
Making a PROPHET

Conor Rafferty1, R. Kent Smith

Abstract: The PROPHET simulator is a software system for
solving partial differential equations (PDEs) in time and 1,2
or 3 space dimensions. When equipped with appropriate mod-
ules, it can be configured as a process simulator or a device
simulator, with application to modeling semiconductor fabri-
cation processes and transistor behavior. The simulator is de-
signed with three main goals: efficiency, geometric flexibility,
equation extensibility. The first two distinguish it from canned
packages such as Mathematica, which do not easily allow the
use of arbitrary shapes or grids and are not tuned to solve sys-
tems with 105 or 106 unknowns. The third distinguishes it
from previous application-specific simulators for semiconduc-
tor problems, such as PISCES or SUPREM-4. The simulator
has been used in production for several years to predict semi-
conductor manufacturing processes.

1 Introduction

The PROPHET simulator is a software system for solving par-
tial differential equations (PDEs) in time and 1,2 or 3 space
dimensions. (Ordinary differential equations can be solved as
a degenerate case). The PDEs are discretized using either finite
elements or finite volume methods in space and with implicit
methods in time, reducing the differential equations to a large
system of algebraic equations. At each timestep the algebraic
equations are solved by Newton’s method. The matrix result-
ing from the linearization is solved by sparse iterative or direct
methods.

The simulator is intended for use in production applica-
tions, and is therefore designed with maximum efficiency
as a goal. The matrix assembly code takes advantage of
the vector hardware capabilities available on machines such
as the Cray YMP, allowing the solution of 3D problems in
reasonable time. Two dimensional problems are routinely
solved on a workstation. For most problems, the com-
putational bottleneck has been the linear solver. A com-
pact interface to linear solvers has been implemented, and
both our internal solver BLSMIP [Bank, Rose, and Ficht-
ner (1983)] as well as several external solvers such as
PETSc [ftp://info.mcs.anl.gov/pub/tech reports/

reports/ANL9511.ps.Z] have been tested with PROPHET .

A second major concern is to solve problems on arbitrary ge-
ometries. To this end, the PDE solver makes no assumptions
about the domain but uses arbitrary combinations of elements

1 Bell laboratories, Lucent technologies, Room 1E-338, 600 Mountain Ave.,
Murray Hill, NJ 07974

to describe its shape, such as triangles and quadrilaterals in
2D, tetrahedra, bricks or prisms in 3D. There are relatively
limited built-in grid generation facilities, but arbitrary grids
can be read from other sources and calculations performed on
those domains.

The final major design goal is to allow new equations to be
specified and solved by a user or a model developer who may
not be familiar with numerical methods. The ability to add new
equations and even new types of equations to the simulator
is particularly important for process simulation, where there
is no consensus on the underlying equations describing solid-
state diffusion, and new models are frequently proposed. As
an example of formulating equations, the system described in
Eq. 1 to solve for field Y in materials silicon and oxide with Y
continuous at the interface between silicon and oxide, can be
described with the following syntax. The coefficient γ and the
grid definition are not part of the system definition per se, and
would appear later in the input file.

∇ � (ε∇Y )+4KY 2 = 0 (1)

Y = 0 at odxide/exposed surface

∂Y=∂X =�γY at silicon/bulk surface

system name=test

+ sysvars=a

+ tmpvars=asquare

+ term0=-1*box_div.diffusion(epsfield,a|a)@{silicon,oxide}

+ term1=4.0*nodal.prod(asquare,kfield|a)@{silicon,oxide}

+ term2=dirichlet.default_dirichlet(0|a)@{oxide/exposed}

+ term3=interface.radiation(a|a)@{silicon/bulk}

+ term4=constraint.continuity(a|a)@{silicon/oxide}

+ nterm=5

+ func0=prod(a,a|asquare)@{silicon,oxide}

+ nfunc=1

There is one line of description for each term in the PDE, and
one line for each boundary condition. The overall system is de-
scribed in terms of a number of building blocks, each of which
takes as input either primary variables or temporary variables
which can be created on the fly as functions of other vari-
ables. The above example shows the use of a Laplacian opera-
tor, nodal operator, Dirichlet boundary condition, flux bound-
ary condition, an interface jump condition (albeit the trivial
one), and generation of a temporary field. Many other build-
ing blocks are available, such as the ∂=∂t operator, central and
upwind drift operators, Scharfetter-Gummel operator, and new
building blocks can easily be constructed.

The intention is that the code can be used by three categories



152 Copyright c
 2000 Tech Science Press CMES, vol.1, no.1, pp.151-159, 2000

of users: application users, model developers, and primary de-
velopers. Application users are primarily interested in running
the code off-the-shelf but are interested in having some con-
trol over its execution, such as the choice of linear method.
Model developers are interested in adding new equations, ei-
ther by combining existing operators or building new operators
according to specification. The primary developers are con-
cerned with the underlying database, the implementation of
the assembly library and the linear solvers, the grid structure,
and so on.

Maintaining an uncluttered, coherent interface for the model
developer is particularly important, since it is frequently the
case that models must be developed by researchers who are
experts in the physical mechanisms but less familiar with nu-
merical methods. Since such users come from a variety of
backgrounds, familiarity with any particular programming lan-
guage is not assumed, and a subroutine binding to any lan-
guage is possible.

In the subsequent sections, the grid structure, the internal
database, and the PDE solver are described. A number of ap-
plications in process and device simulation are then given to
illustrate the ability to solve relevant technological problems.

2 Grid structure

There is generally a trade-off between updating and accessing
a grid structure; between the ease with which new elements,
nodes, interface, can be added, and the speed with which they
can later be retrieved. Following a chain of pointers to arrive at
the coordinates of the first node, then a different chain to arrive
at the coordinates of the second node, and so on, is slower than
retrieving all coordinates by indexing a single array; however
a fixed length array does not allow easy removal of nodes.

We have chosen to use dual representations of the grid, a dy-
namic representation and a static representation. The dynamic
representation is the core representation which is stored be-
tween runs; it is minimal and unstructured. Elements of dif-
ferent types, nodes, boundary markers, can be added in any
order. Elements are represented in plain finite element form;
a list of nodes for each element. There is no hierarchy of ele-
ments containing faces, faces containing edges, or edges con-
taining nodes. Nor are there structures describing extended
objects such as interfaces or regions; instead each element has
a region code and an interface code on its external faces. A dis-
tinction is maintained between points and nodes, following the
example of SUPREM-IV[Law, Rafferty, and Dutton (1986)].
A point is a location in space; a node is a part of an element
where solution data is stored. In the bulk of a region, one node
corresponds to each point, but at material interfaces, there are
as many nodes as there are materials meeting at the interface.
This construct allows a natural representation of the many sit-
uations where fields are discontinuous across interfaces, with
jump conditions describing the discontinuity (Fig. 1). Fields

Figure 1 : Grid constructs: (a) Multiple nodes at one point.
(b) Automatic generation of interface structures. Ten distinct
interfaces exist in this structure.

continuous across the interface are handled in a uniform way,
by applying a jump condition of equality, albeit at the (usually
small) cost of carrying redundant solution values along the in-
terface.

During the PDE solution phase, where rapid access to grid is
desired, a static representation is automatically generated. El-
ements are reordered into regions, then into similarity groups
for vector access (all triangles, all quads, etc). The similarity
groups can optionally be subdivided into ‘colors’ where each
color contains groups of elements, none of which share nodes,
in order to allow vector processing of the color without risk
of race conditions. At the end of the solution, the grid is then
“unlocked” again for ease in grid manipulation. The cost of
locking/unlocking is a tiny fraction of solution or grid genera-
tion cost.

There are also subroutines to decorate the core representation
with derived information, such as all the neighbors of the ele-
ments, and the list of unique edges of the grid (useful for finite
volume assembly). In addition, extended interface structures
are built automatically at the start of the solver phase. Sets of
contiguous elements sharing a common interface are identified
and a list of lists of such elements is created, along with their
boundary nodes. This structure is convenient for efficiently ap-
plying the interface jump conditions and other boundary con-
ditions.

3 Database

PROPHET contains a number of physical models with coeffi-
cients which have been calibrated in the past or which require
tuning by the simulator user. The coefficients may take the
form of numbers, temperature dependent formulae, or tables
of measured data. The first function of the PROPHET database
is to store such coefficients. In addition it has been found con-
venient to store all control information for the simulator in the
same database, including a description of the user’s input file,
a description of the set of equations to be solved, and parame-
ters for the numerical methods. All miscellaneous information



Making a PROPHET 153

Figure 2 : Top level of PROPHET database.

pertaining to a simulation, as opposed to structured informa-
tion such as the grid and matrix, is stored in the database.

The data is organized hierarchically. The leaves of the tree
are called properties and the organizational branches are called
property lists. At the top level, the hierarchy is structured as
shown in Fig 2. The top level objects are the user’s input file,
options for this particular run, and the library. The library is
divided into physical and numerical parameters, and the list
of recognized commands and their defaults is also stored here.
Physical parameters are organized according to material, with
solution fields appearing under the materials in which they are
to be solved. The description of the PDE system to be solved
is stored in the numerical section of the library.

The database supports a notion of inheritance. A property list
may contain a property with the name SeeAlso , which is
a symbolic link to another property list. If a property is re-
quested on the parent list, but not found, the SeeAlso pointer
is followed to see if the referenced list contains the desired

property. This process can recurse as necessary. In addition
any property list might have more than one SeeAlso pointer
(multiple inheritance). This facility makes it convenient to de-
fine a new material, or field, with the characteristics of another,
while allowing one or two exceptional properties.

The advantages of this storage scheme is uniform and orga-
nized access to all simulation parameters, rather than the ad-
hoc common blocks and static variables characteristic of older
simulators. It also means that new modules can access user-
defined parameters without making any arrangements for their
storage or transmission elsewhere in the code. Only the sub-
routine requesting a parameter knows of its existence. Typ-
ically a single line of code is required to request a parame-
ter, and the request is answered by one line in the user’s in-
put file defining the value of that parameter, or one line in the
stored library. The low overhead in defining new parameters
encourages module programmers not to hard-code coefficients
or decisions, leaving as much as possible mutable outside the



154 Copyright c
 2000 Tech Science Press CMES, vol.1, no.1, pp.151-159, 2000

Figure 3 : A block of equations representing point defect dif-
fusion in silicon (without impurities). The block is decom-
posed into several terms: two laplacian terms, one binary-
recombination term, and two transient terms.

binary.

Only the library subtree of the database is stored between
runs. On startup, a new root is created in memory, and the
disk library loaded onto the library branch of the in-memory
database. The other top level branches are created and popu-
lated based on the input file (options, userinput). Database
commands in the input file modify the in-memory database,
adding new properties, system descriptions, and material pa-
rameters.

4 PDE solver

The system of PDE’s to be solved is itself described by a prop-
erty subtree, built on the fly from a system command as given
in the introduction. To solve a PDE, the subtree is first exam-
ined to determine the solution fields, equations, and solution
methods. The equations are then discretized using either finite
elements or finite volume methods in space, with the choice
determined by the operators specified in the system subtree.
In time, implicit methods are most commonly used, although
explicit methods have also been implemented. The result is to
reduce the differential equations to a large system of algebraic
equations. At each timestep the algebraic equations are solved
by Newton’s method. The matrix resulting from the lineariza-
tion is then solved by sparse iterative or direct methods.

4.1 PDE formulation

A block of partial differential equations is considered as an as-
sembly of operators, called pdeterms; for instance a reaction-
diffusion system might consist of several reaction terms be-
tween various species, a diffusion term for each species, and
a transient term for each species. A term-by- term decompo-
sition of the equations for point defect diffusion in silicon is
represented schematically in Fig. 3. PDEterms can be rect-
angular, not necessarily square, since they define a number n
of outputs in terms of m inputs. Each of these pdeterms can
be further subdivided into a “geometrical” part (geoterm) and
a “physical” part (phyterm). As an example, the Laplacian
operator can be considered as the combination of the diver-
gence operator ∇� and the flux of point defects D∇C. The geo-

metrical operator box div chooses a finite volume discretiza-
tion of the divergence operator, while the operator fel div

choose a finite element discretization. In each case, the op-
erator calls a phyterm to calculate the flux at the quadra-
ture points (finite elements) or the edge midpoints (finite vol-
ume). The construction of the flux from the field values and
gradients is independent of the discretization and is defined
in terms of purely physical constructs such as the value of a
field at a point in space and its spatial gradient. The repre-
sentation of these are simply a scalar and a vector (of length
equal to the space dimension), respectively; to calculate the
flux at n points in space the same phyterm is used both
in finite elements and finite differences; the phyterm takes
as argument gradsol[1..dim][1..n] and return as result
flux[1..dim][1..n]. Thus the numerical work of assem-
bling the equations (the discretization), and the modeling work
of defining fluxes in terms of concentrations and gradients, are
separated in PROPHET . A model developer writes phyterms
without knowing whether they will be called from a finite dif-
ference or finite element discretization, for a quadrature point
in a triangle, a finite volume edge, or the interior of a brick.
Space dimension affects only the length of the vectors. The
input to the phyterms in all cases is a list of field names,
field values, field gradients, the space dimension and the re-
gion name, and the output is a scalar or vector as well as its
derivative with respect to the inputs.

This clean separation is compromised in one case: the
Gummel-Scharfetter discretization of the semiconductor de-
vice equations. Defined only for edges in a finite volume dis-
cretization, the discretization needs not nodal quantities and
their gradients, but the net difference along the length of the
edge. The divergence operator for this case has been coded to
pass the nodal differences rather than the gradients.

Flux boundary conditions are treated uniformly in this system.
Another term added to the system list specifies an interface
geoterm which in turn calls a phyterm describing the flux at
an interface in terms of the field values at the interface. The in-
put to an interface phyterm is the same as for a bulk phyterm
except that the field value arrays are double length, to provide
values on both sides of an interface, and two interface names
instead of a single region name are provided.

Dirichlet boundary conditions and jump conditions call for
separate handling. Since the updates at Dirichlet nodes are
always zero, the appropriate (off-diagonal) rows and columns
in the matrix and residual vector are zeroed out. Jump condi-
tions are handled by first assembling the matrix and residual
vector as if there were no jump conditions. Then in a cleanup
pass, all the PDE terms are transferred into the matrix row of
the lowest numbered node number, and the jump conditions
are written into the rows corresponding to the other nodes at
the same location, with derivatives of the jump equations with
respect to nodal values being added to the matrix. Arbitrary
nonlinear jump conditions involving combinations of variables



Making a PROPHET 155

Figure 4 : Large diffusion example. A full CMOS process flow for two transistors (nMOS and pMOS) as well as
the isolation between them is simulated in under an hour on a workstation.

at the interfaces are therefore handled straightforwardly. The
jump conditions are implemented by phytermswith the usual
calling sequence.

4.2 Auxiliary fields

It is frequently convenient to define auxiliary fields and reuse
them more than once in the formulation of a system of PDEs.
Not only does this simplify the writing, it avoids unnecessary
recomputation. For instance, the traditional impurity diffusion
equation of boron in silicon is written in Eq. 2-4.

∂Cc

∂t
= ∇ �DB(ψ) [∇Ca�Ca∇ψ] Diffusion equation (2)

Ca +βCm
a = Cc Solubility relationship (3)

ψ =� log

0
@Ca

2ni
+

s�
Ca

2ni

�2

+1

1
ANormalized Potential (4)

There is one differential equation (the diffusion equation) for
one unknown, the chemical concentration Cc of boron. The
flux of boron is however most conveniently defined in terms
of its active concentration Ca, and the potential ψ, which are
defined by the two auxiliary equations. PROPHET allows the
definition of such variables, and eliminates them automatically
as the matrix is being constructed. Derivatives such as ∇Ca

are eliminated by applying the chain rule. Such elimination
reduces the size of the matrix to be solved, conserving storage
and CPU time.

A feature of the system description language is that fields may
be marked optional. At the start of a solution phase, the fields
existing in the structure are compared with the fields on the so-
lution list, and any optional fields which are not present in the
structure dropped from the solution list. This allows a single
system description to cover the diffusion of one or half a dozen
dopants in silicon.

4.3 Numerical methods

The main time integration method is TR-BDF2[Bank, Rose,
and Fichtner (1983)]. The time step is automatically chosen
based on Milne’s method applied to the comparison of TR-TR
and TR-BDF2 methods at each timestep, in order to achieve a
desired temporal error.

If after solving a given timestep, the temporal error is found
to be significantly more than the desired error tolerance, the
timestep is rejected and restarted with a shorter step. While
this precaution may seem obvious, some older simulators ac-
cept any solved timestep and cut back the next timestep if the
error is large. The latter strategy can propagate poor solution
values.

A Newton’s method with systematically tightening inner solu-
tion tolerance[Bank and Rose (1981)] is used for the solution
of the system of nonlinear algebraic equations arising from the
discretization.

Each field-to-field coupling block in the Jacobian matrix is
stored in Bank-Smith sparse format[Bank, Rose, and Fichtner
(1983)], with diagonal entries first, upper triangle following,
then lower triangle. The full Jacobian is the catenation of all
the sparse blocks, each of which may be null, diagonal, sym-
metric, or asymmetric.



156 Copyright c
 2000 Tech Science Press CMES, vol.1, no.1, pp.151-159, 2000

Table 1 : CPU-time for device simulation

Device: JFET with 2 carriers, full Newton, 2556 nodes; Hardware: Sun UltraSparc 170
Total Time #Newton Loops #Linear Solves Solve Time Assembly Time Time per solve

PROPHET+BLSMIP 237s 93 93 186s 26s 2.55s
MEDICI 387s 126 71 - - 5.5s
PROPHET+PETSC 655s 93 93 602s 27s 7.0s

Most of our experience with linear solvers has been with the
Bell Labs Sparse Matrix package (BLSMIP)[Bank, Rose, and
Fichtner (1983)]. The preferred method for diffusion sys-
tems has been found to be ABF[Bank, Chan, Coughran, and
Smith (1989)] with an incomplete LU decomposition precon-
ditioner and CGS as the accelerator. For device simulation in
2D, direct solution with a minimum local fill ordering[Vlach
and Singhal (1983)] is optimal. For external solvers, map-
ping from the internal format to external format is generally
a small fraction of the solution time, and we have also had
good success using the PETSc solver from Argonne Labo-
ratories [ftp://info.mcs.anl.gov/pub/tech reports/

reports/ANL9511.ps.Z].

5 Applications

5.1 Performance

It is a frequent concern that flexibility in setting up the solution
system may exact a high price in execution time. In our expe-
rience, the flexibility costs only a slight parsing overhead and
a few high level if-statements, which are negligible compared
to the cost of processing thousands of floating point numbers.
As an example of this, a large diffusion example is shown in
Fig. 4. This example is the result of simulating a full CMOS
process flow for two transistors (nMOS and pMOS) as well
as the isolation between them. There were four fields solved
over 14,000 nodes and a total of 135 composite timesteps or
405 individual timesteps, each of which required 1-5 Newton
iterations. The total execution time was 49 minutes on a Sun
UltraSparc-II/300 workstation. This compares very favorably
with commercially available tools, which frequently take over
an hour to solve even a half transistor.

As a further example, Tab. 1 gives performance comparisons
for device simulation using PROPHET and MEDICI, the most
widely used commercially supported specialized device anal-
ysis tool. The simulation takes a JFET through its on-off curve.
The CPU time is entirely dependent on the linear solver used.
These results are quite satisfactory, particularly in the light that
the device simulation modules are relatively new in PROPHET

and do not take advantage of smart initial guesses or Jacobian
recycling strategies.

5.2 Process simulation

Accurate modeling of deep submicron devices requires track-
ing the diffusion not only of the dopants but also of the intrinsic
point defects in silicon[Fahey, Griffin, and Plummer (1989)].

The defect-dopant coupled diffusion system is listed in Eq. 5-
10. Interstitials I diffuse rapidly and pair with dopants D to
create a flux of dopant-defect pairs FDI which transports the
otherwise immobile dopants; a similar mechanism applies to
dopant-vacancy pairs. An electrostatic potential ψ is gener-
ated by the ionized dopants, and the potential gradient (elec-
tric field) gives rise to another term in the dopant flux. There
are two parallel equations for interstitials I and vacancies V ,
and one equation for each dopant D. Finally, interstitials may
cluster into extended defects containing a concentration C of
interstitials.

∂I
∂t

= ∇ � (DI∇I)�∇ �FDI� kR(IV � I�V �)� fc(I;C) (5)

∂V
∂t

= ∇ � (DV ∇V)�∇ �FDV � kR(IV � I�V �) (6)

∂D
∂t

= �∇ � (FDI +FDV ) (7)

FDX =� fxDD

�
X
X�

(∇D+ξDD∇ψ)+D∇
X
X�

�
for X = fI;Vg (8)

∂C
∂t

= fC(I;C) = k f IC� krC (9)

∇ � (ε∇ψ) =�q (p�n+ξDD) (10)

The last term of the dopant flux relation for FD shows that im-
purities may move under the action of an interstitial gradient.
Such a gradient exists at the silicon surface during annealing
of implant damage, where surface recombination effectively
removes interstitials[Lim, Rafferty, and Klemens (1995)], cre-
ating an interstitial sink, while there is a strong source at the
location of the most recent implants. The resulting gradient of
interstitials leads to a flux of dopant to the surface, where it
piles up inhomogeneously and affects the threshold voltage of
transistors[Rafferty, Vuong, Eshraghi, Giles, Pinto, and Hille-
nius (1993)].

An interesting consequence of this effect is that the threshold
voltage of a transistor may depend on its layout. Fig. 5 shows
a conventional layout, as well as the layout for a power tran-
sistor. In the power device, the waffle-gate openings present
a weaker source of interstitials relative to the amount of re-
combining surface available at the corners, as compared to the
straight edges of the conventional layout. As a result, there
is less interstitial-driven dopant pileup at the corners of the
source/drain openings and a path exists for current to flow ear-
lier there than along the straight edges (Fig. 6). Consequently,



Making a PROPHET 157

Figure 5 : Gate layout for conventional and power MOSFETs.
The waffle structure maximizes current density.

the threshold voltage for such waffle-gate devices is predicted
to be lower than for conventional devices; this effect has been
measured experimentally[Darwish, Rafferty, Williams, Cor-
nell, and Yilmaz (1995)].

The ability to predict such complex defect-dopant interactions
is of great utility in designing dopant profiles in deep submi-
cron technology. The cost of running such simulations, at least
in two dimensions, is no more than an hour or so on a worksta-
tion. This combination has led to substantial use of simulation
and interesting diffusion discoveries by process development
engineers[Chaudhry, Rafferty, Nagy, Chyan, Carroll, Chen,
and Lee (1997); Kamgar, Vuong, Liu, Rafferty, and Clemens
(1997)]. Current usage is of the order of 5,000 hits a month.

5.3 Device simulation

The ever-thinning gate dielectric in MOSFETs has brought
quantum effects at the silicon/oxide interface into promi-
nence[Krisch, Bude, and Manchanda (1996)]. The electron
and hole wavelengths are no longer short in comparison to the
dielectric thickness. Such effects have been modeled in one di-
mension using a rigorous coupled solution of the Schrödinger
and Poisson equations. Extending such models to two dimen-
sions and including transport is a formidable computational
challenge.

�∇ � (ε∇ψ) = q
�

p�n+N+D �N�

A

�
(11)

∇ � (nµn∇φn) = g� r (12)

∇ � (�pµp∇φp) = g� r (13)

Figure 6 : Boron diffusion profile near corner of implant win-
dow. The boron ridge appearing along the gate edge is reduced
near the corner and allows carriers to sneak through, lowering
the threshold voltage relative to a linear device.

φn�ψ+
kT
q

ln
n
ni

= 2bn

�
∇2pnp

n

�
(14)

φp�ψ� kT
q

ln
p
ni

=�2bp

 
∇2ppp

p

!
(15)

The density gradient approach to quantum effects[Ancona and
Iafrate (1989)] provides a more compact approach to solving
such problems. It modifies the governing PDE’s of device sim-
ulation in a fundamental way and its inclusion in a special-
ized device simulation package would require major revisions.
However as a set of drift-diffusion PDE’s, it can be readily be
solved by PROPHET . The steady-state device equations with
DG corrections[Rafferty, Biegel, Yu, Ancona, Bude, and Dut-
ton (1998)] are shown in Eq. 11-15. Potential ψ, the quasi-
fermi levels φn, φp and the phaseless electron/hole amplitudesp

n,
p

p become the fundamental solution variables. The gen-
eration and recombination rates g, r are functions of the carrier
densities n, p and possibly electric field, and the mobilities µn,
µp are functions of doping NA, ND and electric field.

The above system was scripted into PROPHET and the quan-
tum coefficients bp, bn calibrated to give good fits to capaci-
tance data on large area testers[Rafferty, Biegel, Yu, Ancona,
Bude, and Dutton (1998)]. The same coefficients gave good
agreement to capacitance data for capacitors with thicknesses
ranging from 20Å to 80Å. The model was then applied to the
type of situation which would be very expensive to analyze
with a full Schrödinger-Poisson analysis: gate oxides with fi-
nite roughness. Fig. 7 shows the simulated structure, of which
one period was simulated. A comparison of the classical anal-
ysis and quantum analysis (Fig. 8) shows that the quantum so-
lution is much less sensitive to roughness, provided the rough-
ness wavelength is shorter than the electron wavelength. This



158 Copyright c
 2000 Tech Science Press CMES, vol.1, no.1, pp.151-159, 2000

Figure 7 : Gate with rough surface. The amplitude of the
roughness is 2Å and the wavelength 20Å. For this calcula-
tion the upper and lower surfaces were assumed to vary syn-
chronously; other types of roughness could also be considered.

suggests that in monitoring and controlling surface roughness,
most attention should be paid to longer wavelength compo-
nents.

6 Summary

The PROPHET simulator was designed as a development plat-
form for solving the sets of partial differential equations which
arise in semiconductor process and device modeling. It uses a
compact equation language and a hierarchical database to al-
low the rapid prototyping of new systems of equations. Sys-
tems can be formulated entirely using existing operators in
some cases, and where necessary new physical operators can
be added according to a well-defined interface. Both finite
element and finite difference discretizations are provided to
achieve the necessary accuracy and speed in different appli-
cations. The numerics are streamlined for solving large prob-
lems, allowing it to answer real-life questions. It has been
instrumental in making significant discoveries in diffusion re-
search and device analysis.

Acknowledgement: It is a pleasure to acknowledge contri-
butions to the PROPHET code from many collaborators, par-
ticularly Martin Giles, Hong-Ha Vuong, Ashraf Alam, Bryan
Biegel, Zhiping Yu, Anand Pardhanani and Abhijhit Bose.
We are indebted to our users for their suggestions and their
patience, particularly Samir Chaudhry, Hans Gossmann, and

Gerhard Hobler. The device simulation work was supported
by DARPA contracts DABT63-95-C-0090 and DABT63-96-
C-0067 in collaboration with Prof. Robert Dutton at Stanford
University and Prof. Graham Carey at University of Texas at
Austin, respectively.

References

Ancona, M.; Iafrate, G. (1989): Quantum correction to the
equation of state of an electron gas in a semiconductor. Phys.
Rev. B, vol. 39, no. 13, pp. 9536.

Bank, R.; Chan, T.; Coughran, W.; Smith, R. (1989): The
alternate-block-factorization procedure for systems of partial-
differential equations. BIT, vol. 29, no. 4, pp. 938.

Bank, R.; Rose, D. (1981): Global approximate newton
methods. Numerische Mathematik, vol. 37, pp. 279.

Bank, R.; Rose, D.; Fichtner, W. (1983): Numerical meth-
ods for semiconductor device simulation. IEEE Transactions
on Electron Devices, vol. ED-30, pp. 1031.

Chaudhry, S.; Rafferty, C.; Nagy, W.; Chyan, Y.; Carroll,
M.; Chen, A.; Lee, K. (1997): Suppression of reverse short
channel effect by high energy implantation. Technical Digest
of the International Electron Device Meeting IEDM, pg. 679.

Darwish, M.; Rafferty, C.; Williams, R.; Cornell, M.; Yil-
maz, H. (1995): Transient enhanced threshold shifts in power
MOS transistors. Technical Digest of the International Elec-
tron Device Meeting IEDM, pg. 233.

Fahey, P.; Griffin, P.; Plummer, J. (1989): Point defects and
dopant diffusion in silicon. Reviews of Modern Physics, vol.
61, no. 2, pp. 289.

Kamgar, A.; Vuong, H.-H.; Liu, C.; Rafferty, C.; Clemens,
J. (1997): Impact of nitrogen implant prior to the gate oxide
growth on transient enhanced diffusion. Technical Digest of
the International Electron Device Meeting IEDM, pg. 695.

Krisch, K.; Bude, J.; Manchanda, L. (1996): Gate capac-
itance attenuation in MOS devices with thin gate dielectrics.
Electron Device Letters, vol. 17, no. 11, pp. 521.

Law, M.; Rafferty, C.; Dutton, R. (1986): New n-well fab-
rication techniques based on 2d process simulation. Technical
Digest of the International Electron Device Meeting IEDM,
pg. 518.

Lim, D.; Rafferty, C.; Klemens, F. (1995): The role of the
surface in transient enhanced diffusion. Appl. Phys. Lett., vol.
67, pp. 2302.

Rafferty, C.; Vuong, H.-H.; Eshraghi, S.; Giles, M.; Pinto,
M.; Hillenius, S. (1993): Explanation of reverse short chan-
nel effect by defect gradients. Technical Digest of the Inter-
national Electron Device Meeting IEDM, pg. 311.



Making a PROPHET 159

Figure 8 : (a) Classical solution of rough structure shows all electrons collecting at points of maximum potential. (b) Density-
gradient quantum mechanical treatment shows much less influence of surface roughness on electron density. The finite electron
wavelength prevents clustering of electrons in the nooks and crannies of the surface.

Rafferty, C. S.; Biegel, B.; Yu, Z.; Ancona, M.; Bude, J.;
Dutton, R. (1998): Multi-dimensional quantum effect sim-
ulation using a density-gradient model and script-level pro-
gramming techniques. SISPAD Conference Proceedings, pg.
137.

Vlach, J.; Singhal, K. (1983): Computer methods for circuit
analysis and design. Van Nostrand Reinhold, pp. 66–67.




