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Abstract: Homogenization of periodic fiber-reinforced duc-
tile composite materials is performed as for the material
strength, i.e. the carrying capacity with respect to macroscopic
(average) stresses. Rigid-plastic limit analysis is formulated
by the kinematic theorem applied to the representative volume
with periodicity boundary conditions and von Mises yield cri-
terion. The iterative procedure adopted for the numerical so-
lution of the minimization problem is comparatively discussed
on the basis of applications to various ductile heterogeneous
media.
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1 Introduction

At the present time heterogeneous materials are employed in
several technological fields. When ductile constituents are
adopted (such as in metal-matrix composites), the behaviour
of these materials beyond the elastic range up to failure has
to be investigated. Especially in the presence of periodic tex-
ture at the microscale, a mechanical and mathematical con-
text in which heterogeneous media have been studied to struc-
tural engineering purposes is homogenization theory (see e.g.
[Aboudi (1991)], [Nemat-Nasser and Hori (1993)], [Suquet
(1985)], [Teply and Dvorak (1988)]). In this framework both
step-by-step analyses (see e.g. [Michel and Suquet (1993)])
and “direct” methods (see e.g. [de Buhan and Maghous
(1991)], [Francescato and Pastor (1997)], [Taliercio (1992)])
have been developed in order to numerically predict inelastic
behaviour and in particular strength (or carrying capacity) of
the homogenized material at the macroscale.

Evolutive (“marching”) analyses generally provide a large
amount of information but usually they turn out to be expen-
sive and the provided information to be redundant. Nonevo-
lutive methods (otherwise called “direct” or “simplified”) may
be convenient for limit state analyses of heterogeneous media,
particularly when the design process requires repetitive para-
metric studies.

In this paper the kinematic approach of limit analysis will be
formulated on the “representative volume” in the framework of
the homogenization theory for ductile periodic media. An iter-
ative algorithm, first proposed in [Huh and Yang (1991)], will
be employed and comparatively discussed for the solution of
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the mathematical programming problems which arise from fi-
nite element discretizations. Some aspects of the present study
have been concisely outlined in [Carvelli, Maier and Taliercio
(1998)].

2 Preliminaries on periodic heterogeneity

The underlying concept of homogenization theory is to replace
a given heterogeneous medium by an “equivalent” homoge-
neous one with “same behaviour” at the macroscopic level.
Homogenization techniques derive the mechanical properties
of the homogenized medium in terms of the local geometrical
and material (constitutive) properties of the constituents ( or
“phases”) at the microscale.

In order to generate macroscopic (homogenized) constitutive
models for composite materials a ‘statistical specimen’ or
‘representative volume’ (RV) can be defined in different ways,
consistently with the adopted homogenization technique (see
e.g. [Hashin (1983)]). In heterogeneous media with a periodic
structure, the RV is defined as the space region or “cell” with
minimum volume among those which contain all information
needed to completely describe geometric and physical proper-
ties at the microstructural level.

Let V be the volume occupied by the RV and Γ its bound-
ary, in the Cartesian reference frame (O x1 x2 x3). Any RV
in the real medium is associated with a “macroscopic point”
in the fictitious homogenized medium. In a RV two differ-
ent kinds of variables can be considered: the macroscopic
variables, concerning the homogenized medium (the material
properties of which are sought), and the microscopic variables,
which vary over the RV. Deformations will be assumed herein
as “infinitesimal” (linear kinematics). The following symbols
are adopted for the macroscopic (or “global”) stress and strain
rate tensors, and for the microscopic (or “local”) stress and
strain rate tensors, respectively: Σ, Ė; σ(x), ε̇(x); tensors of
second and of first order are represented by doubly or singly
underlined symbols.

The macroscopic tensors are the averages of the microscopic
ones over the RV [Suquet (1985)], namely:

Σ� 1
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Ė � 1
V

Z
V

ε̇dV =
1

2V

Z
Γ

sym(u̇
n)dΓ (2)

where u̇(x) is the microscopic velocity field and n is the out-
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ward unit normal to Γ. Although discontinuous velocity fields
are pertinent and useful in limit analysis and homogenization
theory, only differentiable velocity fields will be considered
herein.

If the heterogeneous body is subjected to boundary conditions
that would produce uniform fields of strain Ė rate and stress
Σ in the companion homogeneous body, then the microscopic
strain rate ε̇ and σ stress fields conform to the periodicity of
the microscopic texture at a sufficiently large distance (large
with respect to a typical RV length) from the boundary of the
body. This means that one can write:

ε̇(x) = Ė +ėε(x) (3)

σ(x) = Σ+ eσ(x) (4)

u̇ = Ė � x+ ėu (5)

where u̇ is the velocity vector and a tilde marks addends which
fluctuate with the periodicity of the microstructure. The “pe-
riod” of the material texture is represented by any translation
vector d leading the RV to overlap on a neighbouring (identi-
cal) cell. Two points, say xA and xB, are called “homologous”
if xB = xA +d. It can be noticed from Eq. 1-4 that:

1
V

Z
v
ėεdV = 0;

1
V

Z
v
eσdV = 0 (6)

Eq. 4 implies that in two homologous points on the RV bound-
ary Γ (where the outward normals are opposite to each other)
the traction vector t = σ �n takes opposite values.

As a conclusion of what proceeds, the “periodicity conditions”
read:

t = σ �n anti-periodic (7)ėu = u̇� Ė � x periodic (8)

Let us consider: a stress field σ and a velocity field u̇ satisfying
Eq. 7 and Eq. 8, respectively; a strain rate field ε̇ generated by
u̇ through the (linear) compatibility operator and, hence, com-
posed of two addends according to Eq. 3. These microscopic
variables can be related to their macroscopic counterparts by
Hill’s “macrohomogeneity equality” (see e.g. [Nemat-Nasser
and Hori (1993)]):

1
V

Z
V

σ : ε̇dV = Σ : Ė (9)

This equation, which plays an important role in homogeniza-
tion theory, can be interpreted as a formulation of the virtual
work principle applied to the RV.

3 Kinematic limit analysis with periodicity conditions

As a result of homogenization, limit loads of a heterogeneous
structure can be obtained by analyzing an equivalent homo-
geneous structure subjected to the same loading conditions.

Limit loads are understood here as assigned external actions
amplified by a critical value s (“safety factor”) of a common
multiplier µ, such that µ > s cannot be sustained and for µ = s
plastic collapse occurs. Under the assumption of periodic het-
erogeneity distribution, it can be proven (see e.g. [Bouchitte
and Suquet (1991)] and [Suquet (1983)] that the “safety fac-
tor” of the fictitiously homogeneous structure tends to the one
of the actual heterogeneous structure when the heterogene-
ity size becomes negligible compared to a typical structural
length, provided that boundary conditions are fulfilled in a
weak sense [Bouchitte and Suquet (1991)].

In order to perform overall limit analyses on the homogenized
structure, the material macroscopic strength domain, denoted
henceforth by Shom, must be determined in the space of the
macroscopic (average) stresses Σ. This is the present main ob-
jective. In classical plasticity under the “small deformation”
hypothesis, it was established long ago that if Drucker’s pos-
tulate of material stability holds (with its associativity and con-
vexity consequences) for the behaviours of the constituents, it
holds for the overall behaviour as well [Maier and Drucker
(1973)]. By the same path of reasoning, in the homogeniza-
tion context, if the material constituents obey an associated
flow rule (i.e. are “standard” in the sense of the plasticity the-
ory) and if their yield domains φ(σ;x) are convex at any point

of the RV, it can be proven that the domain Shom of admissible
average stresses Σ, is convex and the homogenized medium
obeys the normality rule, see e.g. [Suquet (1985)]. Both these
essential features are assumed herein and are supplemented by
the hypothesis of perfect plasticity (no hardening). If the com-
ponents were not “standard”, Shom should be considered as the
domain of the “potentially safe” macroscopic stresses for the
homogeneous equivalent structure [Taliercio and Sagramoso
(1995)].

In the presence of texture periodicity, rigid-perfectly plastic
constituents stable in Drucker’s sense and perfect cohesion at
the interfaces, the static and kinematic theorems of classical
limit analysis (see e.g. [Cohn and Maier (1979)], [Lubliner
(1990)]) can be applied to the RV alone. They provide the
conceptual basis to homogenization procedures apt to compute
the safety factor for a given “loading condition” Σo, and the
macroscopic strength domain Shom for all Σo. Specifically, by
a kinematic approach, the definition of Shom arises from the en-
ergy equation (Eq. 9) and from the kinematic theorem of limit
analysis, namely: Shom is the set of the macroscopic stresses Σ
whose “external” work rate Σ : Ė (per unit volume) is bounded
from above by the average microscopic (local) plastic dissipa-
tion D over the RV for any compatible strain rate field derived
from a displacement rate field which complies with the de-
composition Eq. 5 and with the periodicity condition ( Eq. 8).
Namely, in symbols:

Shom �
�

Σ such that: Σ : Ė � 1
V

Z
V

D
h
ε̇
�ėu+ Ė � x�idV
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8Ė; ėu(x); ėu periodic
	

(10)

For the computation of the safety factor (or limit multiplier) s
of the assigned macroscopic stress Σo, the kinematic formula-
tion of limit analysis leads to the following constrained mini-
mization problem:

s = min
ėu;Ė

1
V

Z
V

D
�

ε̇
�

dV subject to: (11)

Σo : Ė = 1; (12)

ε̇ = sym
�
gradėu�+ Ė in V ; ėu periodic on Γ (13)

Two differences are worth noting between a customary struc-
tural kinematic limit analysis and problem (Eq. 11-13) encom-
passing homogenization and limit analysis combined: (i) the
periodicity condition has to be satisfied by the term ėu of the
velocity field on Γ; (ii) the external actions applied to the RV
are not accounted for through boundary conditions, but rather
through an average condition expressed by Eq. 9 and normal-
ization (Eq. 12).

4 Discrete formulation

Matrix notation will be adopted henceforth, e.g. bold-face
symbols for matrices and vectors; macroscopic stresses and
strain rates collected into vectors, namely:

ΣΣΣT � � Σ11 Σ22 Σ33 Σ12 Σ13 Σ23
	

;

ĖT � � Ė11 Ė22 Ė33 2Ė12 2Ė13 2Ė23
	
:

Let all the material constituents (or phases) behave according
to von Mises yield criterion defined by a single material pa-
rameter, i.e. the yield limit σσσp

0 (p runs over the number of
phases). When specialized to this criterion and rewritten in
matrix notation, problem (Eq. 11-13) becomes:

s = min
ėu;Ė

1
V

r
2
3 ∑

p
σp

0

Z
Vp

p
ε̇εεT Xε̇εεdV subject to: (14)

ΣΣΣT Ė = 1; YT ε̇εε = 0 in V ; (15)

ε̇εε = F
�ėu�+ Ė in V ; ėu periodic on Γ (16)

Eq. (15b) represents the incompressibility condition as a
part of von Mises plasticity model. Eq. (16a) expresses
geometric compatibility, F being the relevant linear dif-
ferential operator. In Eq. 14-15 it has been set: YT ��

1 1 1 0 0 0
	

and X � diag
�
I; 1

2 I
�
, I being the

identity matrix of order 3.

Adopting now a conventional finite element discretization in
space, in each element (marked by subscript e) the nodal ve-

locities, gathered in vector ėUe, govern the modelled periodic
velocity field ėue and the relevant strain rate field ėεεεe, respec-
tively, through the relations:

ėue = Ne ėUe; ėεεεe = Be ėUe; (17)

where Ne denotes the shape function matrix and Be the con-
sequent compatibility matrix. Account taken of Eq. 3 and 17,
the radicand in Eq. 14 reads:

ε̇εεT Xε̇εε = ĖT XĖ+2ĖT XBe ėUe + ėUT

e Re ėUe; (18)

where Re � BT
e XBe.

Let all the element nodal velocity vectors ėUe be assembled

into the global periodic velocity vector ėU and, accordingly, the
matrices Be, Re into the global matrices B and R, respectively.

If now the periodicity condition is enforced and rigid-body

motions suppressed, a reduced vector ėU�

is generated from ėU
and, consequently, reduced matrices B� and R� arise from B
and R, respectively.

Account taken of the above provisions and adopting Gauss in-
tegration to numerically compute the integrals over the various
phases (run by index p), the objective function (Eq. 14) is ap-
proximated as follows:

∑
p
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p
ε̇εεXε̇εεdV �
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∑
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σp(r)
0 Wr jJjr
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ėU�

+ ėU�T
R�

r
ėU�

(19)

where: index r runs over the set G of all n Gauss integration
points (r = 1 : : :n) in the discretized RV; Wr and jJjr denote the
integration weights and the determinant of the Jacobian matrix
at Gauss point r, respectively.

Finally, expressing the incompressibility constraint (Eq. 15b)
in terms of nodal periodic velocities and using Eq. 19, the finite
element discrete formulation of problem (Eq. 14-16) becomes:

s�= min
ėU
�

;Ė

1
V

r
2
3

n

∑
r=1

σp(r)
0 Wr jJjr�q

ĖT XĖ+2ĖT XB�

r
ėU�

+ ėU�T
Rr ėU�

(20)

subject to:

ΣΣΣT Ė = 1; YT
�

B�

r
ėU�

+ Ė
�
= 0 r = 1 : : :n (21)

The equality-constrained, convex mathematical programming
problem ( Eq. 20-21) exhibits two peculiar features: (a) the ob-
jective function is “nonsmooth”, in the sense that it is not dif-
ferentiable for ε̇εε = 0; (b) the plastic incompressibility, Eq. 21b,
required by von Mises plasticity model in combination with
the finite element modelling of displacements, may give rise
to “locking phenomena”, i.e. to excessive kinematic limita-
tions on the set of possible (“admissible”) mechanisms, which
might lead to an unrealistic increase of the resulting collapse
multiplier s [Nagtegaal, Parks and Rice (1974)].
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Various remedies for the latter difficulty (b) have been pro-
posed and investigated in the literature. In particular, “mixed”
finite element modelling was recently shown to eliminate or at-
tenuate locking in limit analysis [Capsoni and Corradi (1997)].
As an alternative “antilocking” provision, already used e.g. in
[Liu, Cen and Xu (1995)] and [Zhang, Zhang and Lu (1993)],
a penalty procedure is adopted and implemented herein.

The former feature (a) would advocate recourse to concepts
and formulations of “nonsmooth mathematics”, see e.g. [Mis-
takidis and Stavroulakis (1998)], for an appropriate modern
theoretical framework. However, aiming at cost-effective nu-
merical solutions to practical engineering purposes, use is
made herein of the iterative algorithm which was proposed in
[Huh and Yang (1991)], [Zhang, Zhang and Lu (1993)] and
[Zhang and Lu (1995)] in order to circumvent the complica-
tion due to the circumstance (a).

The equality constraint (Eq. 21a) which expresses normaliza-
tion of the “external power” will be dealt with by the custom-
ary Lagrange multiplier method.

As a consequence of the above chosen options, the aug-
mented Lagrangian function associated to the (discrete, finite-
dimensional) constrained minimization problem (Eq. 20-21)
reads:

L
�ėU�

; Ė;λ
�
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+ ėU�T
R�

r
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Ė
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+ ėU�T
Z�

r
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�)
(22)

where: λ represents the unknown Lagrange multiplier; α the
penalization factor (a datum to be suitably chosen); it has been
set C � YYT , Z�

r � B�T
r CB�

r .

The Kuhn-Tucker conditions for the stationarity of function L
are expressed by the following set of nonlinear equations:
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The above noted nonsmoothness of the objective function in
Eq. 20 is reflected by the fact that the denominator Dr in
Eqn. 23-24 vanishes whenever the r-th Gauss point does not
exhibit plastic flow (i.e. “belongs to the rigid zone”). Provi-
sions to tackle this circumstance are the main objective and the
peculiar feature of the solution procedure that follows.

5 Iterative solution algorithm

To solve the system of nonlinear equations (Eq. 23-25), the
algorithm devised first by Huh and Yang (1991) and further
studied in [Zhang, Zhang and Lu (1993)], [Liu, Cen and Xu
(1995)], [Zhang and Lu (1995)], implies the solution of the
following set of linear equations:
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+CĖh
�
�λhΣΣΣ = 0 (28)

ΣΣΣT Ėh = 1 (29)

where ėU�h
, Ėh and λh are the unknowns at the current, say h,

iteration. On the basis of the results obtained at iteration h�1,
let the set of Gauss integration points G be subdivided into
a subset Ph�1(“plastic zone”) of the points where dissipation
occurs, and the complementary subset Rh�1 (“rigid zone ”) of
the points where the computed plastic strain rates are such that
the denominator Dh�1

r , in Eq. 23-24, is below a suitably cho-
sen tolerance β� 1. Following Zhang, Zhang and Lu (1993),
another available parameter γ� 1 is selected and the denomi-
nator in Eq. 27-28 is defined as:

Hh�1
r =

�
Dh�1

r 8r 2 Ph�1

γ� 1 8r 2 Rh�1 (30)

By virtue of this provision, the iterative procedure can pro-
ceed smoothly. Since Hh�1

r is now a datum derived from the
preceding iteration h� 1, linear Eq. 27-29 can be cast in the
following compact form:

Ah�1 ėU�h
+Mh�1T

Ėh
= 0 (31)

Mh�1 ėU�h
+Nh�1Ėh

= λhΣΣΣ (32)

ΣΣΣT Ė
h
= 1 (33)

The new symbols for the coefficient matrices in Eq. 31-33 have
the following meanings:
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Mh�1 � 1
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∑
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Wr jJjr C (36)

Let vectors V�h and Sh denote the solution of the linear sys-
tem consisting of Eq. 31 and 32 alone, with λh = 1. Then the
solution of the whole system (Eq. 31- 33) is readily seen to be:

ėU�h
= λhV�h; Ėh = λhSh; λh =

1
ΣΣΣT Sh

(37)

As a convenient initialization (at iteration h= 1) of the iterative
procedure centred on Eq. 27-29, the RV is assumed to be in a
fully plastic state by setting D0

r = 1, r = 1 : : :n.

At the end of each (h-th) iteration, a value sh of the limit mul-
tiplier of the assigned macroscopic stresses ΣΣΣ is computed as:

sh =
1
V

r
2
3

n

∑
r=1

σp(r)
0 Wr jJjr Dh

r (38)

The iteration sequence is stopped when either one of the fol-
lowing convergence criteria is satisfied:

��µh�1�µh
��

µh�1 � δ1;

������U̇h�1� U̇
h
������������U̇h�1

������ � δ2 (39)

where δ1, δ2 are suitably chosen tolerances and jj : : :jj denotes
Euclidean norm.

The penalty factor α (see Eq. 27-28), introduced to enforce
“softly” the constitutive requirement of plastic incompressibil-
ity, can either be suitably modified or take a fixed value during
the iterative process. To the authors’ knowledge, general cri-
teria for initializing and updating penalty factors do not exist,
despite a fairly extensive literature on penalty methods, see
e.g. [Fiacco and McCormick (1968)]. Some criteria have been
proposed (e.g. in [Bertsekas (1982)]) for particular classes of
problems and often they do not give satisfactory results when
applied to other contexts. The numerical simulations carried
out herein show that keeping the value of the penalty factor
fixed during the iterative procedure does not lead to results
worse than the ones obtained by updating the factor at each
iteration. Therefore, in the present implementations and appli-
cations of the kinematic approach the penalty factors do not
change during the iterative solution.

Numerical experiences, such those to be discussed in the next
Section, show that the above outlined iterative process, with
a suitable problem-dependent empirically based choice of the
available parameters, leads to a satisfactory approximation of
the limit load multiplier s and to a collapse mechanism U̇
through a fast convergent sequence of iterations with mono-
tonically decreasing sh.

(a) (b)

Figure 1 : (a) square, (b) hexagonal RV of perforated periodic
plates.

Figure 2 : Convergence of the macroscopic stress Σ2 (Σ1 = 0,
θ = 0o) to the limit value for a square RV with ch = 0:5

6 Comparative tests and applications

6.1 Perforated plates

Evenly perforated metal plates, with holes arranged accord-
ing to either square or hexagonal patterns, are employed in
several engineering systems (e.g. as tubesheet heat exchang-
ers in power plants). The potentialities of the direct kinematic
method to predict the macroscopic strength properties of this
class of period media are assessed below, by analyzing the unit
cells depicted in Fig. 1a and Fig. 1b, which describe, respec-
tively, square and hexagonal perforation patterns.

Numerical investigations are carried out for biaxial states of
macroscopic stresses, with a given ratio of the two nonvanish-
ing principal stresses Σ1 and Σ2 (Fig. 1a,b), at different angles
between the principal stress directions and the symmetry axes
of the cells.

The numerical investigations on the square RV with circu-
lar hole are performed assuming a mesh of 200 four-noded
isoparametric finite elements and 240 nodes with two d.o.f.s
each (Fig. 1a). The hexagonal RV with circular hole is dis-
cretized by 192 four-noded isoparametric finite elements and
240 nodes with two d.o.f.s each (Fig. 1b).

In the present analyses of both the square and the hexagonal
cell with circular hole, the desired numerical accuracy is satis-
fied setting δ1 and δ2 in Eq. 39 equal to 10�4.

The plate is interpreted as a plane-stress structure. Therefore
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(a)

(b)

Figure 3 : Square RV with circular hole. Limit macroscopic
stress domains for different hole volume fractions ch. Com-
parison between the present method (solid line) and Rogal-
ska, Kakol, Guerlement and Lamblin (1997) (dashed line). (a)
θ = 0o, (b) θ = 45o.

plastic incompressibility needs not be enforced explicitly and,
hence, the quantity γ (γ = β), see Eq. 30, is the only available
parameter involved in the present limit analysis problem: it is
set here equal to 10�10.

For illustration, the monotonic convergence of the macro-
scopic stress Σ to the limit value is depicted in Fig. 2 for a
square RV with hole volume fraction ch = 0:5, subjected to
uniaxial tension along x2.

The (macroscopic) strength of the homogenized medium
equivalent to the perforated plate under biaxial plane stress
conditions is to be determined for a given orientation θ of prin-
cipal average stress Σ2 with respect to axis x2. The strength
domain can be defined approximately point by point, by fol-
lowing radial paths in the plane (Σ1, Σ2) and computing the
limit load multiplier s according to the kinematic definition of
the macroscopic strength domain Shom (see Eq. 10).

Consider first a square perforation pattern. The present
method is tested by comparisons with the results achieved by a
method proposed in [Rogalska, Kakol, Guerlement and Lam-
blin (1997)] which is not based on the homogenization the-
ory for periodic media. In [Rogalska, Kakol, Guerlement and
Lamblin (1997)] the prediction of the macroscopic yield do-

(a)

(b)

Figure 4 : Hexagonal RV with circular hole. Limit yield do-
mains in macroscopic stresses for different hole volume frac-
tions ch. (a) θ = 15o, (b) θ = 30o.

main for a thin specimen with a square pattern of circular holes
was carried out by means of a commercial finite element code
and incremental (step-by-step) analyses. This approach is able
to predict only the yield domains for two orientations: θ = 0o

and θ= 45o by imposing customary (not periodicity)boundary
conditions in view of the symmetries for the above two partic-
ular orientations. Despite the difference in theoretical origins,
the two methods supply macroscopic strength domains that are
in good agreement over a wide range of hole volume fractions
for both the considered orientations θ (see Fig. 3a,b).

Consider now a disk with a hexagonal perforation pattern of
circular holes, i.e. a case not investigated in the literature, to
the authors’ knowledge.

In Fig. 4 the macroscopic strength domains of plates with hole
volume fraction varying from 0.226 to 0.58 have been deter-
mined for θ = 15o (Fig. 4a) and θ = 30o (Fig. 4b). The po-
tentialities of the proposed numerical method based on the ho-
mogenization theory for periodic media and on the kinematic
approach to limit analysis are highlighted whenever symme-
try simplifications are not allowed for the kinematic boundary
conditions on the RV.
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6.2 Fiber-reinforced composites

In view of their peculiar mechanical properties, unidirectional
fiber-reinforced composites (FRCs), especially metal-matrix
composites (MMC), are widely used by space and aeronauti-
cal industries [see e.g. Dvorak, Lagoudas, and Huang (1994)].
They are particularly suited to technological situations where
high stiffness, strength and ductility are required. Their im-
portance in the above mentioned and other fields confers prac-
tical interest to the cost-effective evaluation of the strength
domain for unidirectional fiber-reinforced composites. “Phe-
nomenological” semiempirical strength criteria for FRCs, such
as those proposed in [Tsai and Wu (1971)], can often be conve-
niently employed to analyze structural members made of com-
posites. However, when the macroscopic properties of FRCs
must to be predicted on the basis of the local properties of the
components, a micromechanical approach is needed.

The usage of homogenization for periodic media in the frame-
work of limit analysis has led to theoretical bounds on the
macroscopic strength domain of unidirectional FRCs in semi-
analytical form (see e.g. [Taliercio (1992)]).

In many cases these bounds are not sufficiently close to
each other and, therefore, numerical methods have to be em-
ployed to achieve reliable estimates of the material macro-
scopic strength. In this context the proposed kinematic method
is intended to predict the macroscopic yield domain Shom of the
homogeneous material “equivalent” to the periodic composites
considered herein.

The assumption that the fibers are distributed according to a
regular pattern reduces the prediction of macroscopic prop-
erties to the analysis of the RV, which is considerably easier
than taking into account randomness in the reinforcing array.
Square and hexagonal arrangements of fibers are often con-
sidered. A hexagonal pattern (Fig. 5a) was shown in [Brock-
enbrough, Suresh and Wienecke (1991)] to be especially suit-
able to predict the macroscopic properties of FRCs and, hence,
will be employed herein to assess the potentialities of the pro-
posed numerical method in computing the uniaxial strength of
the homogenized material. A square cell (Fig. 5b) will also be
adopted in some applications, mostly for comparisons with the
results of other authors. Metal-matrix two-phase composites
are considered, with both phases complying with von Mises
plasticity model σ f

0 and σm
0 denoting the yield stresses of the

fibers and of the matrix, respectively.

6.2.1 Transverse tensile tests

Consider first uniaxial states of macroscopic stresses in the
plane x1-x2 perpendicular to the fiber direction. Let θ denote
the angle between the macroscopic tension Σ and the symme-
try axis x2 of the RV (see Fig. 5). As pointed out in [Michel
and Suquet (1993)], in this case computations should be per-
formed under “generalized” plane-strain hypothesis, which is
therefore adopted here, in order to assess its accuracy by com-

(a) (b)

Figure 5 : (a) hexagonal and (b) square RV with circular fiber.

Figure 6 : Hexagonal RV with circular fiber: c f = 0:5,

σ f
0=σm

0 = 5, θ = 0o. Convergence of the macroscopic stress
to its limit value, for α = 106 and γ = 10�10.

parison with available results.

The hexagonal cell of Fig. 5a is subdivided into 432 four-node
isoparametric elements with 457 nodes.

In the generalized plane-strain formulation the present direct
iterative method requires to apriori choose the values of the
parameters α and γ (γ = β), see Sec. 4: the factor γ concerning
the rigid zone is assumed to be 10�10, the penalty factor a
enforcing the incompressibility condition is set equal to 106.
The tolerance parameters δ1, δ2 are chosen equal to 10�4. The
constitutive ratio σ f

0=σm
0 is taken equal to 5. For a FRC with

fiber volume fraction c f = 0:5, the convergence of the iterative
procedure in terms of macroscopic limit stress acting along x2

axis is visualized in Fig. 6.

The macroscopic transverse tensile strength predicted by the
present kinematic method is plotted in Fig. 7 versus the orien-
tation θ, for a cell with c f equal to 0.25 and 0.5. The results
obtained by the evolutive method proposed in [Michel and Su-
quet (1993)] are also drawn for comparison.

The two finite element analyses predict the same trend of the
limit macroscopic stress with the orientation angle θ. The
present approach leads to slightly higher values than the other
numerical one. The maximum difference between the results
compared is less than 2% and occurs at θ = 15o.
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Figure 7 : Hexagonal RV with circular fiber and with σ f
0=σm

0 =
5. Limit macroscopic stress vs angle θ. Comparison between
the present method (solid line), Michel and Suquet (1993)
(dashed line) and Taliercio’s (1992) upper bound (dotted line).

It is interesting to compare the present numerical results to
the bounds provided by the method presented in [Taliercio
(1992)], based on the application of the kinematic theorem
of limit analysis to homogenization theory for periodic me-
dia. According to that method, an upper bound on the “sup-
port function” [Tyrrel Rockafellar (1970)] of the macroscopic
strength domain of the composite, πhom is given by:

πhom �Ė�� 1
V

�Z
V

π
�

ε̇
�

dV +
Z

S
π (n; [[u̇]])dS

�
(40)

where the right-hand side can be mechanically interpreted as
the power dissipated in any failure mechanism for the cell con-
forming to the periodicity of the medium, with u̇, ε̇ and Ė ful-
filling Eq. 3 and 5. The second term is the power dissipated
along discontinuity surface S for the microscopic velocity field
power, n being locally the unit normal to S and [[u̇]] the jump
in velocity across S (see [Taliercio (1992)] for further details).

In the case of MMCs with periodic hexagonal reinforc-
ing array and matrix complying with the von Mises crite-
rion, if mechanisms characterized by slip planes with n =
e1 cos

�π
6 (1+2m)

�
+ e2 sin

�π
6 (1+2m)

�
(m = 0;1 : : : ), are

considered (see the case m = 1 in Fig. 8a), the upper bound
on the support function of Shom specializes to:

πhom
�
Ė
�� lσm

0

V
v (41)

where

Ė =

p
3l
�p

3 (e2
 e2� e1
 e1)+ e1
 e2 + e2
 e1

�
4V

v (42)

if m = 0;

Ė =

p
3l (e1
 e2 + e2
 e1)

2V
v if m = 1; etc. (43)

(a) (b)

Figure 8 : (a) Collapse mechanism for Taliercio’s (1992) up-
per bound; (b) contour plot of the equivalent strain rate field
at collapse for c f = 0:5 , σ f

0=σm
0 = 5 , θ = 150 by the present

method.

In Eq. 41-43, v denotes the modulus of the velocity jump [[u̇]]
(which is assumed to be parallel to the slip plane and orthogo-
nal to x3) and l is the length of each side of the RV cell.

When applied to the prediction of upper bounds on the trans-
verse tensile strength of the composite along any direction
eθ = e1 cosθ+ e2 sinθ, so that Σ = Σeθ
 eθ, the above results
give:

Σ�min

(
2σm

0p
3 sin2θ

;
4σm

0p
3
�p

3cos2θ+ sin2θ
�) (44)

with 0� θ� 60o according to the hexagonal periodicity of the
heterogeneous medium considered.

This theoretical bound is plotted in Fig. 7 together with the
present and other numerical predictions. A good agreement is
observed. In the case of the proposed numerical model, this
agreement can be explained by considering the failure mecha-
nisms associated to the collapse load factor computed for any
θ: the case θ = 15o is illustrated in Fig. 8b, where the equiva-
lent strain rate distribution at collapse is represented. The sim-
ple failure mechanism considered (Fig. 8a), estimating upper
bounds to the macroscopic transverse strength of the compos-
ite, qualitatively matches the “exact” mechanism detected by
more sophisticated numerical models.

The results of both finite element methods are slightly ex-
ceeded by the analytical upper bound for θ �= 0 and θ �= 30o.
It is worth noting that this agreement comes from the choice
made here for the fiber volume fraction: with higher percent-
ages of reinforcement, the theoretical upper bounds are no
longer meaningful [Taliercio (1992)] and resort to numerical
methods is practically compulsory.

6.2.2 Off-axis tensile tests

In order to predict the macroscopic off-axis tensile strength of
a FRC, the analysis of the representative volume must take into
account its three-dimensional deformation modes. By virtue of
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(a)

(b)

Figure 9 : (a) MMC with square reinforcing array, c f = 0:49,

σ f
0=σm

0 = 5 ; (b) macroscopic off-axis strength vs angle θ pre-
dicted by the present method (solid line) and Francescato and
Pastor (1997) (dashed line).

(a)

(b)

(c)

Figure 10 : (a) Hexagonal RV with circular fiber: c f = 0:65,

σ f
0=σm

0 = 8:7 ; (b) macroscopic off-axis strength vs angle
θ predicted by the present method (solid line) and Talier-
cio (1992) (dashed line); (c) convergence of the macroscopic
stress to its limit value (solid line) and evolution of the rigid
zones (dashed line) for α = 106 and γ = 10�10.

the assumed unlimited length of the fibers, all cross-sections
of the RV exhibit equal deformed shape, that is representa-
tive of such deformation modes: this means that the micro-
scopic strain rate field over the RV has to be such that (see also
[Francescato and Pastor (1997)]):

ėεi j = ėεi j(x1;x2) 8i j 6= 33; ėε33 = 0 (45)

By considering 3D velocity fields (Eq. 5) complying with the
above condition, numerical analyses were carried out on the
discretized cells shown in Fig. 5a and Fig. 5b subjected to uni-
axial tension in the plane (x1, x3). The penalty factor α, the
factor γ and the tolerance parameters δ1, δ2 have been given
the same values as in the preceding generalized plane strain
analysis (Sec. 6.2.1).

Two different MMCs were considered, for which numerical
and analytical results by other authors were available. The
first one is a composite analyzed in [Francescato and Pastor
(1997)], reinforced by fibers arranged according to a square
pattern with c f = 0:49, σ f

0=σm
0 = 5 (see Fig. 9a). The second

one is a MMC with hexagonal reinforcing array, c f = 0:65,

σ f
0=σm

0 = 8:7, (see Fig. 10a), the limit strength of which was

analytically predicted in [Taliercio (1992)].

In Fig. 9b, the macroscopic off-axis tensile strength provided
by the present approach for the first MMC is plotted ver-
sus the orientation θ of the applied stress Σ to the fiber axis
x3. The obtained results are compared to those obtained in
[Francescato and Pastor (1997)] by means of an algorithm
based on the piecewise linearization of the yield surface and
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(a)

(b)

Figure 11 : Hexagonal RV with circular fiber, c f = 0:65,

σ f
0=σm

0 = 8:7, θ = 75o : (a) deformed mesh and (b) contour
plot of the equivalent plastic strain rate corresponding to the
computed collapse multiplier.

linear programming (LP). The agreement between the results
is quite satisfactory. The computational cost inherent in the LP
method, on the basis of our experiences with LP approaches,
can be reasonably conjectured to be significantly reduced with
the present one.

The results of the analyses carried out on the second MMC are
summarized in Fig. 10. In Fig. 10b the off-axis strengths pre-
dicted by the present procedure and by the analytical model in
[Taliercio (1992)] based on homogenization and limit analysis
are plotted versus the orientation of the applied stress to the
fibers.

As shown in [Taliercio (1992)], an upper bound on the macro-
scopic uniaxial strength of the composite, computed according
to the same path of reasoning outlined in the preceding para-
graph, is given by

Σ�min

(
σm

0

"
1+ c f

 
σ f

0

σm
0
�1

!#
;

2σm
0p

3sin2θ
;

2σm
0

sinθ
q

3(1� sin2 θ=4)

9=; (46)

These bounds were computed using failure mechanisms for

the cell characterized by uniform strain rate (first bound), or
by slip planes of the type already shown in Fig. 8a, but with
an out-of-plane component of the relative velocity between the
rigid blocks (second and third bound). The agreement between
numerical and analytical results is excellent and suggests the
possibility of obtaining reliable results by the present approach
also in those situations where the analytical methods is bound
to fail (namely, if c f is high and prevents the development of
slip planes cutting only the matrix).

Fig. 10c shows that the collapse multiplier rapidly converges
to its final value, and reaches an asymptote when the plastic
zones localize, as shown by the sudden increase in the number
of “rigid” Gauss points, apparent in the same figure.

The numerically computed “failure mechanism” is shown in
Fig. 11 for the orientations θ = 75o of the uniaxial macro-
scopic stress Σ to the fibers. This figure shows both the de-
formed mesh (Fig. 11a) and the contour plots of the equivalent
plastic strain rate (Fig. 11b) corresponding to the computed
collapse multiplier. The fiber is apparently not involved in the
mechanism, according to its high yield stress, and the plastic
zones are localized around shear bands that agree with the slip
planes considered in [Taliercio (1992)] in order to compute an
analytical upper bound on the macroscopic yield stress.

7 Conclusions

A finite element numerical procedure has been developed and
numerically tested apt to predict, by a direct (nonevolutive)
kinematic approach, the strength (i.e. the average stresses car-
rying capacity) and the limit behavior at plastic collapse, of
perfectly-plastic periodic heterogeneous media, such as perfo-
rated plates and metal-matrix composites. Essential features
of the procedure investigated herein are as follows.

1. The yield domain is sought in the space of the macro-
scopic (average) stresses, on the basis of the kinematic
theorem of classical limit analysis for von Mises material
models.

2. Reference is made to a single unit cell as “representative
volume”, in the framework of homogenization theory, i.e.
by imposing periodicity on its boundary and confining to
it the finite element discretization.

3. The plastic incompressibility requirement is softly en-
forced by suitable penalization, thus avoiding “locking”
manifestations.

4. The numerical solution algorithm transforms the non-
linear, non-smooth mathematical optimization problem
leading to the “safety factor” into a sequence of linear
problems. Convergence of the iterative algorithm has
been numerically investigated as for the choice of avail-
able parameters (in primis of the penalty factor), and fa-
vorably assessed with reference to specific cases.
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5. The accuracy of the present kinematic limit analysis tech-
nique has been verified through comparisons with results
available in the literature concerning the analysis of peri-
odically heterogeneous elastoplastic media up to failure.
The “direct” method in point turns out to be definitely
superior in terms of computational cost with respect to
evolutive analyses. It is not subjected to the restrictions
inherent to existing semi-analytical methods [Taliercio
(1992)], since it is applicable to media with any hetero-
geneity volume fraction.

6. In particular, as for the crucial choice of the penalty fac-
tor for the enforcement of the incompressibility condi-
tion, in the absence of “a priori” criteria for a given set
of problem data, a fairly wide range of values leading
to convergence on the actual safety factor s have been
determined by means of numerical experiences. The re-
sults were confirmed by comparisons with those achieved
by other methods. The ranges of suitable penalty factors
found herein can reasonably be employed in applications
to heterogeneous media basically similar to the ones con-
sidered here (but a diverse type of applications might call
for a different choice of these values).

Work in progress concerns the extension of the present method
to the shakedown analysis of ductile composites subjected to
variable-repeated thermomechanical loads, in order to com-
pute domains of adaptation of the unit cell in the space of the
macroscopic stresses [Carvelli, Maier and Taliercio (1999)].
Future extensions of this study will concern the prediction of
the macroscopic strength of periodically reinforced materials
with weakening interfaces, which are a possible source of non-
associativity in the homogenized behavior.
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pour la détermination du critère de résistance macroscopique
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