mesh is not prejudiced by the
interface. The interface, which is given by the set of points
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with levelset contour ϕ = 0, moves as dictated by Eq. 7. A
finite element formulation that allows the discontinuity asso-
ciated with the interface to lie within elements eliminates the
need for remeshing as the interface moves. In traditional for-
mulations, the mesh must be changed after each time step as
the interface moves. This leads often to meshes of very poor
quality and incurs a significant computational cost. Details of
the discontinuous interpolations and their derivation have been
presented by Rao, Hughes, and Garikipati (1999). Here, we
will only outline the idea in a very elementary fashion using a
one dimensional example (see Fig. 2).

Figure 2 : Example of one-dimensional diffusion with dis-
continuity in concentration across an interface, Γ. Note that
the interface lies within the element and that concentration is
continuous across elements.

Rao, Hughes, and Garikipati (1999) have shown that the com-
plete concentration field can be expressed as

ρ = Σnel
a=1(Na + Ñla)ca; (22)

where, Na and ca are the nodal shape functions and concen-
trations respectively, nel is the number of element nodes, Ñ is
a generalization to higher dimensions of the discontinuous in-
terpolation in Fig. 2 and la denotes nodal values of a vector
arising out of the flux and concentration discontinuities. The
discontinuous interpolations were developed in the framework
of the Enhanced Strain Finite Element Method. The inter-
ested reader is directed to the original work by Simo and Rifai
(1990) for details and Rao, Hughes, and Garikipati (1999) for
extensions to the diffusion problem.

2.2.2 Numerical implementation of the levelset equation

The evolution of the level set is governed by a time-dependent
partial differential equation. In addition to a spatial discretiza-
tion, it requires time discretization followed by integration. We
first outline issues involved with the spatial discretization.

Eq. 7 is a pure advection equation (see Sec. 2). As is well
known in the computational fluid dynamics community, stan-
dard numerical implementations of such equations show spu-
rious spatial oscillations in the solution. A great body of work

has been written on “stabilizing techniques” for such systems
of equations. Here, we adopt the Galerkin Least Squares
(GLS) approach of Brooks and Hughes (1982); Hughes and
Mallet (1986); Hughes, Franca, and Mallet (1987); Hughes,
Franca, and Hulbert (1989); Johan, Hughes, and Shakib
(1991); Brezzi and Russo (1994); Brezzi, Franca, Hughes, and
Russo (1997) to stabilize the equation. To the original weak
form of the equation,
Z

Ω
w

∂ϕ
∂t

dV +
Z

Ω
wVnk∇ϕkdV = 0; (23)

is added a term to yield a stabilized weak form:
Z

Ω
w

∂ϕ
∂t

dV +
Z

Ω
wVnk∇ϕkdV

+ τ
Z

Ω
Vn

∇ϕ
k∇ϕk

∇wVnk∇ϕkdV| {z }
stabilizing term

= 0: (24)

Time integration is performed using the Forward Euler
Method. For a time step ∆t between time ti and ti+1, denoting
quantities at time ti by (�)i this algorithm furnishes an update
according to the rule:

ϕi+1 = ϕi +∆t(Vnk∇ϕnk)i: (25)

The Forward Euler algorithm has the advantage of resulting
in an explicit method when combined with a diagonal mass
matrix. Furthermore, in the above form it eliminates the ne-
cessity for an iterative scheme for the solution of the nonlinear
advective equation. It is thus extremely attractive from the
standpoint of computational efficiency. Observe that Eq.5 pro-
vides the velocity Vn only at points on the interface. A velocity
projection scheme has been implemented for the purpose of
determining Vn at points away from the interface.

2.2.3 Numerical implementation of the mechanics

In Sec. 2.1.3 it was shown that the finite strain formulation
naturally leads to a nonlinear stress-strain law. It follows
that any finite element implementation is also nonlinear in
terms of the displacements. An iterative scheme, typically, the
Newton-Raphson method or some variation thereof, needs to
be adopted to solve this system of nonlinear equations. The
equations are to be linearized at each iteration and an incre-
mental update to the displacements is solved for. The as-
sembled finite element equations that are solved then take the
form:

fff k
i +(KKKk

m +KKKk
g)∆dddk

i = 0

) ∆dddk
i = �

�
KKKk

m +KKKk
g

�
fff k

i

dddk+1
i+1 = dddk

i +∆dddk
i : (26)

In Eq. 26, fff k
i is the finite element residual at iteration k for time

ti, ∆dddk
i is the incremental nodal solution vector at iteration k for
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time ti and KKKm and KKKg are, respectively, the material and geo-
metric finite element stiffness matrices. The material tangent,
KKKm is similar to the tangent stiffness matrix of the infinitesi-
mal strain theory, while the geometric tangent, KKKg carries ad-
ditional terms that account for large strains and large rotations,
and, the contribution to the stiffness arising from their interac-
tion with the stress. The interested reader is directed to the
work of Simo and Hughes (1998) and references therein for
details.

The viscoelastic evolution Eq. 15 needs to be integrated in time
to solve for the stress-like variable QQQ. Observing that the or-
dinary differential equation is of first order in time and linear,
the integral can be written in convolution form as:

QQQ(t) = γ
Z t

0
exp

�
s� t

τ

�
d
ds

�
2 DEVf

∂ψ
∂J�2=3CCC

g

�
ds: (27)

Eq. 27 involves integration over the entire history of the pro-
cess to obtain the current value of QQQ. A straightforward nu-
merical implementation becomes prohibitively expensive over
medium to large intervals of time. Instead, a two-point recur-
rence formula is adopted that only makes use of history values
from the previous timestep to calculate QQQ at the current time:

QQQn+1 =QQQnexp

�
�∆t

τ

�
+ exp

�
�∆t
2τ

�
 

DEV

(
2
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n+1 CCCn+1)

)
�DEV

(
2

∂ψ̄

∂(J�2=3
n CCCn)

)!
(28)

The formula in Eq. 28 is based on the midpoint rule. Accord-
ingly, it is both second order accurate and unconditionally sta-
ble; both of which are extremely desirable properties for any
time integration scheme. This formula was first proposed by
Simo (1985).

The interface, in passing through an element, separates it into
Si and SiO2 regions. As discussed in Sec. 2.1.3, the material
properties of Si and SiO2 are very different. The differences
lie in the viscoelastic behaviour of SiO2 in contrast with elas-
tic behaviour of Si and, additionally, the property of SiO2 by
which its pressure-free state is attained at a volume expansion
ratio of 2:2. For Si, the pressure-free state is at a volume ra-
tio of one. Different constitutive laws are specified for the Si
and SiO2 part of each element. Additionally, since the SiO2

part must be allowed to expand much more than the Si, the
Enhanced Strain Finite Element Method is used to enrich the
strain field in the SiO2. This is done by way of interpolations
which are local to the element and result in a larger volume
strain (the jacobian, J) in the SiO2 region within the same ele-
ment. The deformation gradient is enhanced as follows:

FFFh
e =Grad[ϕh

e]+ F̃FF
h
e: (29)

In Eq. 29, ϕh
e is the standard interpolation of the current po-

sition and F̃FF
h

is the enhancement to the deformation gradient.

The gradient with respect to the reference configuration is de-
noted Grad[�]. The superscript h denotes the fact that the
quantities are finite dimensional approximations of the contin-
uum ones and the subscript e indicates the local element. The

enhancement to FFFh
e , i.e., F̃FF

h
e is chosen to represent a deforma-

tion gradient field incorporating an inhomogeneous volumet-
ric strain over the element. With this enhancement, the method
leads to the following modified weak form which arises from
the Hu-Washizu variational principle:

Z
Ω
Gradηηηh : PPPhdV �

Z
Ω

ηηηh � fff �
Z

∂Ωt

ηηηh �tttdS = 0;
Z

Ωe

ξ̃ξξ
h

: PPPhdV = 0; (30)

where, ηηη is the variation on the displacement field and ξ̃ξξ is
the corresponding variation on the enhanced deformation gra-

dient, F̃FF
h
e . The modified weak form thus consists of two equa-

tions, of which, Eq. 30 is to be satisfied for each element
Ωe. The interested reader is directed to studies by Simo and
coworkers Simo and Rifai (1990); Simo and Armero (1992);
Simo, Armero, and Taylor (1993); Armero and Garikipati
(1996) for details on the Enhanced Strain Finite Element
Method.

The finite element implementation will be summarized to con-
clude this section: The equations governing diffusion-reaction,
levelset evolution and quasistatic mechanical equilibrium are
all solved using the same finite element mesh for spatial
discretization of the equations. During the solution of the
diffusion-reaction and mechanical equilibrium equations, the
level set values are examined to determine whether a particular
element has the interface passing through it. If so, Si and SiO2

material properties are ascribed to the corresponding regions
of the element. For the diffusion-reaction equation, discon-
tinuous concentration interpolations are invoked. The internal
residual is evaluated from the flux and the corresponding stiff-
ness matrix is calculated. For the mechanical problem, vis-
coelastic and elastic constitutive laws are ascribed to the SiO2

and Si regions. The volume strain is enriched as discussed
above. The internal residual is calculated from the stress and
its linearization provides the element material and geometric
tangents. For the levelset equation, the appropriately evaluated
normal velocity is used. The Galerkin Least Squares Method
is employed to control spatial oscillations and the forward Eu-
ler time integration scheme is applied. The mass matrix and
driving terms are evaluated. In each case the equations are
assembled and a linear solve is performed. For the mechani-
cal equilibrium equation an iterative scheme is employed until
convergence is obtained. This convergence is typically mea-
sured by evaluating the magnitude of the global finite element
residual which is driven to machine zero.
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3 Incorporation of experimental data

This section deals with determination of the mechanical pa-
rameters of the Standard Solid Viscoelastic model followed by
calibration of the growth parameters. This order to the extrac-
tion of parameters is important: the mechanical parameters are
extracted from experimental stress data [Yu, Flinn, and Brav-
man (1996)]; once they are determined, the diffusion-reaction
model is calibrated to growth data by varying the parameters
D0;ks0;Vd and Vr. The incorporation of models for TEOS
(Tetraethoxy Silane) shrinkage and density-relaxation of SiO2

during high temperature anneals is also discussed.

3.1 Extraction of viscoelastic parameters

In this work, the extraction of mechanical parameters is based
upon stress-strain data. This is in contrast with earlier investi-
gations in which calibration parameters were adjusted to match
growth data. As pointed out in Sec. 1, the earlier approaches
admitted the possibility of having several parameter sets match
the same data. Furthermore, there is no check to ensure that
the mechanical parameters so determined will correspond well
with stress-strain data.

The wafer curvature data of Yu, Flinn, and Bravman (1996)
was used to extract mechanical parameters for SiO2. In their
experiments, approximately 1µm of SiO2 was thermally grown
on 100 mm, lightly p-doped h100i Silicon substrates. Dry
and wet ambients were used. Subsequently, the wafers were
cooled down and isothermally annealed at temperatures rang-
ing between 800ÆC and 1000ÆC. The stress due to mismatch
in coefficients of thermal expansion induced curvature in the
wafer, which was measured. Stoney’s equation was applied to
calculate the SiO2 film stress. The results demonstrated stress
relaxation with time — indicative of viscoelastic behavior.

The Standard Solid Viscoelastic model outlined in Sec. 2.1.3
was used to calculate the stress arising out of the mismatched
thermal strain. Since the strains involved in this case were
small (for αSi = 3�10�6 and αSiO2 = 0:55�10�6 and a tem-
perature change of � �350ÆC the mismatched thermal strain
is 8:75� 10�4), the infinitesimal strain theory could be used,
thereby simplifying the calculations. The biaxial stress devel-
oped in the film is

σ =

�
κ+

4µ
3

�
γ∞ + γexp

h
�

t
τ

i��
(αSi �αSiO2)∆T; (31)

where, γ∞ = 1� γ. This equation is used to determine κ;µ;γ
and τ by way of a least squares error fit with the stress relax-
ation curves of Yu et al. (see Fig. 3 and 4).

Since the data in Fig. 3 and 4 represents stress relaxation of
SiO2 at various temperatures, the variation with temperature
of the extracted parameters is also obtained.
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Figure 3 : Fits to the isothermal relaxation data of Yu et al.
using the standard solid viscoelastic model. The oxide was
thermally grown dry at 1150Æ C and subsequently annealed at
the indicated temperatures.
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Figure 4 : Fits to the isothermal relaxation data of Yu et al.
using the standard solid viscoelastic model. The oxide was
thermally grown wet at 1150Æ C and subsequently annealed at
the indicated temperatures.

3.2 Calibration to growth data

Since the mechanical model employed for this investigation
differs from that in earlier investigations, the stress is also ex-
pected to be different. Since stress affects the growth of SiO2,
the corresponding parameters (the activation volumes, Vd and
Vr) must be recalibrated. In addition, for the present study the
stress-free state of SiO2 does not correspond to planar growth.
In earlier models, the diffusivity and reaction constant for pla-
nar growth; i.e., growth on a flat wafer have been taken as
the corresponding stress-free values. These values have been
calculated from Deal-Grove parameters, themselves extracted
from experimental observations. For this study, the true stress-
free diffusivity and reaction-constant are also treated as cali-
bration parameters. The set fD0;ks0;Vd;Vrg was fixed by fit-
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ting the model to growth data of Kao (1986). The resulting
values appear in Tab. 1.

Table 1 : Stress-free values of diffusion-reaction parameters

Property Value

D0 6:999 exp[�6�10�12T ] (cm2� sec�1), T in K
ks0 5:532 exp[�3�10�12T ] (cm� sec�1), T in K
Vd 30A3

Vr 3A3

3.3 Shrinkage of TEOS

In the STI process, isolation of active Si areas is provided by
dielectric filler materials. TEOS is a favored candidate for this
purpose. Following the deposition of trench fill material (as-
sumed to be TEOS), it is annealed in order to ensure densifica-
tion. During this process chemical reactions take place result-
ing in the formation of SiO2 and release of byproducts such
as H2O. As a consequence, the filler material shrinks. On ac-
count of its being attached to the liner oxide, stress arises in
the active areas adjacent to the trench walls and on the trench
floor. Stademüeller (1992) has performed experimental stud-
ies of the densification process of various deposited films and
catalogued the observed volume shrinkage and film stress. For
the purpose of incorporation in a constitutive model, the stress-
free shrinkage of TEOS (or, any other filler material) is neces-
sary. Such information can then be incorprated into the model
as in Sec. 2.1.4 leading to a further modification of Eq. 20:

ψ(CCC) =
1
2

�
κlog

�
J

2:2β

��2

+
1
2

µ
h
J�2=3CCC : 1�1

i
�

1
2

QQQ :
�

J�2=3CCC�1
�
+ψI(QQQ); (32)

where, β is the volume shrinkage ratio (0< β< 1).

3.4 Density relaxation of SiO2 during annealing

In addition to the volume expansion of thermal SiO2 and
shrinkage of TEOS, there remains one phenomenon of vol-
ume change to be modelled: Experiments have shown that the
structure of SiO2 undergoes a relaxation in density when an-
nealed at high temperatures. The density has been observed to
decrease — alternatively, the volume increases — by as much
as 3�4% between 600ÆC and 1050ÆC. Given the low coeffi-
cient of thermal expansion of SiO2; i.e., 0:55�10�6ÆC�1, this
volume-increase cannot be attributed to thermal expansion.

Irene, Tierney, and Angilello (1982) treated this relaxation
within the framework of a Maxwell viscoelastic model. The
increase in volumetric strain was viewed as being driven by the
relaxation of the compressive growth stress. This approach has
also been adopted by Navi and Dunham (1997). In contrast,
the viscoelastic model assumed in this work treats the hydro-
static pressure-component of the stress as being purely elas-
tic. Instead, a phenomenological approach has been adopted.
Turning to the work of Taniguchi, Tanaka, and Hamaguchi
(1990), an evolution law is used for the volume strain during
annealing. The law is summarized in the following equations:

ϑ(t) =
(n0�1)α

(n∞ �1+(n0�n∞)exp[�(t=τ)a])α (33)

τ̄(T ) = τ̄0exp(EA=kT ) (34)

τ̄0 = 1:26�10�21s (35)

EA = 6eV: (36)

Here, ϑ(t) is the volumetric expansion ratio, n is the refrac-
tive index and subscripts (�)0 and (�)∞ refer to initial and final
values of the corresponding quantities. Suitable values of the
exponents are α = 0:17 and a = 1:63. This contribution to
the volumetric expansion ratio has been treated as an internal
variable [see Lubliner (1990) for a discussion of the thermo-
dynamic basis of internal variables]. In such a framework, the
irreversibility of this volume expansion is easily ensured. In-
corporating ϑ(t) in the stored energy function, its final form is
written as
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4 Model validation

The aim of this section is to demonstrate the validity of the
models introduced in Sec. 2 and 3. At issue is the correct rep-
resentation of stress in qualitative and quantitative terms. By
“qualitative correctness” is meant the development of com-
pressive and tensile components of the stress tensor in order
that the trends of experimentally observed phenomena be re-
produced. “Quantitative correctness” applies to actual stress
values. In what follows, the qualitative aspects will be demon-
strated via development of wafer curvature during thermal ox-
idation and the attainment of the proper sign of stress compo-
nents in STI process sequences. Microraman stress measure-
ments provide validation of the models in terms of the actual
stress values calculated. Plane strain conditions have been as-
sumed for all examples. This implies that material points on
the structures are assumed not to experience any displacement
in the direction normal to the plane of the page.
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4.1 Wafer curvature

A model problem is considered (see the schematic in Fig. 5).
A wafer of dimensions 5µm (width) and 1µm (thickness) is
oxidized on its top surface. The oxidation is carried out dry
at 1000Æ C. A Dirichlet boundary condition for diffusion is
specified on the top surface in terms of the solubility of O2 in
a dry ambient. Additionally, zero flux (Neumann) boundary
conditions are specified on the remaining three surfaces. A
thin layer of SiO2 is assumed to exist at the beginning of the
problem (Fig. 6). Using symmetry, one half of the problem is
solved for. This implies symmetry boundary conditions on the
left vertical surface to restrain horizontal motion. Additionally,
the right lower corner is prevented from vertical motion. This
eliminates rigid body motions of the wafer.

Figure 5 : Schematic representation of the boundary value
problem for wafer bending

This example aims at demonstrating the mechanically correct
representation of oxide expansion. Wafers undergoing thermal
oxidation on one surface bend away from that surface on ac-
count of the growth stress of the newly formed oxide. This
oxide is in compression, and, on going through the derivation
of Stoney’s equation for a thin film on a substrate, it is readily
apparent that the wafer does indeed curve away from the film.
As discussed earlier, models that represent oxide expansion
as a one-dimensional phenomenon (i.e., expansion only in the
direction normal to the interface) cannot represent wafer cur-
vature. It is the multidimensional expansion of the oxide that
is responsible for wafer curvature during thermal oxidation.
The present model demonstrates this very well. Fig. 6 shows
the initial position of the interface. There is no bending in this
figure since the solution has not been started. Fig. 8 shows
a stage well into the oxidation. The interface has advanced
into the substrate. The newly formed oxide has expanded and
this expansion results in the expected wafer curvature. Fig. 9
shows the stress σ11, where the x1 direction is along the length
of the wafer. Negative stresses are compressive and vice versa.
The newly-formed SiO2 is restrained from attaining its stress-
free volume by the substrate and is therefore in compression.
This compressive stress results in a tensile stress in the sub-
strate just below the interface. On moving further away from
the interface, the effect of the wafer’s curvature results in the
substrate stress changing from tension to compression. This is
exactly what would be expected from this problem.

Time = 0.00E+00Time = 0.00E+00

Figure 6 : Unoxidized wafer with a very thin initial layer
(10AÆ) of SiO2

Time = 3.00E+03Time = 3.00E+03

Figure 7 : Deformed mesh after 50 minutes of oxidation at
1000Æ C in a dry ambient. Observe movement of the interface
into the substrate and the beginning of bending.

4.2 Computation of stress in an STI process

A numerical example is presented to demonstrate calculations
for the entire STI process. Each stage of the process is solved
for, accounting for thermal oxidation, deposition or removal of
material and the accompanying mechanics. Variation in ther-
mal stress, material moduli and diffusion-reaction parameters
with temperature and temperature ramps, as discussed in pre-
vious sections, are also included.

A test structure consisting of an array of 4µm lines separated
by 4µm trenches is considered (Fig. 10). Symmetry is invoked
to allow the solution to be carried out on the region within
the dotted lines. Accordingly, the extreme left and right ver-
tical faces of the structure are constrained from having hor-
izontal displacements and the bottom surface is constrained
from vertical displacements. The boundary conditions for the
diffusion-reaction problem and the initial condition for the lev-
elset evolution equation will change with the process step.

4.2.1 Thermal growth of barrier oxide

This first stage of the STI process sequence is carried out on a
substrate 4µm in width and 0:7µm in thickness. Oxidation in
a dry ambient at 920Æ C is assumed. A thin layer of barrier
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Time = 6.00E+03Time = 6.00E+03

Figure 8 : Deformed mesh after 100 minutes of oxidation at
1000Æ C in a dry ambient. Observe small amount of further
movement of the interface and more pronounced bending. The
outermost layer of elements is undergoing a small amount of
expansion which is not noticeable in this figure.
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Figure 9 : Contour plot of σ11 after 100 minutes of oxidation.

oxide is grown on the upper surface. Fig. 11 and 12 show the
materials and stress, σ11 at the end of this step.

4.2.2 Nitride deposition

A layer of nitride, 0:15µm thick, is deposited over the barrier
oxide at 740ÆC. This step is modelled by accounting for the
shrinkage in volume experienced by deposited nitride. It is
assumed that this volume shrinks by 5% in a stress-free state
[Stademüeller (1992) reports a value of 3%, but this is in a
stressed state]. This shrinkage results in a new state of stress
in the entire structure which is solved for starting from the
state of stress at the end of the barrier oxidation step, lower-
ing the temperature and specifying the shrinkage of nitride.
The oxide is assumed to be purely elastic below 750ÆC. It is
further assumed that the entire thickness of the nitride is de-
posited instantaneously. A gradual process could also be mod-
elled wherein incremental nitride layers are deposited and the
calculations for stress equilibrium are performed after the ad-
dition of each new layer. Fig. 13 and 14 show the materials and
stress at the end of this step. Note that the diffusion-reaction
and levelset evolution problems do not play a role in this step.

x1

x2

Figure 10 : Schematic representation of an array of lines and
a section chosen to compute the solution on the basis of sym-
metry.

Figure 11 : Materials after growth of barrier oxide: Substrate
(grey) and barrier oxide (black)
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Figure 12 : σ11 at the end of barrier oxide growth

4.2.3 Trench etch

This step is modelled by removing material (nitride, oxide and
substrate) to leave a trench of width 4µm with a sidewall slope
of about 87Æ. As in the nitride deposition step, only a new
state of stress needs to be calculated. Again, this is numerically
modelled by assuming that the trench is instantaneously etched
rather than acounting for the incremental process. The solution
for an incremental etch would be carried out as discussed in
Sec. 4.2.2. The etch is assumed to occur at 55ÆC.

4.2.4 Liner oxidation

Following the trench etch, liner oxidation is carried out in a
dry ambient at 1000ÆC. In this step, the full thermal oxida-
tion problem is solved. We point out that this stage involves
the specification of a new set of boundary conditions for the
diffusion-reaction problem. The trench wall and floor have
oxidant concentration specified by accounting for solubility of
O2 in a dry ambient, and, the remaining free surfaces have zero
flux boundary conditions. The initial condition for the levelset
evolution equation also must be specified afresh to represent a
thin layer of oxide along the trench wall and floor. Fig. 17 and
18 show the materials and stress at the end of this stage.
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Figure 13 : Materials after nitride deposition: Substrate (light
grey), barrier oxide (black) and nitride mask (dark grey)
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Figure 14 : σ11 at the end of nitride deposition. 5% densifica-
tion assumed for nitride, which is modelled as an elastic solid
in this case. The stress represented is that after deposition of
nitride and attainment of a new mechanical equilibrium state
for the entire structure.

4.2.5 TEOS deposition and shrinkage

Subsequent to liner oxidation, trench-fill TEOS is deposited
at 650ÆC. Given the profile of the structure at the end of liner
oxidation, the profile of trench fill TEOS is solved by a two-
dimensional topography algorithm (the code SPEEDIE [SPE
(1995)] was used) to generate a highly conforming profile.
For this calculation, it was assumed that the shrinkage asso-
ciated with the reactions (by which TEOS gives rise to SiO2

and H2O) does not produce a stress. However, the annealing-
related volume expansion (see Sec. 3.4) of SiO2 does cause
stress. This property is attributed to both thermally grown
SiO2 and SiO2 from deposited TEOS. As discussed above for
nitride deposition (Sec. 4.2.2), stress equilibrium is solved for
on the full structure. Fig. 19 and 20 show the materials and
stress at the end of this stage.

4.2.6 TEOS polish

This step is modelled by removal of the TEOS down un-
til the nitride level. The new state of stress is calculated at
70ÆC by assuming - as with the earlier stages involving mate-
rial removal - that all the material is removed instantaneously.
Fig. 21 and 22 show the materials and stress at the end of the
TEOS polish step.

4.2.7 Nitride strip

This stage is solved for at 140ÆC. It is assumed that the ad-
jacent trench-fill is also planarized. Fig. 23 and 24 show the
materials and stress.

Figure 15 : Materials after trench etch: Substrate (light grey),
barrier oxide (black) and nitride mask (dark grey)
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Figure 16 : σ11 at the end of trench etch. The stress repre-
sented is that after trench etch and attainment of a new me-
chanical equilibrium state for the entire structure.

4.2.8 Sacrificial oxide growth

A layer of sacrificial oxide is thermally grown over the ac-
tive region. This results in the thickening of the existing ox-
ide which was originally grown in the barrier oxidation step.
Sacrificial oxide growth is considered at 910ÆC in a dry ambi-
ent. The boundary conditions for the diffusion-reaction prob-
lem are respecified in the form of concentration over the active
area and zero flux on the remaining free surfaces. The ini-
tial condition for the levelset evolution equation is specified
by accounting for the position of the barrier oxide/substrate
interface. Fig. 25 and 26 show the materials and stress at the
end of this stage.

4.2.9 Sacrificial oxide strip

This stage is modelled at 306ÆC. Here it is assumed that the ad-
jacent trench-fill material is not planarized in the process. The
sacrificial oxide is removed and stress equilibrium is solved
for.

4.2.10 Thermal growth of gate oxide

The final stage in the STI process sequence considered here is
the growth, at 900ÆC, of a thin layer of gate oxide over the ac-
tive area. The oxidant concentration is specified on the newly
exposed upper surface of the active area. The initial condition
for the levelset evolution equation is also specified by account-
ing for the thickness of the sacrificial oxide left at the end of
the stripping stage (Section 4.2.9).

4.3 Validation of STI stress

This section presents a comparison between micro-Raman
Spectroscopy measurements on the test structure decribed in
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Figure 17 : Materials after liner oxidation: Substrate (black),
barrier/liner oxide (lightest grey) and nitride mask (light grey)
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Figure 18 : σ11 at the end of liner oxide growth

Sec. 4.2 and a numerical solution of the full STI process se-
quence upon a section of the test structure. The section cho-
sen out of the test structure corresponds to that depicted in
Fig. 10. The principles and procedure of using Microraman
Spectroscopy to measure the stress in a Silicon structure have
been discussed extensively in the work of de Wolf, Norström,
and Maes (1993); de Wolf, Maes, and Jones (1996); Jain,
Maes, Pinardi, and de Wolf (1996); de Wolf, Pozzat, Pinardi,
Howard, Ignat, Jain, and Maes (1996); de Wolf (1996). A brief
description follows:

The frequency of the Si Raman peak depends on stress. In
order to determine this frequency, the peak is fitted with a
Lorentzian function. The plasma lines of the laser are used
as reference. They are fitted using a Gaussian function to de-
termine their frequency. In the present case, the structure was
scanned in a direction perpendicular to the lines. The measure-
ments were made in backscattering from the (100) surface. A
laser with wavelength 457:9 nm and output power 40 mW was
used. With certain assumptions, the Raman shift can be re-
lated to the normal stress perpendicular to the line. Instead,
the reverse was done; the Raman shift was evaluated on the
basis of the numerical solution for the local strain and com-
pared with the actual measurement. On the basis of the work
of de Wolf (see above references), the relation between band
shift and stress is σ11 = �0:5�109∆ω, where, σ11 is the nor-
mal Cauchy stress in Pa in the x1 direction and ∆ω is the shift
in bandwidth in cm�1.

Figure 19 : Materials after TEOS deposition: Substrate (light-
est grey), barrier oxide (black), nitride mask (lighter grey) and
filler (grey) (liner oxide is not shown)
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Figure 20 : σ11 at the end of filler deposition. 5% densification
(literature values). The stress represented is that after deposi-
tion of TEOS and attainment of a new mechanical equilibrium
state for the entire structure.

Results are shown in Fig. 31 and 32 for the Raman shifts after
liner oxidation and the final gate oxidation respectively. The
Raman shift is measured in Silicon just below the oxide. On
the basis of the above discussion, it is clear that an accurate
calculation of the Raman shift entails accurate modelling of
stress. Thus, the model provides a reasonably correct stress
field for the stage following liner oxidation. However, from
a comparison of the band shift, it is clear that the stress pre-
dicted at the end of gate oxidation does not match as well with
experiment. In particular, it is apparent from the plots that the
stress calculated by the model in the line is higher than ex-
perimental values. This effect is particularly pronounced as
the trench wall (where thermally grown and deposited SiO2

are in contact) is approached. At the present stage of this
work, the viscoelastic properties obtained for thermally grown
SiO2 (Sec. 3.1) have also been used for SiO2 deposited as
TEOS. However, the mechanical properties of deposited films
are known to vary significantly from those of thermally grown
films. This would indicate that measurements of the viscoelas-
tic properties of deposited SiO2 are necessary. Such an ex-
perimental program is being planned. It is expected that with
such data, the stress predicted by the present models will cor-
respond more closely with experiments. These experimental
investigations will also be extended to examine the validity of
the model of Taniguchi, Tanaka, and Hamaguchi (1990) for
volume expansion of SiO2 when annealed. A further source of
modelling-error is that perfect boundary conditions were as-
sumed for the vertical boundaries in the mechanical problem
(see Sec. 4.2). However, the wafer is almost certainly warp-
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Figure 21 : Materials after TEOS polish: Substrate (lightest
grey), barrier oxide (black), nitride mask (lighter grey) and
filler (grey) (liner oxide is not shown)
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Figure 22 : σ11 at the end of TEOS polish. The stress repre-
sented is that after removal of TEOS and attainment of a new
mechanical equilibrium state for the entire structure.

ing as a consequence of oxidation of Silicon and annealing of
SiO2. This would involve some rotation of the boundaries. In-
vestigations are underway on how best to represent the bound-
ary conditions for the mechanical problem.

In contrast with the situation described above, the numerical
solution at the end of liner oxidation shows better correspon-
dence with the experimental result for bandwidth-shift. In this
case, since the trench has yet to be filled, the problem of dis-
similar materials does not arise.

The trends seen in the numerical solutions in Fig. 31 and 32
match well with experiment. They indicate compressive stress
in the line, changing sharply to tension under the trench.

5 Conclusions

Models have been presented for the processes of diffusion-
reaction, interface movement and mechanics involved in shal-
low trench isolation. It is evident that the complexity of the
problem merits a rigorous treatment from the mathematical
and numerical standpoint. The formalism of continuum me-
chanics and accompanying balance laws has been brought to
to bear upon the problem. Finite strain kinematics has been ar-
gued for and applied in modelling the large expansion of SiO2.
Various experimentally observed phenomena that contribute to
the mechanics of the problem have been accounted for in a
rigorous manner. The computational methods employed have
been demonstrated to have the capability of calculating the
stress at each step of the process. Qualitative and quantitative
validation of the models has been presented.

The problem would benefit from the extension of the mathe-
matical, mechanical and numerical models to three dimensions
to account for effect such as those at corners. In addition, fur-

Figure 23 : Materials after nitride strip: Substrate (lighter
grey), barrier oxide (black) and filler (grey) (liner oxide is not
shown)
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Figure 24 : σ11 at the end of nitride strip. The stress repre-
sented is that after stripping of nitride and attainment of a new
mechanical equilibrium state for the entire structure.

ther experimentation is needed to obtain data on aspects such
as expansion of SiO2 under annealing. The appropriate me-
chanical boundary conditions appear to need further investiga-
tion.
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