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Abstract: Rapid prototyping tools that combine powerful
numerics with a flexible applications interface can play a sig-
nificant role in micro-scale modeling and simulation. We
demonstrate this idea using the PROPHET simulator. In the
first part of the investigations we extend the simulator’s capa-
bility to allow analysis of carrier transport in deep submicron
MOSFETs using a hydrodynamic model. The model is nu-
merically implemented within PROPHET’s dial-an-operator
framework by adding certain “flux” routines. Once imple-
mented, the model becomes available for use in any number of
spatial dimensions. We present results for MOSFET type test
problems in one and two dimensions. The second application
area that we explore here using the same simulator is micro-
thermal analysis. The implementation of the thermal equation
in PROPHET is demonstrated and results are presented for a
test problem in three dimensions.

keyword: device modeling, micro-scale, PROPHET, dial-
an-operator.

1 Introduction

Aggressive scaling down of deep submicron MOSFETs has
resulted in the development of more advanced physical mod-
els to account for the effects of larger local electric fields,
higher substrate doping concentrations and very thin gate ox-
ides [Dutton and Yu (1993)]. The ability to numerically sim-
ulate and study these models in a timely, cost-effective man-
ner is crucial for their validation as well as for their practi-
cal use in device design. Thus, there is continuing need for
software platforms that provide rapid prototyping capability,
with robust numerical methods and a flexible interface for im-
plementing new models [see Carey, Richardson, Reed, and
Mulvaney (1996); Dutton, Kan, Yergeau, Yu, and Rafferty
(1997)]. The emerging field of MEMS modeling and simu-
lation has many similar requirements with regard to numerical
techniques and software flexibility. MEMS applications gen-
erally involve coupled simulation domains on which different
physical models apply, so the simulation software must be ca-
pable of handling multiple types of models and domains.

In the present work we utilize the PROPHET simulation
platform developed at Bell Laboratories, Lucent Technolo-
gies, since it provides a powerful and flexible dial-an-operator
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framework for implementing new PDE models in different ap-
plication areas. The simulator was originally developed for
semiconductor process modeling, and has been extensively
used in process development and diffusion research at Bell
Laboratories. It was later expanded to serve as a simulation
platform for more general PDE applications. The enhance-
ments included more sophisticated data structures and man-
agement strategies, and a flexible interface for configuring or
adding new PDE models into the simulator. Recent joint work
between the University of Texas at Austin, Stanford Univer-
sity and Bell Laboratories has built upon these utilities and
added a range of new device simulation capabilities into the
simulator [Rafferty, Yu, Biegel, Ancona, Bude, and Dutton
(1998); Rafferty, Yu, Pardhanani, Carey, and Dutton (1999)].
The PROPHET package may be licensed free of cost for re-
search purposes by contacting Dr. C. S. Rafferty at Lucent
[Rafferty (1998)].

Our focus in the first part of this study is on implementing and
simulating the hydrodynamic class of models for MOSFET
type devices. We discuss the basic strategy for implement-
ing this model into the PROPHET simulator, and we present
results for prototype MOSFET structures. The second appli-
cation we consider here is a heat transfer model for predict-
ing thermal transport in integrated “heat pipes” used in micro-
scale devices. We simulate the model in 3D with anisotropic
heat conductivity, and demonstrate how PROPHET can be
rapidly configured to carry out this task.

The rest of this paper is organized as follows: Sec. 2 discusses
the class of device models that we consider here; Sec. 3 de-
scribes the basic methodology for adding these models into
PROPHET; Sec. 4 presents simulation results for MOSFET
structures; Sec. 5 discusses the micro-scale heat transfer appli-
cation and presents numerical results; and Sec. 6 offers some
concluding remarks.

2 Device models

The basic device equations consist of the electrostatic potential
equation, which is solved in conjunction with a set of transport
equations for the charged carriers. The electrostatic potential
equation is

∇∇∇ � (ε∇∇∇ψ) = q (n� p�ND) (1)

with ψ = potential, q = electron charge, ε = permittivity of
silicon, n = electron concentration, p = hole concentration,
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and ND = net doping concentration.

Our present emphasis is on the hydrodynamic class of mod-
els for transport of energetic carriers in MOSFETs. For clar-
ity of exposition we focus on a representative non-parabolic
hydrodynamic model developed at the Microelectronics Re-
search Center at the University of Texas [see Bordelon, Wang,
Maziar, and Tasch (1990, 1992)]. This model is considered
physically appropriate, since it is based on a realistic, non-
parabolic energy band structure. For device models based on
electron transport it is mathematically described by the follow-
ing set of coupled equations

∇∇∇ � (JJJn) = 0

∇∇∇ � (SSSn)+JJJn �∇∇∇ψ = �
n(w�w0)

τw
(2)

where JJJn and SSSn respectively denote the current density and
energy flux, which are defined by the following equations

JJJn = τpq

�
2

3m�

∇∇∇(B(w)nw)�
q

m�

n∇∇∇ψ
�

SSSn =QQQ�ΩwJJJn=q (3)

This model introduces the average energy w as an additional
variable in the transport formalism. The momentum and en-
ergy relaxation times, τp and τw, are empirical functions,
which are chosen from the work of Bordelon, Wang, Maziar,
and Tasch (1992)

τp =
0:007 q

w
�10�12 s

τw = 0:46�10�12 s (4)

The system is closed by assuming a Fourier type constitutive
relation for the heat flux, QQQ, of the form

QQQ = �
2
3

�
γR
KB

�
n∇∇∇w (5)

The other quantities in Eq. 2 - 5 are defined as follows: B(w) =
(1 + α w

q )=(1+ 2α w
q ), q = electron charge = 1:602� 10�19

C, m� = effective mass = 2:367� 10�31 kg, ε = permittiv-
ity of silicon = 11:9 ε0, ε0 = 8:854� 10�12 C2=(joule m),
KB = Boltzmann constant = 1:381 � 10�23 joule=kelvin,
w0 = 3

2 KBTL joule, TL = lattice temperature in kelvin, and
α = 0:5eV�1, Ω = 1:3, γ = 4:2� 10�26 (watt m2)=kelvin,
R = 0 to 0:5 are empirical constants.

Note that in (2)-(3) it is also assumed that the drift kinetic en-
ergy is negligible, and the system reduces to the corresponding
parabolic hydrodynamic model if we set α = 0 and Ω = 3=2.

Since the main issue is transport of electrons in the class of
problems considered here, we can use either the quasi Fermi
approximation or the drift-diffusion equations for modeling

the transport of holes. The quasi Fermi approximation is given
by

p = ni exp ((ψp�ψ)=ψT ) (6)

where ni is the intrinsic carrier concentration, ψp is the hole
quasi Fermi potential, and ψT = KbT=q. The drift-diffusion
system for holes is

∇∇∇ �JJJp = 0 (7)

with

JJJp = �µp p∇∇∇ψ�Dp∇∇∇p (8)

Here JJJp = hole current density, µp = mobility and Dp = dif-
fusivity.

Eq. 1-5, with the quasi Fermi approximation Eq. 6 or the drift-
diffusion system Eq. 7-8, constitute the hydrodynamic sys-
tem considered here for modeling charged electron transport
in MOSFETs.

3 Implementation in PROPHET

Conceptually, the basic methodology used in PROPHET con-
sists of decomposing equations into terms, and treating each
term as a combination of a geometric and a physical operator.
New application models can be implemented by either build-
ing the corresponding PDE system from a predefined set of
geometric and physical operators, or by creating new physi-
cal operators via a well-defined interface. The framework also
includes a database library which enables easy access to co-
efficients, parameter values or other properties that pertain to
pre-configuring the supported applications. More comprehen-
sive details regarding the set up of PDE systems and the struc-
ture of the database library are discussed in Rafferty (1996);
Rafferty and Smith (1996).

PROPHET offers three different levels at which a user may in-
terface with it to simulate new PDE applications. We classify
these as follows: (1) input file level, (2) database level, and
(3) flux routine level. The input file level allows for setting up
the new PDE system and all the associated coefficients or pa-
rameters via a single input file, using PROPHET’s command
syntax. This approach can be used when the PDE system un-
der consideration can be completely constructed using some
combination of physical and geometric operators already built
into PROPHET.

The database level involves hybrid implementation that uses
an input file in conjunction with modifying and expanding the
file that constitutes PROPHET’s database library. This offers
an alternative way of defining PDE systems that can be con-
structed using builtin operators. The advantage of using the
database library to set up some or all of the PDE system is
that the input file can then focus primarily on controlling spe-
cific design parameters, output quantities, and other run-time
details that are of interest in the particular application.
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Table 1 : Method of construction for each term in the hydrodynamic model: terms
that require writing a new physical operator are denoted by “new” in column 3.

Eqn. # Term Physical operator Geometric

method name operator

(1) ∇∇∇ � (ε∇∇∇ψ) builtin lapflux box div

(1) q(p�n+ND) builtin potflux nodal

(or, volume)

(6) ni exp (�(ψn�ψ)=ψT ), builtin quasiFermi nodal

ni exp ((ψp�ψ)=ψT ) (or, volume)

(7) ∇∇∇ �JJJp builtin drift diffusion box div

with JJJp in eqn. (8)

(2) ∇∇∇ �JJJn, ∇∇∇ � (SSSn +JJJnψ) new hydrodynamic box div

with JJJn, SSSn in (3)

(2) �n(w�w0)=τw new energyrel nodal

(or, volume)

The flux routine level involves programming of new physi-
cal operators, and using them in the database or input file to
build new PDE systems. This level of usage becomes nec-
essary when the PDE system under consideration cannot be
fully constructed using the pre-defined operators. PROPHET
provides a simple, organized interface for defining new oper-
ators, and a uniform, consistent way of accessing them from
either the input file or the database library.

The PDE system that constitutes the hydrodynamic model in-
volves several terms that can be constructed from the pre-
defined operators. These include the gradient, divergence
and Laplace terms, as well as terms that comprise the drift-
diffusion equations, which were implemented in PROPHET
as part of our previous joint work with Stanford University and
Bell Laboratories. However, the hydrodynamic system also in-
cludes certain new terms that require creation and use of new
operators, which must be done at the flux routine level. Thus,
the full hydrodynamic model is implemented using a combi-
nation of pre-defined operators and new ones. We emphasize
that the new operators needed here correspond to the “physi-
cal” part, as opposed to the “geometric” part, of the term. No
new geometric operators are needed to implement the hydro-
dynamic model.

Tab. 1 lists all the terms in the hydrodynamic system and the
other related equations given in Sec. 2. The “physical opera-
tor” heading indicates whether the term can be constructed via
currently available builtin operators or whether a new operator
is necessary. These cases are respectively denoted by “builtin”
or “new” in the “method” column. We emphasize that each
physical operator, whether new or builtin, basically serves as
a prototype for constructing the general form of a term. Con-

sequently, we always try when possible, to interpret or rewrite
new terms into common forms, so that we can generate them
with the fewest possible new operators and associated flux rou-
tines. Each “new” row in Tab. 1 groups together the terms that
we construct using a single new physical operator. As the ta-
ble shows, we define two new operators for use in conjunction
with the existing device operators to implement the full hydro-
dynamic model.

The mechanism for programming new operators involves writ-
ing “flux” routines that take a standard argument list which
provides nodal values of the dependent variables and their spa-
tial derivatives. Using this information, the flux-routine com-
putes the numerical value of the required operation at each of
the given nodes. Any additional coefficients or parameters
needed for constructing the function may be supplied to the
routine via the database library or the input file.

To illustrate, let us consider a nodal operator such as potflux
(see Tab. 1), whose construction is particularly straightfor-
ward, since it depends upon directly available nodal quanti-
ties. The primary ingredient in the flux routine for potflux is
a loop that computes the flux and its derivatives with respect
to each dependent variable at each node. It follows from Eq. 1
that, at any node, the flux operator and its derivatives are

f =�q(p�n+ND);
d f
dn

= q;
d f
d p

=�q (9)

The flux routine simply codes up these equations for f , d f =dn
and d f =d p inside the loop over the nodes. The detailed syntax
regarding argument lists and data structures is discussed in the
references [Rafferty (1996); Rafferty and Smith (1996)].

The nodal operator energyrel in the hydrodynamic model is
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programmed in a very similar way to potflux, although it is
also possible to construct it purely by superposing a series of
existing arithmetic (nodal) operators. The main complexity in
implementing the hydrodynamic model is in constructing the
hydrodynamic operator. The terms defined by this operator
model the current density and energy flux, which are the pri-
mary source of numerical instability and non-physical oscilla-
tions in simulation results. Before programming this operator
it is necessary to develop suitable discretization techniques to
circumvent the numerical instabilities. We use an extension
of the Scharfetter-Gummel approach derived for the current-
density and energy-flux terms in the present hydrodynamic
system. Details of this derivation for the case of a general co-
ordinate mapping are given in Pardhanani and Carey (1997).
Here we state these results in the original coordinate system,
and give the usual one-dimensional version that is used in a
finite-volume setting to discretize the ∇∇∇ �JJJn and ∇∇∇ �SSSn terms.
Accordingly, if we use subscript i to denote quantities at node
i, the (constant) current-density and energy flux components
on the mesh segment between nodes i and i+1 are given by

Jn

q
=

2
3

CτB(wav
i )

m�∆x

�
ni+1

wi+1
β(X )�

ni

wi
β(�X )

�
(wi+1�wi)

ln(wi+1=wi)
(10)

Sn = ν[wi+1β(Y )�wiβ(�Y )] (11)

where

X =

�
3
2

q
B(wav

i )

(ψi+1�ψi)

(wi+1�wi)
�2

�
ln(wi+1=wi)

Y =
ΩJn=q

ν

ν =
H
∆x

ln

�
ni+1

ni

�
ni+1ni

ni+1�ni

and β(x) = x=(ex � 1) denotes the Bernoulli function. The
other quantities introduced in (10) - (11) are

Cτ = coefficient of τp = 0:007�10�12;

∆x = local mesh spacing = (xi+1� xi);

wav
i = average energy along edge ∆x =

1
2
(wi+1+wi)

H =�
2
3

�
γR
KB

�
= coefficient of heat-flux term in Eq. 5

In practice it is also necessary to consider the limiting case
where w is locally constant (wi = wi+1), since the current-
density expression (10) breaks down for this case. Similarly,
(11) breaks down when n is locally constant (ni = ni+1). For
these cases, it can be shown that (10) and (11) reduce to

Jn

q
=

2
3

CτB(wi)

m�∆x
[ni+1β(Xl)�niβ(�X l)]

Sn =
H
∆x

ni [wi+1β(Yl)�wiβ(�Y l)] (12)

with

Xl =
3
2

q
B(wi)

�
ψi+1�ψi

wi

�

Yl = Ω
Jn

q
∆x
Hni

To implement the hydrodynamic operator in PROPHET we
must write a flux routine that calculates Jn=q and Sn for each
of the given mesh segments using Eq. 10 - 12. The main in-
gredients in the routine are loop structures with conditional
statements to select the specific discretization formula based
on local behavior of n and w. Due to the complexity of the
terms in this flux operator we compute their derivatives with
respect to the dependent variables using numerical differenc-
ing, instead of the usual practice of implementing analytical
derivatives. The numerical differencing method is much eas-
ier to implement, but it incurs slightly higher computational
cost.

Besides the energy flux term, the joule heating term (JJJn �∇∇∇ψ)
must also be implemented with care to ensure numerical stabil-
ity. This is because the Scharfetter-Gummel formulation treats
the components of JJJn as constant along element edges, which
makes their values discontinuous at the node locations. Thus
the dot product, whose values are needed at the nodes, must be
computed using averaging or some other consistent procedure.
We follow the approach of using vector identities in conjunc-
tion with the carrier continuity equation to transform this term
to the form of divergence of a “flux” as follows

∇∇∇ � (JJJnψ) = ∇∇∇ � (JJJn)ψ+JJJn �∇∇∇ψ (13)

Since the carrier continuity equation requires ∇∇∇ �JJJn = 0, (13)
reduces to ∇∇∇ � (JJJnψ) = JJJn �∇∇∇ψ. Thus, the steady-state energy
equation can be written as

∇∇∇ � (SSSn +JJJnψ) = �
n(w�w0)

τw
(14)

In our implementation in PROPHET we simply add the JJJnψ
contribution to the energy flux SSSn after calculating it as part of
the new hydrodynamic operator. Thus this new operator con-
structs the entire left hand side inside the divergence operator
in (14).

The right hand side of (14) is easy to construct, since it in-
volves only nodal values. We do this via the new flux routine
energyrel,which simply loops over the nodes list and com-
putes the value of the right hand side function and its deriva-
tives with respect to n and w:

After constructing the new operators in Tab. 1, they can be
used in an input file to build the entire system of coupled equa-
tions that constitute the hydrodynamic model. For instance, in
the MOSFET simulation studies that we consider in the next
section, we use the hydrodynamic system to model electron
transport and the drift-diffusion system to model holes. The
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equation system is constructed in the input file in PROPHET’s
scripting language using the following syntax

system name=hdnddp

+ sysvars=psi,n,w,p

+ nterm=8

+ term0=box_div.lapflux(psi|psi)@{silicon,oxide}

+ term1=volume.potflux(n,p,netdope|psi)

+ @{silicon}

+ term2=box_div.hydrodynamic(psi,n,w|n,w)

+ @{silicon}

+ term3=volume.energyrel(n,w|w)@{silicon}

+ term4=dirichlet.device_dirichlet(netdope|

+ psi,n,p)@{silicon/source,silicon/drain,

+ silicon/gate}

+ term5=dirichlet.default_dirichlet(0|w)

+ @{silicon/source,silicon/drain}

+ term6=constraint.continuity(psi|psi)

+ @{silicon/oxide,silicon/poly}

+ term7=box_div.drift_diffusion(psi,p|p)

+ @{silicon}

Here we have used the name hdnddp to label the system and
to reference it later in the input file. The unknowns that we
solve for are psi, n, w and p. The system of equations is con-
structed using 8 “terms” derived from the available operators.
The general syntax for constructing a term has the form

termi=a*geotype.phytype(i0,i1,i2,... |

o0,o1,o2,...)@{material}

where a is an optional constant coefficient, “geotype” is the
name of the geometric operator needed to construct the term,
“phytype” is the name of the physical operator, and the paren-
theses enclose the list of input (or dependent) variables on the
left and the list of equations that use this term on the right.
The equations are identified with reference to the primary un-
known that they model (the correspondence is unique because
the number of unknowns must match the number of equa-
tions). The “material” field allows for the possibility of defin-
ing different equation systems to solve on different parts of the
domain.

In the system definition shown above, term0 and term1 to-
gether define the electrostatic potential equation (Eq. 1) in
Sec. 2; term2 and term3 set up the carrier continuity and
the energy equations in Eq. 2; term4 and term5 define the
Dirichlet boundary conditions and the portions of the bound-
ary where they apply (all unspecified boundary conditions au-
tomatically default to vanishing normal flux at the boundary);
term6 is an internal constraint that is needed because we solve
the Laplace equation for ψ inside the gate oxide region and
couple this to the full hydrodynamic system via continuity of
ψ at the oxide-semiconductor interface; term7 sets up the car-
rier continuity equation for the holes using the drift-diffusion
model.

The input file may also be used for specifying any coefficients
or parameter values that the new flux routines may require,

or for overriding any default values contained in the database
library. In the present case we setup the coefficients for the re-
laxation time, and for the energy flux terms in this way. In ad-
dition, the input file is used to specify the problem’s geometry,
dimensions, doping profile, and the bias conditions at which
the simulation is to be performed. We generally employ an in-
cremental continuation strategy in applied bias to perform the
simulations. In addition, continuation in model type is used at
the start of the simulation, whereby the equilibrium solution
is computed first, followed by drift-diffusion solution for both
carriers, followed by hydrodynamic solution for electrons and
drift-diffusion for holes.

One of the basic features of PROPHET is that all operators are
valid for any choice of spatial dimensions. The new flux rou-
tines for implementing the hydrodynamic model follow this
basic paradigm. Therefore, the equation system constructed
using the syntax shown above may be used for simulation in
any number of dimensions. In the next section we consider
test cases in one and two dimensions, and present numerical
results obtained with this hydrodynamic model.

4 Numerical results

Numerical studies using the hydrodynamic model imple-
mented in PROPHET have been carried out on MOSFET type
device structures in one and two dimensions. For the 1D tests
we consider two different n+� n� n+ diode structures with
channel-lengths of 0:4µm and 0:08µm respectively. In both
cases the doping in the n+ regions is 1020 cm�3 and in the n
region is 1015 cm�3, with abrupt transition at the junctions.
Fig. 1 and 2 show the computed solution for these cases with
4 volts applied at the drain (i.e., the right hand boundary). The
number of grid nodes used in these calculations was 73 and 65
respectively for the 0:4µm and 0:08µm channel-lengths. As we
would expect, the maximum energy is significantly higher for
the case of short channel-length. This contributes to the “hot
carrier” effects, whose impact becomes significant at short
channel-lengths. The trend in the electron density plot in Fig. 2
is due to the fact that the electron velocity decreases from left
to right in the channel region of this device (see, for example,
Pardhanani and Carey (1994) for similar results using a dif-
ferent simulation package). The reason for this behavior may
be that the present hydrodynamic model assumes the drift ki-
netic energy is negligible throughout the device. Fig .3 com-
pares drain current-density versus drain voltage for the two test
cases.

The two-dimensional MOSFET test structure has the geome-
try and doping profile shown in Fig. 4. The gate oxide region
is 0:6µm long and 0:005µm thick. The simulation was carried
out using a grid with 891 nodes, nonuniformly graded toward
the source and drain junctions, and the channel region below
the gate. As in the 1D case, we compute the equilibrium solu-
tion first and then employ incremental continuation in the volt-
age applied at the gate and the drain. Results are computed for
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Figure 1 : Simulation results for 0:4µm channel-length n+�
n�n+ diode with 4 volts bias applied at drain.
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Figure 2 : Results for 0:08µm channel-length diode with 4
volts at drain.
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gate and drain voltages ranging from 0 to 4 volts, and the cor-
responding drain voltage versus drain current characteristics
are plotted in Fig. 5.

Numerical performance of these simulations once again con-
firms that the hydrodynamic system is considerably harder to
solve than either the reduced (constant-energy) hydrodynamic
system or the drift-diffusion equations. In the 2D case study
shown here we found it necessary to restrict the incremental
voltage steps at the drain to 0.02 - 0.04 volts to achieve con-
vergence, which is more than an order of magnitude smaller
than one can use with the drift-diffusion equations. Thus, each
current-voltage curve in Fig. 5 represents 100 to 200 separate
simulation points.

The computed solution at the strongest gate and drain bias is
shown in Fig. 6.

5 Modeling micro-scale heat pipes

The use of integrated arrays of micro pipes for thermal man-
agement has been proposed for certain micro-scale device
types such as those that arise in MEMS applications [Mallik,
Peterson, and Weichold (1992); Peterson, Duncan, and Wei-
chold (1993)]. The ability to predict and control thermal trans-
port through these heat pipes is important for their effective de-
sign and use. In this section we consider an application that in-
volves the modeling of 3D anisotropic thermal transport (e.g.,
for cooling) in such devices.

A simple technique to model the effect of heat pipe arrays is to
use an anisotropic heat conduction coefficient in a standard
thermal transport model [see Huang, Liu, and Toh (1996)].
We use this approach in our preliminary work to extend the
PROPHET simulator to this class of applications. The thermal
transport equation that we use here is from Huang, Liu, and
Toh (1996)

ρCp
∂T
∂t
�

�
k1

∂2T
∂x2 + k2

∂2T
∂y2 + k3

∂2T
∂z2

�
=

qS(x;y; z)
Q

(15)

where ρCp represents density times specific heat of the mate-
rial, T is the temperature, t is the time, x, y, z are the spatial co-
ordinates, ki (i=1, 2, 3) are the heat conductivities in the 3 coor-
dinate directions, q is the heat load over a region described by
the distribution function S(x;y; z), and Q =

R
S(x;y; z)dxdydz.

Fig. 7 shows a sketch of the device geometry, which is also
the domain used in subsequent simulations. The material is
assumed to be silicon and the heat pipes are assumed to be ori-
ented in the y-direction, following the convention in Huang,
Liu, and Toh (1996). This implies that the heat conductivity in
the y-direction is much larger than that in the other two direc-
tions, so we use k2 >> k1 = k3 in the numerical studies.

PROPHET does not provide a builtin operator for implement-
ing anisotropic coefficients in a diffusion term. To provide this
capability we wrote a new flux routine to construct the “physi-

Figure 3 : Drain current-density versus voltage for diode
structures.
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Figure 5 : Drain current-density versus drain voltage plots for
2D MOSFET at different gate voltages.



148 Copyright c 2000 Tech Science Press CMES, vol.1, no.1, pp.141-150, 2000

0

0.5

1
0

0.1
0.2

0.3
0.4

0.5

−1

0

1

2

3

4

5

y (micron)x (micron)

po
te

nt
ia

l (
V

)

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

10
10

10
15

10
20

y (micron)

x (micron)

el
ec

tr
on

 d
en

si
ty

 (
cm

−
3 )

Electrostatic potential Electron density

0

0.5

1 0
0.1

0.2
0.3

0.4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x (micron)

en
er

gy
 (

eV
)

y (micron)
0

0.2
0.4

0.6
0.8

1

0

0.1

0.2

0.3

0.4

0.5

10
−5

10
0

10
5

10
10

y (micron)
x (micron)

ho
le

 d
en

si
ty

 (
cm

−
3 )

Electron energy Hole density

Figure 6 : Computed solution for 2D MOSFET with bias condition VG = VD = 4 volts.

cal” part of the operator, which corresponds to the dot product

kkk �∇∇∇T (16)

where kkk = [k1;k2;k3]
T . The key component of this routine in-

volves computing a direction-dependent diffusion coefficient
for each local mesh segment (element edge) using the given
k1, k2 and k3 along with the direction cosines of the mesh seg-
ment. Eq. 16 is constructed by combining such contributions
from all the element edges that adjoin each node. This new
physical operator when used with the standard box div geo-
metric operator (see Sec. 3) generates the desired heat conduc-
tion term with anisotropic coefficients.

The numerical studies are performed using the test case in
Huang, Liu, and Toh (1996), which corresponds to the physi-
cal dimensions a = b = 20 mm and c = 0:705 mm. The heat
source distribution function is assumed to be a planar square

x

z

y

0

c

a

b

planar heat source

Figure 7 : Geometry of silicon wafer used in micro-scale ther-
mal application. The dimensions used in our numerical simu-
lations are a = b = 20 mm, c = 0:705 mm.
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Figure 9 : Steady-state temperature contours on the bottom
surface (z = 0).

on the top surface (z = 0:705), and is defined as

S(x;y;c) =

�
1; for 6� x;y� 14
0; elsewhere

(17)

The heat load amplitude factor q is 35 W, k1 = k3 = 219W=mK,
and k2 = 10k1. We use a constant temperature initial condition
and no-flux boundary conditions everywhere.

Fig.8 shows the steady-state (scaled) temperature distribution
on the surface of the domain, and Fig. 9 shows a contour plot of
the bottom surface (z = 0). These results agree well with those
in Huang, Liu, and Toh (1996) in a qualitative sense, as well as
in relative magnitudes. Direct quantitative comparisons have
not been possible because the data given in the reference is not
adequate to replicate their results.

6 Conclusion

The rapid prototyping capability of the PROPHET simulation
platform has been extended to simulate a non-parabolic hy-
drodynamic model for MOSFETs in 2D. The discretization
scheme includes special Scharfetter-Gummel formulations for
the current density and energy flux terms in the hydrodynamic
model. This increases the complexity of the implementation,
but it is typically a necessary step to prevent numerical insta-
bilities and to keep the grid size moderate. We have demon-
strated how to implement this discretization scheme using the
standard interface choices available in PROPHET. Simulation
results have been presented for device structures in one- and
two-dimensions.

We have also demonstrated the use of the PROPHET simula-
tor to study 3D thermal transport due to heat pipes in micro-
scale devices. The flux routine interface in PROPHET makes
it straightforward to implement and simulate the effect of
anisotropic heat conductivity, which is used to model the effect
of the heat pipes. Preliminary numerical studies show good
agreement with other published work.

The present study demonstrates the utility of a “dial an op-
erator” type simulator for multiphysics applications, applied
here in the context of microelectronic device simulation and
microthermal analysis.

Acknowledgement: This research has been supported in
part by the National Computational Science Alliance PACI
Task # 791AT-51067A. We would like to thank Conor Raf-
ferty at Bell Laboratories (Lucent Technologies), and Zhiping
Yu and Bob Dutton at Stanford University for their help in var-
ious aspects of this work.

References

Bordelon, T. J.; Wang, X.-L.; Maziar, C. M.; Tasch, A. F.
(1990): An efficient non-parabolic formulation of the hydro-
dynamic model for silicon device simulation. IEDM Technical
Digest, pp. 353–356.

Bordelon, T. J.; Wang, X.-L.; Maziar, C. M.; Tasch, A. F.
(1992): Accounting for bandstructure effects in the hydrody-
namic model: a first-order approach for silicon device simula-
tion. Solid-State Electronics, vol. 35, no. 2, pp. 131–139.

Carey, G. F.; Richardson, W. B.; Reed, C.; Mulvaney, B.
(1996): Circuit, Device and Process Simulation: Mathemat-
ical and Numerical Aspects. John Wiley & Sons.

Dutton, R. W.; Kan, E. C.; Yergeau, D. W.; Yu, Z.; Raf-
ferty, C. S. (1997): Next-generation tcad tools - supporting
rapid prototyping of new models and numerics. In NASA De-
vice Modeling Workshop. NASA.

Dutton, R. W.; Yu, Z. (1993): IC Processes and Devices.
Kluwer, Boston.



150 Copyright c 2000 Tech Science Press CMES, vol.1, no.1, pp.141-150, 2000

Huang, X. Y.; Liu, C. Y.; Toh, K. C. (1996): A transient
three-dimensional model of micro heat pipes used as an inte-
gral part of semiconductor devices. In Microelectromechani-
cal systems: Microscale thermal phenomena in electronic sys-
tems, volume 59, pp. 37–47, ASME, New York.

Mallik, A. K.; Peterson, G. P.; Weichold, M. H. (1992): On
the use of micro heat pipes as an integral part of semiconductor
devices. Journal of Electronic Packaging, vol. 114, no. 4, pp.
436–442.

Pardhanani, A. L.; Carey, G. F. (1994): Adaptive grid
and iterative techniques for submicron device simulation. In
Proceedings of the Third International Workshop on Compu-
tational Electronics, pp. 248–251, Portland, OR.

Pardhanani, A. L.; Carey, G. F. (1997): A mapped
scharfetter-gummel formulation for the efficient simulation of
semiconductor device models. IEEE Trans. CAD, vol. 16, no.
10, pp. 1227–1233.

Peterson, G. P.; Duncan, A. B.; Weichold, M. H. (1993):
Experimental investigation of micro heat pipes fabricated in
silicon wafers. Journal of Heat Transfer, vol. 115, no. 3, pp.
751–756.

Rafferty, C.; Yu, Z.; Biegel, B.; Ancona, M.; Bude, J.; Dut-
ton, R. (1998): Multi-dimensional quantum effect simula-
tion using a density-gradient model and script-level program-
ming techniques. In SISPAD (Simulation of Semiconductor
Processes and Devices) ’98 Conference Proceedings, pp. 137–
140, Lueven, Belgium. Springer.

Rafferty, C. S. (1996): Programmer’s guide to the prophet
database. Technical memorandum, Bell Laboratories, Lucent
Technologies.

Rafferty, C. S. (1998): Web guide to prophet. http://www-
tcad.stanford.edu/�conor/prophet/guide.html.

Rafferty, C. S.; Smith, R. K. (1996): Solving partial differ-
ential equations with the prophet simulator. Technical memo-
randum, Bell Laboratories, Lucent Technologies.

Rafferty, C. S.; Yu, Z.; Pardhanani, A. L.; Carey, G. F.;
Dutton, R. W. (1999): Semiconductor device simulation
using prophet. Ticam report, University of Texas at Austin,
Austin, TX, (in preparation).


