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Abstract: We present a new and unique software capability
for finding statistical optimal designs of deterministic exper-
iments on continuous cuboidal regions. The objective func-
tion for the design optimization is the minimization of the ex-
pected integrated mean squared error of prediction of the meta-
model that will be found, subsequent to the running of the
computer simulations, using the best linear unbiased predic-
tor (BLUP). The assumed response-model function includes
an unknown, stochastic term, Z. We prove that this criterion,
which we name IZ-optimality, is equivalent to I-optimality for
non-deterministic experiments, in the limit of zero correlations
among the Z’s for different inputs. An example is presented
of metamodel generation for a micromachined-silicon flow
sensor. The IZ-optimal set of inputs is found, finite-element
(FE) simulations run, and the metamodel generated using a
BLUP fit. The method is compared to other approaches. IZ-
optimality, coupled with BLUP fitting, provides a highly ef-
ficient means of non-parametric metamodel generation. IZ-
optimal design searching and BLUP fitting are new options of
the I-OPTTM program that is available on the World-Wide Web
at URL http://www-personal.engin.umich.edu/�crary/iopt.

keyword: design of computer experiments, I-optimality, mi-
croelectromechanical systems, MEMS, silicon flow sensor.

1 Introduction

The design and optimization of microsystems can require
large numbers of computationally intensive simulations, such
as discretized approximations of partial differential equations
(finite-element or boundary-element analyses) or systems of
coupled ordinary differential equations. Often it would be con-
venient if a simpler, but still reasonably accurate, functional
approximation could be found that could be evaluated orders
of magnitude more rapidly than the systems of equations it
is replacing. Such surrogate functions, or metamodels, could
represent components of a MEMS system and could be used
effectively in design synthesis to allow for the rapid trial eval-
uation and then selection of components in a system. Alterna-
tively, such metamodels could be used for rapid optimization,
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since the functional evaluations that normally dominate such
optimization would be computed very rapidly.

In earlier work, we demonstrated two parametric methods for
designing experiments for metamodel generation in the con-
text of MEMS, namely I-optimal, single-domain, response-
surface methodology, see Gianchandani and Crary (1998),
and an algorithm for patch-wise functional approximation, see
Crary and Phan (1998). These methods required the specifi-
cation of either a model function or a set of basis functions
prior to the search for a suitable designed experiment. By con-
trast, in this paper we draw upon a non- parametric method
that uses an optimal linear predictor of the type introduced by
Wold (1938) in the context of time series. Two conference re-
ports included content found in the present study, see Crary,
Cousseau, Armstrong, Woodcock, Dubochet, Lerch, and Re-
naud (1999) and Crary, Cousseau, Mok, Woodcock, and Re-
naud (1999).

A series of statistics papers has highlighted the method for
deterministic computer experiments; see Sacks, Schiller and
Welch (1989); Sacks, Welch, Mitchell, and Wynn (1989);
Welch, Yu, Kang, and Sacks (1990); Currin, Mitchell, Mor-
ris, and Ylvisaker (1991); and Welch, Buck, Sacks, Wynn,
Mitchell, and Morris (1992). There are both advantages and
disadvantages to the method presented here, and these will be
discussed below. This approach has been demonstrated pre-
viously with considerable success in geophysics; see Chap-
man, Welch, Bowman, Sacks, and Walsh (1994); in marine
science, see Gough and Welch (1994); in aerospace engineer-
ing; see Simpson, Mauery, Korte, and Mistree (1998); in struc-
tural engineering; see Simpson, Allen, and Mistree (1998); for
inkjet printhead design; see Salagame and Barton (1997); in
semiconductor engineering; see Aslett, Buck, Duvall, Sacks,
and Welch (1998); Bernardo, Buck, Liu, Nazaret, Sacks, and
Welch (1992); and Currin, Mitchell, Morris, and Ylvisaker
(1991); and for thermal energy-storage systems; see Currin,
Mitchell, Morris, and Ylvisaker (1991). In an early chemical-
kinetics example with two salient factors, Sacks, Schiller, and
Welch (1989) compared the new approach with that of a tra-
ditional response-surface method (3� 3 factorial design and
least- squares fitting analysis, as reported in Miller and Fren-
klach (1983)) and demonstrated a remarkable 8- to 10-fold re-
duction in the variance of prediction of the fitting function.

Helpful reviews are available on statistics applied to computer
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experiments, see Koehler and Owen (1996), on the history of
the correlation-function method, see Cressie (1990), on the
history of BLUP fitting, see Kennedy (1991), and on meta-
models, see Barton (1992) and Simpson (1998). The math-
ematics is covered well in the text by Searle, Casella, and
McCulloch (1992). An interesting critique is given by Et-
man (1994). An alternative approach is to use moving least-
squares methods, see Lancaster and Salkauskas (1981) and Et-
man (1994).

An interesting and related element-free approach to solving
partial differential equations is taken by Lu, Belytschko, and
Gu (1994) and Belytschko, Lu, and Gu (1994). Senturia
(1998) and Senturia, Aluru, and White (1997) make reference
to MEMS design using a basis- function approach.

Our work followed the Sacks, Schiller, and Welch (1989)
closely, and we were able to duplicate much of their work on
a demonstration MEMS example. However, there were also
notable differences. The most important of these were that we
were able to find superior designs to those published in their
paper and that our design software is available to the public.

2 I-OPT version 4

Briefly, Version 4 of I-OPT includes a new capability for find-
ing designs for deterministic experiments. I-OPT is a sin-
gle program, compiled from both FORTRAN and C source
code, that finds optimal designs minimizing the expected in-
tegrated mean-squared error of prediction (IMSE) of a meta-
model, where the model function can contain an unknown part.
For example, in two-factors the model function may be the fol-
lowing:

Y = β0 +β1x1 +β2x2 +β3x2
1 +β4x2

2 +β5x1x2 +Z(x1 ;x2); (1)

where Z(x1;x2), the departure from the second-degree model,
is modeled as a stochastic process with covariance given by

cov [Z(s1; s2);Z(t1; t2)] = σ2
z exp

�
�
�
θ1(s1� t1)

2+

θ2(s2� t2)
2 +θ12(s1� t1)(s2� t2)

�	
; (2)

with θ1, θ2, θ12, and σ2
z being parameters that must be set

prior to the search for the optimal design. The setting of the
θ’s and σ2

z can be accomplished in any one of the following
three ways: (1) through a set of preliminary simulations and
a fitting using maximum likelihood, (2) through a so-called
“robustness study”, [see Sacks, Schiller, and Welch (1989)]
or (3) in the course of sequential computer experimentation,
again using maximum likelihood. Standard statistical methods
are used to find the best linear unbiased predictor (BLUP) fit
to the data.

One advantage of the method is that the error is not assumed
to be random upon repetition of an experiment, as in more
traditional approaches to design of experiments, including D-,

G-, and I-optimality. Rather, the generally correct assump-
tion is made that the differences between responses of repli-
cated computer experiments are zero. This is consistent with
the concept of deterministic computer experiments, although
there are situations in which computer experiments give dif-
ferent results for the same inputs, see Gianchandani and Crary
(1998). A second advantage of the method is that the form
of the model function need not be specified prior to finding a
design and initiating simulations. There is, however, the bur-
den of establishing appropriate values for the θ’s and σ2

z , see
Etman (1994) for a discussion of this issue.

3 Mathematical background

In this section we briefly review the IMSE-based optimality
criteria for both non-deterministic and deterministic experi-
ments.

A few comments on notation are in order. There is no stan-
dard terminology for these optimality criteria, of the sort with
which engineers are familiar through standards organizations,
such as the IEEE or ASTM. Rather, consensus has built up
through usage. In the case of non- deterministic experi-
ments under IMSE-based optimality, the term “I-optimality”
has been widely, but not universally, adopted. In the case of de-
terministic IMSE-based optimality, no conventional name has
emerged. One complicating factor is that the optimality crite-
ria, which are instantiated by an objective function, depend on
the following: a model function exclusive of its error term; the
portion of the model function that accounts for error, which
may include random- noise terms and terms that account for
systematic departures; knowledge of or an assumption about
the nature of the random or systematic errors; and the goal of
the optimization in terms of minimizing an average squared
error, minimizing the worst-case of expected squared error, or
some other objective. Nonetheless, the need for names arises.

For the purposes of this paper, we introduce the following
three names for IMSE-based optimality, depending upon their
error model:

� “Iε-optimality” for non-deterministic experiments with
error models containing only random error,

� “IZ-optimality” for deterministic experiments with non-
parametric error models representing departure from a
given model, and

� “Iε+Z-optimality” for non-deterministic experiments with
error models containing both random error as well as
non- parametric error representing departure from a given
model.

In the Sec. 3.3 we prove that Iε-optimality is a limiting case
of IZ-optimality, under simple assumptions. In light of this
new result, which shows the connection between the various
Ix criteria, it seems natural to use the term “I-optimality” to
apply to the entire class of IMSE-based optimality.
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3.1 Iε-optimality

An Iε-optimal design is a specified set of points in the de-
sign space at which measurements should be taken in order to
minimizes the expected (possibly weighted) integrated mean
squared error of prediction of a metamodel generated by (pos-
sibly generalized) least-squares fitting the responses to a linear
statistical model. The fundamental assumptions are that the
model function is known, is linear in the coefficients, and con-
tains an error term εεε(x), the distribution of which is assumed
to have a mean of zero and a variance of σ2(x) and to be drawn
independently and individually at random. Such a model can
be written as the following:

Y (x) =
k

∑
i=1

βi fi(x)+ ε(x); (3)

where the β’s are the linear coefficients and the f ’s are the
functional terms in the model. The objective function can be
expressed in differential form as the following:

min
ωN

1
Ω

Z
x2χ

E
h�

Ŷ (x)�Y (x)
�2
i

w(x)dx1 : : :dxd =

min
ωN

1
Ω

Z
x2χ

(
N

∑
i=1

"�
∂Ŷ (x)

∂yi

�2

σ2
i

#)
w(x)dx1 : : :dxd ;

where w(x) is a weighting function and

Ω =
Z

x2χ
w(x)dx1 : : :dxd ;

which asks for the N-point design ωN that minimizes the aver-
age over a domain χ of the total expected squared error, taken
as a sum of independent variances of the contributions due
to the variance σ2

i of each response yi. This is a very natu-
ral definition, but is rarely encountered in the literature. More
commonly, the definition is expressed in linear-algebraic form,
such as the following, which we give for the restricted class of
homoscedastic error models, i.e., error models where the error
term ε(x) is constant over the design region, ε(x) = ε:

min
ωN

1
Ω

Z
x2χ

f0
�
F0F

��1
f w(x)dx1 : : :dxd ;

where

f0x = [ f1 (x); : : : ; fk(x)] and F = [ fl(si)]1�i�N;1�l�k ;

or equivalently, via a matrix identity, as

min
ωN

trace
h�

F0F
��1

�B
i
; (4)

where

B�
1
Ω

Z
x2χ

f f0w(x)dx1 : : :dxd ;

Readers who wish further detail are referred to Searle, Casella,
and McCulloch (1992).

3.2 IZ-optimality

When dealing with deterministic experiments there is no ran-
dom error of the type modeled with ε(x) in the section imme-
diately above. Rather, a term Z(x) is introduced that represents
the unmodeled part of the response:

Y (x) =
k

∑
i=1

βi fi(x)+Z(x): (5)

In order to define a objective function for the design problem,
something must be known or assumed about the error term
Z(x). A plausible and convenient assumption that is often
made assumes that the covariance between values of Z(x) at
two inputs has the following gaussian dependence on the sep-
aration between the inputs:

cov (Z(t);Z(u)) = V (t;u) = σ2
z exp

(
�

d

∑
i=1

"
θi (ti�ui)

2+

d

∑
j=i+1

θi; j(ti�ui)(t j�u j)

#)
: (6)

In contrast to the usual treatment, we explicitly introduce the
cross terms, with pre-factors θi; j, in Eq. 6, in order to properly
account for the possibility that the elliptical contours of iso-
covariance may have axes not aligned with the coordinate axes.

After the θ’s and σ2
z are specified and a set of input points

selected as the design, S = fs1; : : : ; sNg, the simulator is run
and responses to Y (x) recorded as a set Y (s1); : : : ;Y(sN). Fol-
lowing Sacks, Schiller, and Welch (1989), we introduce the
notation:

V = [cov (Y (si);Y(s j))]1�i�N;1� j�N

v0x = [V(s1;x); : : : ;V(sN ;x)]

y0 = [Y (s1); : : : ;Y(sN)] :

The fit is performed using a linear predictor, c0y, that is a linear
combination of the responses at the N design points and has a
mean squared error of

E
�
c0y�Y (x)

�2
=
�
c0Fβ� f0xβ

�2
+�

c0;�1
�� V vx

v0x σ2
z

��
c
�1

�
: (7)

Constraining the fit to go through the responses at the de-
signed points, i.e., c0Fβ = f0xβ , gives a set of k constraint
equations. Then minimizing Eq. 7 is reduced to minimiz-
ing the RHS of Eq. 7, subject to the constraints F0c = fx , a
problem that is amenable to solution using a vector λλλ of k La-
grange multipliers. This gives the pair of N� 1 vector equa-
tions Vc� vx �Fλλλ = 0 and F0c = fx , which can be written
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Table 1 : I-OPT-generated, nine-point, putatively IZ-optimal
design for model in Eq. 1, assuming θ1 = θ2 = 0 and θ12 = 0.

x1 x2

-0.719 0.874
0.013 0.642
0.782 0.782
-0.830 0.189
0.642 0.013
-0.236 -0.236
-0.753 -0.753
0.189 -0.830
0.874 -0.719

conveniently in the following matrix form:�
0 F0

F V

��
�λλλ
c

�
=

�
fx
vx

�
: (8)

We now seek to express the best (meaning minimum in a least-
squares sense) linear unbiased predictor (BLUP) fit c0y in a
convenient form. The fit may be written, after rearrangement
of Eq. 8, as the following:

c0y =
�
�λλλ0; c0

�� 0
y

�
=
�
f0x; v0x

�� 0 F0

F V

��1 � 0
y

�
(9)

This can also be written as the sum of a generalized least
squares term,

f0x β̂ββ; where β̂ββ =
�
F0V�1F

��1
F0V�1y;

and a term that enforces the unbiasedness constraint, i.e., that
the metamodel go through the data at the designed points,

v0xV�1
�

y�F β̂ββ
�
:

The IMSE of prediction under this model, given the true values
for the θ’s and normalizing for σ2

z , is the following:

IMSE =
1

σ2
z Ω

Z
x2χ

Eθ

h�
Ŷ (x)�Y (x)

�2
i

w(x)dx1 : : : ;dxd:

After some algebra, starting with Eq. 7 and utilizing the two
vector equations Vc�vx�Fλλλ = 0 and F0c= fx , as well as the
matrix identity that led to Eq. 4, the IMSE, unnormalized for
σ2

z , is the following:

IMSE = σ2
z � trace

(�
0 F0

F V

��1

�
1
Ω

Z
x2χ

�
fxf0x fxv0x
vxf0x vxv0x

�
w(x)dx1 : : : ;dxd:

�
(10)

Table 2 : Nine-point design for model in Eq. 1, assuming θ1 =
θ2 = 1 and θ12 = 0 from Sacks, Schiller, and Welch (1989).

x1 x2

-0.74 0.90
0.00 0.66
0.80 0.80
-0.86 0.27
0.66 0.00
-0.34 -0.34
-0.78 -0.78
0.27 -0.86
0.90 -0.74

Figure 1 : IZ-optimal design of Tab. 1 is shown plotted with
black discs. The design picked off of Fig. 1a of the paper
of Sacks, Schiller, and Welch (1989), and given in Tab. 2, is
shown with white obscuring discs. Either design may be ro-
tated by 90, 180, or 270 degrees about the origin to obtain other
equally good designs to the corresponding unrotated design.

3.3 Proof that as θ! ∞, IZ-optimality! Iε-optimality

Referring to Eq. 10, we now prove that the conditions θi ! ∞
and θi; j finite (8 i,j) are sufficient for an IZ-optimal design to
be Iε-optimal. Proof : In this limit, V ! I and all the inte-
grals are zero, except the one involving fxf0x. This last integral,
including the normalization, we define as B, as in Eq. 4. Thus,

lim
θ!∞

IMSE = σ2
z � trace

(�
0 F0

F I

��1

�

�
B 00

0 0

�)
:

Only the upper-left partition of the inverse, [0�F0 IF]�1,
contributes to the trace, so the IMSE has the limit σ2

z +

trace
h
(F0F)�1 �B

i
. Minimizing this is the same as minimizing

the objective function for I-optimality.

Necessary conditions for the equivalence of IZ- optimality and
Iε-optimality will be treated elsewhere. Generalization of the
above proof to show that a design that is Iε+Z-optimal is also
Iε-optimal is evident, under similar assumptions. A proof that
D-optimal designs, for models of the type given in Eq. 5, max-
imize the minimum distance between any pair of points, i.e.,



Optimal design of computer experiments for metamodel generation using I-OPTTM 131

Table 3 : I-OPT-generated, nine-point, putatively IZ-optimal
design for model in Eq. 1, assuming θ1 = θ2 = 100 and θ12 =
0.

x1 x2

1.000 0.984
1.000 -0.121
0.749 -1.000
0.018 0.924
-0.952 -0.043
-0.869 -1.000
-1.000 1.000
*-0.008 0.103
*-0.017 -0.165

Figure 2 : IZ-optimal design of Tab. 3. By invariance of the
IMSE under interchange of the axes and reflections there are
seven other equivalently good designs to the one shown.

are “maximin”, in this limit was presented by Mitchell, Sacks,
and Ylvisaker (1994).

4 Validation of the IZ-optimality capability of I-OPT

We tested I-OPT on the first problem given in Sacks, Schiller,
and Welch (1989), namely, finding the nine-point IZ-optimal
design over the square [�1;1]2, with θ1, θ2, and σ2

z taken as
unity and θ12 = 0. The design found using I-OPT is given in
Tab. 1 and shown plotted using large black disks in Fig. 1. This
design differs somewhat from the design given in the earlier
paper, which is given in Tab. 2 (based on picking off points
from their Fig. 1a.) and is shown plotted as small white ob-
scuring discs in Fig. 1. I-OPT gave a normalized integrated
variance NIV=0.04650 for the IZ- optimal design and a some-
what higher value, NIV=0.04878, for the design from Sacks,
Schiller, and Welch (1989).

Because of the discrepancy between our putatively optimal de-
sign and that given in Sacks, Schiller, and Welch (1989), we
sought an independent check of the numerical correctness of
I-OPT. We wrote a complete IMSE- evaluation program in a
commercial, symbolic-manipulation software system (Maple
V, Release 5) that performed all the needed matrix operations

Table 4 : I-OPT-generated, nine-point, putatively Iε-optimal
design for the model in Eq. 10.

x1 x2

0.837 -1.000
-0.837 -1.000
-1.000 -0.044
1.000 -0.044
1.000 1.000
-1.000 1.000
0.000 1.000

*0.000 -0.045
*0.000 -0.045

Figure 3 : Iε-optimal design of Tab. 4. The design may be
rotated by 90, 180, or 270 degrees about the origin to obtain
other equally good designs to the one shown.

and evaluated all the required moment integrals of gaussian
functions, thus obviating the need for tables of integrals. The
numerical evaluations of the IMSE’s as computed by I-OPT
were confirmed.

As a further check on the correctness of I-OPT, we made com-
parison with the design given by Sacks, Schiller, and Welch
(1989) in their Fig. 1b, which was for the identical prob-
lem specification as was the design in their Fig. 1a, but with
θ1 = θ2 = 100 instead of unity. That design contains nine
points, all of which were nearly on a 3� 3 grid. We found
a very different design, using I-OPT, as given in Tab. 3 and
Fig. 2.

While this latter design has 8 points spread out approximately
on a 3�3 grid, one point in the middle of one side is missing,
and there is, instead, a second centrally located point (centrally
located points are denoted by asterisks). While this design
may seem unusual, this type of design has been seen in earlier
work on Iε-optimal designs generated using both I-OPT (see
Crary, Hoo, and Tennenhouse (1992), and Crary, Clark, and
Kuether (1999)) and Gosset [see Hardin and Sloane (1993)].
The second centrally located point is understood as providing
additional support in the central region, where the prediction
would be weak without it. Specifically, the nine-point puta-
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tively Iε-optimal design on the two-unit square for the model

Y = β0 +β1x1 +β2x2 +β3x2
12+β4x2

22+β5x1x2 + ε (11)

is as given in Tab. 4 and Fig. 3, and this design has exactly one
replicated point (denoted by asterisks in the table), which is in
the central region.

We made the plausible conjecture that as θ grows significantly
larger than unity the IZ-optimal designs increasingly resemble
Iε-optimal designs. Runs of I-OPT for larger and larger val-
ues of θ provided anecdotal confirmation of this conjecture.
Subsequently we proved that in the limit θ ! ∞ the optimal
IZ-optimal design is Iε-optimal. The proof is given in Sec. 3.3.

5 World-Wide-Web presence

The IZ-optimality search capability of I-OPT was confirmed
to be correct for several additional anecdotal cases in one and
two factors using symbolic-manipulation software. This ev-
idence, along with the demonstration of the correct asymp-
totics as θ! ∞, provide the basis for the University of Michi-
gan authors to place and maintain a demonstration version of
Version 4 of I-OPT, which includes capabilities for OLS and
BLUP fitting, on the World-Wide Web at URL: http://www-
personal.engin.umich.edu/�crary/iopt

6 Example

To evaluate the quality of metamodels created using an IZ- op-
timal design and BLUP fitting, a test case involving a micro-
machined flow sensor was chosen.

6.1 Description of the flow sensor

Flow sensors find applications in many fields, including in-
dustrial process control, automotive applications, security, and
biomedical instrumentation, see Lerch, Dubochet, and Renaud
(1997). There are many flow measurement principles, but
most silicon flow sensors are based on thermal effects. Fig. 4
is a photomicrograph of a thermal anemometer developed by
Leister Process Technologies in Switzerland. A silicon nitride
membrane (0.3 µm thick) is fabricated by anisotropic backside
etching of silicon (0.5 mm thick). Three nickel-film thermore-
sistors are structured on the dielectric membrane and covered
with a silicon nitride passivation layer (0.2 µm). The package
includes a channel (3 mm deep and 0.8 mm high) so that gas
flows perpendicularly to the thermoresistors.

The principle of a hot wire anemometer is based on correlating
the heat transfer from a heated wire to a fluid with the rate of
flow. The energy losses due to a moving fluid increase with
fluid velocity. In the device described above, the center wire
is the heating element and the outside wires are resistive tem-
perature sensors. An electronic circuit establishes the average
temperature of the upstream and downstream thermoresistors
and maintains the heater at a constant temperature above this

Figure 4 : Photomicrograph of the gas flow sensor. The three
serpentine thermoresistors are shown on the (dark) membrane
region.

average. Such a sensor can detect flows from less than 0.10
ml=min up to 20 ml=min, the time constant is less than 1 ms,
and the power consumption of the sensor is 200 mW .

6.2 Modeling

A two-dimensional, finite-element model of the cross section
perpendicular to the thermoresistors in the direction of flow
was developed, and the ANSYS commercial finite-element
package was used to simulate the thermal behavior of the sen-
sor. The model contained the silicon-nitride membrane with
its passivation layer, supported at both ends by the anisotropi-
cally etched silicon. The flow to be measured passes above the
membrane, enters at ambient temperature, and is considered
fully developed in a parabolic profile. The air that is trapped
below the membrane and between the silicon walls is modeled
as stationary. The outside edges of the bulk silicon are kept
at ambient temperature. The nickel film thermoresistors are
not included in the model, so the appropriate heating bound-
ary conditions (either heat flux or constant temperature) are
applied directly to the silicon nitride membrane. An example
of a simulated temperature distribution (logarithmic scale), for
a specific flow rate, membrane thickness, and a heater temper-
ature of 50 oC above ambient is shown in Fig. 5.

6.3 Objectives of the metamodel generation

In order to make contact with the previously published paper
of Sacks, Schiller, and Welch (1989), we chose to build meta-
models using various nine-point designs in two factors and
both OLS and BLUP fitting. In a conference report [Crary,
Cousseau, Armstrong, Woodcock, Dubouchet, Lerch, and Re-
naud (1999)] we had chosen the two factors to be the mem-
brane thickness and thermoresistor-sensor separation. In the
present paper, we chose to replace the membrane thickness
with a factor that was more challenging to model due to non-
linear effects, namely the flow speed. As in the earlier report,
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Figure 5 : An example of the above-ambient temperature dis-
tribution, as determined by FEA. The heater is located at the
middle of the membrane, and flow is present above the mem-
brane. The temperature key is in degrees Celsius.

the single response chosen was the temperature difference be-
tween the upstream and downstream wires.

We already had a nominal design and were seeking a meta-
model that could be used for variations from the nominal de-
sign, as might be particularly useful in design synthesis. We
chose ranges of the factors that would be challenging for sim-
ple second-degree bivariate polynomial functional approxima-
tion, but for which an effective nine- point design might be ex-
pected to perform reasonably well. The flow rate varied from
0 to 20 ml=min, and the distance of the thermoresistors from
the heater varied from 50 µm to 290 µm.

6.4 Experimental designs

In addition to the IZ-optimal design found with I-OPT (Tab. 1
and Fig. 1), the design picked off of Fig. 1a of Sacks, Schiller
and Welch (1989) (Tab. 2 and Fig. 1)), and the 32 factorial
design shown in Fig. 6, we used a variety of other designs, in-
cluding I-OPT-generated IZ-optimal designs based on simpler
model functions and some rotations of these designs, which
are also optimal due to reflection and permutation symmetries
of the problem statement. In addition, we explored the designs
given in this sub-section. In all cases, as in the earlier study,
the region of prediction was the same as the design region. The
reported values of IMSE assume model (1).

6.4.1 Optimal designs of non-deterministic experiments for
parameter estimation

These designs do not make reference to the region of predic-
tion.

� A-optimality (Fig. 7): minimize the trace of (F0F)�1

Design = [(�1;�0:1017); (�1;�1); (0;�1);2 � (0;
0:1671)]
Found with I-OPT. IMSE=0.1762

Figure 6 : 32 factorial design. IMSE for model (1) is 0.1227.

Figure 7 : A-optimal design. The design may be rotated by
90, 180, or 270 degrees about the origin to obtain other equally
good designs to the one shown.

� D-optimality: minimize the determinant of (F0F)�1

[same as 32 factorial]
Found with I-OPT. IMSE=0.4500

6.4.2 Optimal designs of non-deterministic experiments for
prediction

These designs make explicit reference to the region of predic-
tion.

� G-optimality (Fig. 8): minimize the maximum expected
variance, f0 (F0F)�1 f, over the region of prediction
[(�1;�1), (0;0), (�1;0:4190), (1;�0:4190),
(�0:4190;�1), (0:4190;1)]
Given in Haines (1987). IMSE=0.1554

� Iε-optimality (Fig. 3): minimize the average (taken as an
integral) of the expected variance, f0 (F0F)�1 f, over the
region of prediction
[(�1;�0:0442), 2 � (0;�0:0447), (0;1), (�1;1),
(�0:8367;�1)]
Found with I-OPT. IMSE=0.1579
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Figure 8 : G-optimal design. An equivalently good design
may be obtained by a reflection, resulting in a design with the
opposite chirality.

Figure 9 : Latin hypercube design. An equivalently good de-
sign may be obtained by a reflection about either axis.

6.4.3 Designs that are based on spreading the points apart
(spatial designs):

� S-optimality: maximize the geometric mean of the dis-
tances of points from their nearest neighbors [same as 32

factorial]
Found with I-OPT.

� Maximin criterion: maximize the minimum distance of
any point from its nearest neighbors [same as 32 factorial]
Found with I-OPT.

� Maximum entropy sampling: Shewry and Wynn (1987)
define this criterion based on information theory and
show that for deterministic experiments it is equivalent
to D-optimality. [same as 32 factorial]

6.4.4 Designs that have high degrees of symmetry by defini-
tion (classical designs):

� Latin hypercube design (Fig. 9): after dividing the design
region into a regular N � N mesh, choose a design that
has exactly one point in each row and exactly one point
in each column
[N = 11 : (�1;�1), (�0:8;0:8), (�0:6;�0:2),
(�0:4;0:4), (�0:2;�0:6), (0;0), (0:2;0:6), (0:4;�0:4),

Table 5 : Coefficients of fitting equation (11)

Index β γ
0 0.6078739017
1 0.3223577673 0.2464299622
2 0.0579050968 -0.1010820946
3 -0.1131439765 -0.1517626950
4 -0.3357223872 -0.3714921774
5 -0.0059478897 0.3781090349
6 0.0408797695
7 0.2062421237
8 -0.1856936929
9 -0.0616302248

Figure 10 : Central composite design.

(0:6;0:2), (0:8;�0:8), (1;1)]
Welch, Buck, Sacks, Wynn, Mitchell, and Morris (1992)
used this low-IMSE design. IMSE=0.0423

� Central-composite design (Fig. 10): points are taken at
the 2k vertices of the k-dimensional cuboidal region of
prediction, at 2k locations a distance a from the center
of the region along the axes in the positive and nega-
tive directions, and at nc points at the origin. For de-
terministic experiments, nc = 1, as duplicate points are
non-informative. For our example, no design points were
allowed outside of the two-unit square, so a CCD was
used with the 2k points on the boundary and the 2k vertex
points chosen for convenience as points included in other
designs, as follows:
[(0;0), (�1;0), (0;�1), (�0:7530;�0:7530)]
IMSE=0.0822

7 Simulations

The thickness of the membrane was 0.5 µm, and the heater
temperature was kept at a constant 50 oC above ambient. The
temperature difference between the centers of the upstream
and downstream wires was computed as the response of in-
terest for the metamodel generation. As stated previously, the
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Figure 11 : Contours of the functional approximation based on a series of OLS fits to 121 responses on a regular 11x11 mesh.
The contour values increase from left to right for all fits. Upper left: first-degree fit, contours from 0.25 to 1.00, e.r.m.s. error
160mK. Upper right: second-degree fit, contours from -0.20 to 0.90, e.r.m.s. error 78mK. Lower left: third-degree fit, contours
from 0.00 to 1.05, e.r.m.s. error 9.6mK. Lower right: fourth-degree, contours from 0.00 to 1.05, e.r.m.s. error 1.1mK.

Figure 12 : Left: contours of the functional approximation based on the BLUP fit (full-second-degree model + Z(x)) to the
9- point IZ-optimal design of Tab. 1; contours from -0.05 to 0.95; e.r.m.s. error over 121-point mesh of validation points was
38.5mK. Right: similar plot based on the full-second-degree OLS fit to the 32 factorial design; contours from -0.10 to 0.80;
e.r.m.s. error over 121-point mesh of validation points was 97.2mK. The superiority of the combination of IZ-optimal design
and BLUP fit, compared to the 32 factorial design and OLS fit combination, is evident.

flow rate varied from 0 to 20 ml=min, and the distance of the
thermoresistors from the heater varied from 50 µm to 290 µm.

Simulations were run at all the design points mentioned above,
as well as on a 11�11 regular grid covering the square, for
validation.

8 Analyses

The data were fit using OLS, first using just a constant, then
with a first-degree bivariate polynomial, and then again with
a full-second-degree bivariate polynomial. Then the data sets
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Table 6 : Empirical root-mean-square values for the residuals (in mK) of various fits based on various designs. The maximum
value of the response (temperature difference) over the range was 1.5K

DESIGNS ANALYSES (FITS)

(all N=9, except Latin hypercube
with N=11)

OLS
deg = 0

OLS
deg = 1

OLS
deg = 2

BLUP
deg = 0+Z

BLUP
deg = 1+Z

BLUP
deg = 2+Z

32 factorial, D-optimal, S-optimal,
Maximin, and Max entropy

314.7 205.8 97.2 60.4 47.3 28.5

A-optimal 301.8 184.3 98.4 57.3 43.9 31.3

G-optimal 321.8 224.0 113.1 75.6 64.8 50.1

Iε-optimal 300.0 182.4 93.1 59.6 48.1 31.2

Latin hypercube, N=11 292.3 172.0 101.1 70.8 61.4 49.1

CCD 294.9 165.7 81.3 58.5 54.2 35.3
IZ-optimal (6 terms + Z(x))

βo +β1x1 +β2x2 +β3x2
1 +β4x2

2 +
β5x1x2 +Z(x)

292.3 159.9 81.3 70.3 55.1 38.5

rotated ccw 90 o 292.2 159.5 81.1 56.3 45.8 38.4

rotated ccw 180 o 292.2 159.8 80.7 57.7 48.3 40.1

rotated ccw 270 o 292.3 159.8 80.7 68.3 53.2 35.2

IZ-optimal (3 terms + Z(x))
βo +β1x1 +β2x2 +Z(x)

292.5 160.8 81.9 60.0 53.0 43.4

rotated ccw 90 o 292.4 160.0 82.2 74.1 59.3 38.9
IZ-optimal (1 term + Z(x))

βo +Z(x)
292.6 160.4 79.6 72.6 55.4 36.9

rotated ccw 90 o 292.7 160.4 82.9 74.2 60.2 37.5

Sacks, Schiller, Welch 293.5 161.9 81.1 65.7 52.2 37.5

were fit using the BLUP, first using a model with constant plus
unmodeled part Z(x), then with a first-order bivariate polyno-
mial plus Z(x), and finally with a full-second-degree bivariate
function plus Z(x).

For the case of the full-second-degree bivariate function plus
Z(x) BLUP fit, the fit function has 6+N terms, as follows for
N = 9:

Y = β0 +β1x1 +β2x2 +β3x2
1 +β4x2

2 +β5x1x2 +
9

∑
i=1

γi exp

�
�
�

x1� s
(i)
1

�2
�
�

x2� s
(i)
2

�2
�

; (12)

where the s(i)1 and s(i)2 are the x1 and x2 coordinates of the i’th
design point, respectively. The coefficients for the IZ-optimal

design of Tab. 1 (e.g., s(1)1 = �0:719 and s(1)2 = 0:874) are
given in Tab. 5. Eq. 12 can be rapidly evaluated in its present
form or can be rearranged to be evaluated with fewer numer-
ical operations. As described in the Sec. 3, the BLUP passes
through all of the data and provides an interpolation elsewhere.

The empirical root mean square (e.r.m.s) errors of the ninety
fits over the 121 validation points are reported in Tab. 6.

9 Interpretation

As a means of exploring the response function, we made a se-
ries of contour plots of the function based on fits of increasing
degree, up to degree four, and these are shown in Fig. 11. The
final fit in the lower-right-hand side of this figure is represen-
tative of the actual function, and shows, in particular, the zero
response along the left border, where the value of x1 (the flow
speed) is at its minimum value (zero). The difficulty that bi-
variate polynomials up to third degree have in incorporating
this characteristic of the response is evident. The BLUP fits do
considerably better, in large measure due to their extra degrees
of freedom.

In Fig. 12 are shown the contours based upon the second-
degree plus Z(x) BLUP fit to the responses at the 9- point I-
OPT-generated design points for the full-second- degree model
function plus Z(x). It can be seen that the BLUP fit is approx-
imately as good as the third-degree OLS fit in approximating
the response function. For comparison, the contours of the
relatively poorer second-degree OLS fit to the 32 factorial are
also shown.

The earlier finding that the IZ-optimal designs fit with BLUP
were superior to designs for non-deterministic error- model
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functions (see Sacks, Schiller, and Welch (1989)) was specif-
ically upheld in the analyses. For example, the OLS second-
degree fit for the factorial design gave an e.r.m.s error of 97.2
mK, whereas the average e.r.m.s error of the four (similar but
rotated) BLUP fits assuming the second-degree model plus
Z(x) based on the design assuming a second- degree model
plus Z(x) was only 38.1 mK, for a reduction in average vari-
ance of (97:2=38:1)2 = 6:5.

Also, the higher the assumed order of the IZ-optimal models
for which designs were found and subsequently fit, the better
the fit. At zero, first, and second degree, the e.r.m.s errors,
averaged over rotations, as given in Tab. 6 were 73.4, 56.2,
and 38.1 mK, respectively. This anecdotal finding is in con-
trast to statements made and repeated elsewhere, for example
in Welch, Buck, Sacks, Wynn, Mitchell, and Morris (1992);
Bernardo, Buck, Liu, Nazaret, Sacks, and Welch (1992); Et-
man (1994); and Simpson, Mauery, Korte, and Mistree (1998)
and references cited therein; where use of the simplest model
function, Y = β0 +Z(x) is promoted.

The question of whether this improvement is the result of the
type of design used, or just a matter of a better fitting method,
requires further exploration. Generally speaking, the power of
the BLUP fits is evident even with the simplest fit, i.e., zero-
degree polynomial (constant) plus Z(x), since for every de-
sign in the table the BLUP outperformed the best of the OLS
second-degree polynomial fits. In addition, with increasing or-
der, the BLUP fits improved further, although the IZ-optimal
designs were not notably superior to the other designs, and, in
fact, the IZ-optimal design based on the zero- degree (constant)
model plus Z(x) outperformed, perhaps surprisingly, both of
the other classes of models used for generating IZ-optimal
designs, when all the analyses were performed with second-
degree fits.

We find that additional research will be needed to elucidate the
best design of experiments approach for this anecdotal case,
and in this regard, we agree with Salagame and Barton (1997)
who reached the same conclusion for a different problem.

We note that we did not see any appreciable difference in the
e.r.m.s. error of the fits based on designs that were rotated
versions of their base design.

There is also the issue of the computational resources required
to find the best values of the θ’s via maximum likelihood and to
search for the optimal designs using an optimal-design search
engine, such as I-OPT. This issue will be discussed at length in
a future paper, but it is clear that the required resources grow
rapidly with problem size, although this can be alleviated by
the creation and use of stored public libraries of optimal de-
signs, which will be an inevitable development in informa-
tion technology. Alternative design approaches that avoid the
computational burdens, in addition to those mentioned in this
paper, have been proposed, see Salagame and Barton (1997)
for factorial hypercube designs and Kalagnanam and Diwekar
(1997), and references therein, for low-discrepancy designs,

e.g., Hammersley points.

10 Conclusions

I-OPT will provide a heretofore-missing public tool for re-
searchers investigating the use of optimal-design-of- experi-
ments approaches to deterministic experimentation.

We propose that the term “I-optimality” be used for IMSE-
based optimality in both non-deterministic and determinis-
tic settings and that “Iε-optimality” and “IZ- optimality” be
adopted for the more specific settings. This proposal is based
on our proof that the Iε-optimality is a limiting case of IZ-
optimality, as well as practical considerations.

In our example of the use of various designs of experi-
ments and fitting methods for metamodel generation for a spe-
cific device, we found that the inclusion of explicit bivariate-
polynomial terms in Eq. 1 was very helpful in improving the
fit.

The design that performed best for our example problem was
not the IZ-optimal design. Further investigation is needed to
fully elucidate the design issues for this and similar problems.
The value of capturing salient engineering knowledge before
applying a black-box approach should not be underestimated.
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