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Abstract:

In this paper we are dealing with the approximation of the
grad-div operator in nonconvex polygonal domains. A penal-
ization strategy is considered in order to obtain a formulation
of the original eigenproblem which is associated with an el-
liptic operator. However the presence of singular eigensolu-
tions, in the case of nonconvex domains, is the origin of major
troubles in the numerical approximation of the problem. A
mixed-type approximation, based on a projection procedure,
is introduced and analyzed from the theoretical and numerical
point of view. Several numerical experiments confirm that in
presence of singularities the projection is needed in order to
reproduce the features of the continuous problem.

1 Introduction

Let Ω be an open polygon, denote by n the outward normal
versor to its boundary ∂Ω. Let us consider the following eigen-
problem:

8<
:

�graddivu = ω2u in Ω
rotu = 0 in Ω
u �n = 0 on ∂Ω:

(1)

The problem above describes the vibration frequencies of a
fluid in a cavity, hence it can be considered as the simplest
problem in fluid-structure interaction, see e.g., Morand and
Ohayon (1992).

Using standard orthogonalities in R2 between the operators
grad and curl, equation (1) can be related to a vibration prob-
lem arising in electromagnetic applications, see Boffi, Fernan-
des, Gastaldi, and Perugia (1996, 1999); Bermúdez and Pe-
dreira (1992); Kikuchi (1987).

In the literature two ways are frequently used to treat numeri-
cally the constraint in problem (1). Firstly, one can observe
that the constraint rotu = 0 follows automatically from the
equation �graddivu = ω2u and the condition ω 6= 0. Hence
one can drop the irrotationality constraint and add a zero fre-
quency corresponding to the infinite dimensional null space
of the operator graddiv. Numerical methods based on this
idea have been analyzed, for instance, in Kikuchi (1987);
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Bermúdez and Pedreira (1992); Webb (1993); Bossavit (1990)
for the Maxwell’s problem and in Bermúdez, Durán, Muschi-
etti, Rodrı́guez, and Solomin (1995); Chen and Taylor (1990)
for the fluid-structure example. In Boffi, Fernandes, Gastaldi,
and Perugia (1999) a general analysis is presented, in or-
der to predict the performance of a finite element scheme.
This result is based on the approximation of an equivalent
mixed formulation. In particular it is proved that the so-called
“edge elements” (see Nédélec (1982)) work well. The same
analysis shows that the so-called Raviart–Thomas elements
(see Raviart and Thomas (1977)) are well-suited for prob-
lem (1) (see also Bermúdez, Durán, Muschietti, Rodrı́guez,
and Solomin (1995)).

The other approach consists in a penalization strategy (see, for
example, Kikuchi (1987); Bathe, Nitikitpaiboon, and Wang
(1995); Wang and Bathe (1997b); Gastaldi (1996)), which we
are going to consider in the present paper.

We shall use the following notation: if v = (v1;v2) is a vector
field then rotv = ∂v2

∂x �
∂v1
∂y and if ϕ is a scalar field curlϕ =

( ∂ϕ
∂y ;�

∂ϕ
∂x ).

Let α be a positive real number, then the penalized formulation
of problem (1) reads:

find ω 2R such that there exists u 6= 0:8<
:

�graddivu+αcurl rotu = ω2u in Ω
u �n = 0 on ∂Ω
rotu = 0 on ∂Ω:

(2)

This problem is now associated with an elliptic operator, so
that one might think that any trouble has gone away. However,
this problem hides several insidious aspects as we shall see
below. In particular, in the case of nonconvex domains some
eigenfunctions could be singular (see Costabel and Dauge
(1997)), so that one must be very careful with the choice of
the correct variational formulation of (2). Consequently, the
numerical scheme must be suitably constructed in order to cor-
rectly approximate the possible singular functions.

In this paper we consider the finite element scheme proposed
in Bathe, Nitikitpaiboon, and Wang (1995); Wang and Bathe
(1997b). The basic idea of that method consists in using a
mixed three-fields formulation to impose the constraints in a
weaker form. The method can actually be interpreted as a pro-
jection procedure of the bilinear form. We shall show that this
method provides good approximation of problem (2) and give
some indication about the analysis of the convergence.
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The outline of the paper is as follows. In Section 2 we in-
troduce the problem, with particular emphasis on the singular
behavior of the solution close to a reentrant corner. In Sec-
tion 3 we describe the scheme and show that it is equivalent
to a mixed approximation. The last section is devoted to sev-
eral numerical experiments confirming the theoretical results
presented before.

2 Setting of the problem

We shall use the following Hilbert spaces with their natural
norms:

L2(Ω) = fu : Ω !R :
R

Ω u2 < ∞g
L2

0(Ω) = fu 2 L2(Ω) :
R

Ω u = 0g
H1(Ω) = fu 2 L2(Ω) : grad u 2 L2(Ω)2g

H1
0 (Ω) = fu 2H1(Ω) : u = 0 on ∂Ωg

H(div; Ω) = fu2 L2(Ω)2 : divu 2 L2(Ω)g
H0(div; Ω) = fu 2 H(div; Ω) : u �n = 0 on ∂Ωg
H(rot; Ω) = fu2 L2(Ω)2 : rotu 2 L2(Ω)g
H(rot0; Ω) = fu 2 L2(Ω)2 : rotu = 0 in Ωg

(3)

finally, (�; �) denotes the scalar product in L2(Ω).

A penalized variational formulation of (1) is:

find ω 2R such that there exists
u 2 H0(div; Ω)\H(rot; Ω) with u 6= 0 :
(divu;divv)+α(rotu; rotv) = ω2(u;v)

8v 2 H0(div; Ω)\H(rot; Ω):

(4)

The following characterization of the eigensolutions of prob-
lem (4) will be helpful for the interpretation of the numerical
results in the last section, (see Costabel and Dauge (1999) for
the details of the proof).

Proposition 1 Let (ω;u) be an eigensolution of (4), then it
belongs to one of the two following disjoint families:

i) (κN;grad p) with (κN; p) eigensolutions of the following
Neumann eigenproblem for the Laplace operator:

�∆p = κN p in Ω
∂p
∂n

= 0 on ∂Ω
R

Ω p = 0;

(5)

ii) (ακD;curlλ) with (κD;λ) eigensolutions of the following
Dirichlet problem

�∆λ = κDλ in Ω
λ = 0 on ∂Ω:

(6)

We notice that the eigensolutions of problems (5) and (6) are
related to the eigensolutions of the original problem (4) as fol-
lows:

κN = ω2
; p = divu; u =�

1
ω2 grad p

κD =
ω2

α
; λ = rotu; u =

α
ω2 curlλ:

(7)

The first family corresponds to those eigensolutions with
rotu = 0 while the second one to those with divu = 0. There-
fore, we have that divu and rotu cannot be both different from
zero. Moreover if α is sufficiently big the first eigenvalues
of (4), ordered as an increasing sequence, correspond to those
of problem (5) and satisfy rotu = 0. The frequencies corre-
sponding to the eigensolutions u with divu = 0 are shifted
accordingly to the rule ω2 = ακD. Suppose now to have an
estimate of the smallest eigenvalue κ1

D of (6). Then if one is
interested in the eigenvalues ω2 of (1) verifying ω2 < M, for a
given M, it is sufficient to choose α so that ακ1

D >M and all the
eigenvalues of (4) with ω2 < M are exactly the required eigen-
values of (1). To conclude this remark we point out that in this
sense, one can consider the penalization introduced in (4) as
an “exact penalization”. And in particular we do not need α to
be so large if we are interested only in few eigensolutions.

In Costabel and Dauge (1997) the regularity of divu and of
rotu has also been considered. Adapting the proof to the
present two-dimensional problem, one gets

Proposition 2 Let u 2H0(div; Ω)\H(rot; Ω) be an eigenfun-
tion of problem (4) then

divu 2 H1(Ω) and rotu 2 H1
0 (Ω): (8)

It is well-known that if Ω is convex the space H0(div; Ω)\
H(rot; Ω) is equal to H1(Ω)2 \H0(div; Ω). Thus an equiva-
lent variational formulation making use of the space H1(Ω)2\
H0(div; Ω) can be introduced:

find ω 2R such that there exists
u2 H1(Ω)2\H0(div; Ω) with u 6= 0 :
(divu;divv)+α(rotu; rotv) = ω2(u;v)

8v 2H1(Ω)2\H0(div; Ω):

(9)

This equivalence fails if Ω is a nonconvex polygon, as it has
been shown in Costabel and Dauge (1997). It is well-known
that (4) admits ”singular” eigenfunctions which are not in
H1(Ω). Hence they do not satisfy problem (9); conversely not
all of the H1-solutions of (9) solve (4) and the original problem
(2). Moreover the eigensolutions of (9) do not split anymore
into the two disjoint families described before in Prop. 1. They
depend analytically on α and the following characterization
holds true (see Costabel and Dauge (1999)).

Proposition 3 Let Ω be a nonconvex polygon. The eigenvec-
tors of (9) which do not depend on α are the eigenvectors
of (4) which belong to H1(Ω).

Moreover, the eigensolutions tend to those of a Stokes-like
problem, as α goes to infinity.

To end up the section, we observe also that the eigenfunctions
of (9) do not have regular divergence and rotational, as we
shall show in the numerical results reported in Section 4.
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3 The finite element approximation

The results presented at the end of the previous section
have important consequences for the numerical approxima-
tion of (4). Let Σh be a finite dimensional subspace of
H0(div; Ω)\H(rot; Ω), then we consider the following prob-
lem:

find ωh 2R such that there exists uh 2 Σh with uh 6= 0:
(divuh;divvh)+α(rotuh; rotvh) = ω2

h(uh;vh)
8vh 2 Σh:

(10)

Indeed, if the spaces Σh, for h > 0, are made of continuous
vector functions it follows that the closure of[h>0Σh is strictly
contained in H1(Ω)2. This means that if u is an eigenfunction
of (4) which does not belong to H1(Ω)2 then it cannot be the
limit as h tends to 0 of any sequence fvhgh>0 with vh 2 Σh.
Therefore the corresponding eigenvalue will not be correctly
approximated.

On the other hand, we observe that it is not possible to con-
struct a piecewise polynomial function w which is contained
in H0(div; Ω)\H(rot; Ω) but not in H1(Ω)2. Indeed, if w be-
longs to H0(div; Ω)\H(rot; Ω), then both divw and rotw are
in L2(Ω). This implies that both the normal and the tangen-
tial components are continuous across the interelement bound-
aries, so that w is in H1(Ω)2.

Remark 1 Let Ω be an L-shaped domain; consider a triangu-
lar mesh and define Σh as the space of continuous piecewise
linear vector fields. Then the solutions to (10) do not approx-
imate those of (4). Indeed, since in this case Ω is clearly non-
convex, H1(Ω)2 \H0(div; Ω) is a closed proper subspace of
H0(div; Ω)\H(rot; Ω) i.e., if uh 2 Σh and

lim
h!0

(jjuh�ujj0+ jjdiv(uh�u)jj0+ jj rot(uh�u)jj0) = 0 (11)

then

u 2 H1(Ω)2\H0(div; Ω): (12)

The eigenfuction corresponding to the first eigenvalue belongs
to H0(div; Ω)\H(rot; Ω)nH1(Ω)2 \H0(div; Ω) and, accord-
ing to the above discussion, it cannot be approximated in the
energy norm by a sequence of discrete elements in Σh. The
computed eigenfunction is presented in Fig. 1. It is appar-
ent that the singularity at the reentrant corner is completely
missed.

To avoid the inconveniences presented above, one can modify
the discretization of (4) by a reduced integration procedure.
With the introduction of L2(Ω)-projection operators P1 and
P2 into suitable finite element subspaces W 1

h and W2
h of L2

0(Ω)
and L2(Ω) respectively, the new discrete formulation reads as

Figure 1 : Singular eigenfunction computed wrongly by
piecewise linears.

follows

find ωh 2R such that there exists uh 2 Σh, with uh 6= 0:
(P1 divuh;P1 divvh)+α(P2 rotuh;P2 rotvh)

= ω2
h(uh;vh) 8vh 2 Σh:

(13)

We observe that this numerical scheme can be interpreted as
a finite element approximation of the so called three-fields
formulation introduced in Bathe, Nitikitpaiboon, and Wang
(1995); Wang and Bathe (1997b) and analyzed also in Gastaldi
(1996).

We introduce suitable bilinear forms, one of them depending
on the penalization parameter α

aα(�; �) : (L2
0(Ω)�L2(Ω))2 !R

aα((p;λ); (q;µ))= (p;q)+ 1
α (λ;µ);

(14)

b(�; �) : H0(div; Ω)\H(rot; Ω)� (L2
0(Ω)�L2(Ω))!R

b(v; (q;µ))= (divv;q)+(rotv;µ):
(15)

Consider the following problem:

find κh 2R such that there exists a nonzero triplet
(ph;λh;wh) 2W1

h �W 2
h �Σh :

aα((ph;λh); (qh;µh))+b(wh; (qh;µh)) = 0
8(qh;µh) 2W1

h �W2
h

b(vh; (ph;λh)) = �κ2
h(wh;vh) 8vh 2 Σh:

(16)
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Proposition 4 If (ωh;uh)2R�Σh is an eigensolution of (13),
then there exists (ph;λh) 2W 1

h �W 2
h such that (κh; ph;λh;wh)

is an eigensolution of (16) with κh = ωh and wh = uh. Con-
versely, for any solution (κh; ph;λh;wh) of (16) we have that
ωh = κh and uh = wh solve (13).

Proof. Let (ωh;uh) 2R�Σh be an eigensolution of (13), then
let us define ph =�P1 divuh 2W 1

h and λh =�αP2 rotuh 2W 2
h

and substitute in (13). Then the second equation in (16) holds
true with wh = uh and κh = ωh. By definition of the bilinear
forms aα and b (see (14) and (15)) and of the projection oper-
ators P1 and P2, also the first equation easily follows.

Conversely, the first equation in (16) implies that
ph = �P1 divwh and λh = �αP2 rotwh and substituting
these equalities in the second equations, gives that uh = wh
and ωh = κh satisfy (13).

Remark 2 By virtue of the previous proposition, in the rest of
the paper we shall denote by uh both the solution of (13) and
the last component of the solution of (16). Analogously, ωh

will be the corresponding eigenvalue.

Following Bathe, Nitikitpaiboon, and Wang (1995); Wang and
Bathe (1997b); Gastaldi (1996), given a quadrilateral decom-
position of Ω, a possible choice for the discrete spaces is:

Σ1
h = fv 2 H(div; Ω)\H(rot; Ω) : v is a continuous

piecewise biquadratic vector field with
appropriate b.c.g;

W1
h = fqh 2 L2

0(Ω) : qh is piecewise linearg;
W2

h = fµh 2 L2(Ω) : µh is piecewise linearg:

(17)

The boundary conditions on an element v of Σ1
h are prescribed

as follows. If at a node the outward normal versor n can be
defined (that is if the node lies on the interior part of a side of
Ω) then v � n = 0. At the nodes lying at the corners of Ω we
distinguish two possible situations. If the corner is the vertex
of a convex angle of Ω then v = (0;0); otherwise we prescribe
v �n= 0 where n is a suitably defined linear combination of the
two normal vectors corresponding to the sides of the corner,
according to the suggestion of Wang and Bathe (1997a). In
the case of the L-shaped domain there is only one reentrant
corner and we take n along the bisecting line of the corner.

We observe that, with the choice (17), ωh = 0 may be a spuri-
ous solution of (13) and (16), corresponding to those uh, such
that (divuh;qh)+(rot uh;µh) = 0 for all qh 2W1

h and µh 2W2
h .

Let us denote by Kh this discrete nullspace. On the other hand,
let (ωh;uh) be an eigensolution of (13) with ωh 6= 0 and let us
take vh 2 Kh. Then (13) implies (uh;vh) = 0. Let us define the
space Σ2

h obtained by projecting Σ1
h onto the orthogonal space

of Kh in Σh and consider problem (13) with Σh = Σ2
h. It follows

that the resulting eigenvalues are strictly positive and coincides
with the nonzero ones obtained with Σh = Σ1

h.

Let us introduce the continuous eigenproblem corresponding
to (16),

find ω 2R such that there exists a nonzero triplet
(p;λ;u) 2 L2

0(Ω)�L2(Ω)�H0(div; Ω)\H(rot; Ω):

aα((p;λ); (q;µ))+b(u; (q;µ)) = 0
8(q;µ)2 L2

0(Ω)�L2(Ω)
b(v; (p;λ))= �ω2(u;v)8v 2 H0(div; Ω)\H(rot; Ω):

(18)

We notice that the unknown p has a physical meaning and rep-
resents the pressure of the fluid.

It is not difficult to check that (18) is equivalent to the penal-
ized problem (4).

If we consider the source problem associated with (16), it
is well-known that the stability property is a consequence of
the ellipticity and inf-sup condition we are going to state (see
Brezzi and Fortin (1991)). The convergence follows then usu-
ally from the stability and the approximation properties of the
finite element spaces.

It turns out (from a numerical estimate) that the standard inf-
sup condition is not satisfied in the case of a nonconvex do-
main. This means that not only the (continuous) finite el-
ements are not able to capture the singularities as discussed
above, but also the numerical method is not stable in the en-
ergy norm. If we replace the energy norm with the (natural)
mesh dependent norm coming out from the introduction of the
projections P1 and P2, then the numerical inf-sup constant is
bounded below away from zero.

This is not yet a proof of convergence for the eigenvalue prob-
lem (16) (in particular it has been shown that in order to prove
the convergence of the eigenmodes we need other additional
properties, see Boffi, Brezzi, and Gastaldi (1997b,a)), but sug-
gests a possible direction for further analysis.

3.1 The ellipticity in the kernel property

aα((ph;λh); (ph;λh))�Cjj(ph;λh)jj
2
0

8(ph;λh) 2W 1
h �W 2

h :
(19)

The previous result is an immediate consequence of the defi-
nition of the bilinear form aα(�; �). The constant C, which de-
pends on α but is independent of h, is the same constant which
appear in the analysis of the continuous problem (18).

3.2 Inf-sup condition

There exists a positive constant β independent of h such that

inf
uh2Σ2

h

sup
(qh;µh)2W 1

h �W 2
h

b(uh; (qh;µh))

jjuhjjhjj(qh;µh)jj0
� β > 0: (20)

In (20) the mesh-dependent norm jj � jjh is defined as follows:

jjujj2h = jjujj20+ jjP1 divujj20 + jjP2 rotujj20: (21)
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Figure 2 : Inf-sup constant with the discrete norm: square
domain (top), L-shaped domain (bottom).

We do not have a complete proof of (20), however numerical
results show that it is valid for both convex and nonconvex do-
mains. In Fig. 2 the inf-sup constant β for different values of
h has been plotted relatively to a square and an L-shaped do-
main. The graphs run from left to right, so we can see that
in the case of reentrant corner the inf-sup constant is even in-
creasing as h goes to zero. In Fig. 3 we consider the standard
inf-sup constant where the discrete norm jj � jjh is replaced by
the energy norm in H0(div; Ω)\H(rot; Ω). We see that when
the domain is convex nothing changes, while in the case of
reentrant corner the inf-sup constant tends to zero.

4 Numerical results

As previously observed, when Ω is a nonconvex polygon,
problem (2) could admit eigensolutions with singularities.
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Figure 3 : Inf-sup constant with the continuous norm: square
domain (top), L-shaped domain (bottom).

These solutions are well represented if the variational formula-
tion (4) is considered, but they do not solve problem (9). From
the point of view of the approximation this behavior causes
some problems. The displacement-type approximation (10) of
problem (4) corresponds to an exact integration scheme and it
is a conforming approximation of problem (9); the solutions
of (10) cannot approximate the singular eigenfuctions, as they
approximate the H1-solutions of problem (9). To overcome
these problems it has been introduced the new discrete formu-
lation (13), based on a reduced integration procedure. In order
to compare the numerical solutions of the discrete problems
(10) and (13) respectively, we present in this section some
numerical experiments. We consider two test problems with
convex and nonconvex domain, respectively and we study the
dependence of the eigenvalues on the penalization parameter
α. From Proposition 1, the eigenvalues of problem (4) split
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Figure 4 : Displacement-type approximation for square do-
main.

into two families: the first one independent of α, the second
one linearly dependent on α. This splitting disappears when
the H1 variational formulation (9) in a nonconvex domain is
considered.

The numerical experiments show that the same behavior ap-
pears when the approximate problems (10) and (13) are con-
sidered in the case of convex domain, while for domains with
reentrant corners the two formulations give completely differ-
ent results.

As a first example we consider the domain Ω = ]0;π[�]0;π[.
In this case the eigenvalues of problem (1) can be exactly eval-
uated: 0 6= ω2 = n2+m2, with n;m = 0;1; :::. Let us subdivide
the square Ω into N2 squares of side h = π

N . In Fig. 4 we report
the eigenvalues less than or equal to 25 when the penalty pa-
rameter varies from 1 to 5; they are obtained with the approx-
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Figure 5 : Reduced integration approximation for square do-
main.

imation scheme (10) for two different meshes (N=8, 12). The
two expected families of eigenvalues appear. In order to help
the reader we report on the y-axis the exact eigenvalues both of
the Neumann problem (marked with a circle) and the Dirichlet
one (marked with a star). The dotted lines join the eigenvalues
of the first family. They lie on horizontal lines and coincide
with the eigenvalues of the Neumann problem for the Laplace
operator. The continuous lines join the eigenvalues of the sec-
ond family; they depend linearly on α and are multiple of the
eigenvalues of the Dirichlet problem for the Laplace operator
according to the relation (7). We observe that for α = 0 the
well known phenomenon of spurious modes occurs. That is
a number of positive discrete eigenvalues approximates badly
the zero frequency and appears among the physically correct
ones.
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Figure 6 : Reduced integration scheme for L-shaped domain.
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Figure 7 : Reduced integration scheme: 1st eigenfunction α=1

The eigenvalues obtained with the approximation scheme (13)
are reported in Fig. 5. The same conclusions as for the previ-
ous scheme can be made. The only difference is for α = 0
since in this case no spurious modes occur. They appear all
with zero frequency.

In the second example the domain is nonconvex and L-shaped:
Ω = Ω0nΩ1, where Ω0 is the square with side π, like before,
and Ω1 is the square ]0; π

2 [�]0; π
2 [. Let us subdivide the domain

Ω into 3
4 N2 squares of side h = π

N , with N even.

In the first test we consider the approximation scheme (13)
and as for the convex domain, we evaluate the eigenvalues less
than or equal to 25 for α ranging from 1 to 5. The eigenvalues
obtained with this scheme, for N=8 and 16, are reported in
Fig. 6.

We observe that as in the case of the convex domain the eigen-
values split into two disjoint families. Moreover the singular
eigenfunctions are well approximated. We consider the two

first eigenvalues: the first one is related to an eigenfunction
with a singularity at the corner, while the second one is re-
lated to a regular eigenfunction. We evaluate the eigenfunc-
tions, their divergences and their rotationals: the divergences
represent the pressures of the fluid and the rotationals give a
control on the irrotationality constraint. We consider a refined
mesh (N=16) and two different values of the penalty parameter
(α = 1 and α = 100). In Fig. 7 we report the first eigenfunc-
tion with its pressure and rotational for α = 1. In Fig. 8 the
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Figure 8 : Reduced integration scheme: 2nd eigenfunction
α=1
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Figure 9 : Reduced integration scheme: 1st eigenfunction
α=100

same quantities for the second eigenfunction in the case α = 1
are reported.

As expected the first computed eigenfunction tends to a singu-
lar eigenfunction, the second one is regular.

In Fig. 9 and 10 we report the same quantities for α = 100.
The pressures of both eigenfunctions are regular at the corner
according to the H1-regularity property (see Prop. 2) of the di-
vergence of the solutions of problem (4). The rotationals tend

to zero, and seem to be H1-regular according to the theoretical
results. Moreover no differences appear in the eigenfunctions
when the two different values of the penalty parameter are con-
sidered.

In the second test we consider the approximate scheme (10).
In Fig. 11 we report the eigenvalues less than or equal to 10
for α varying from 1 to 20, for N=8,16.
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Figure 10 : Reduced integration scheme: 2nd eigenfunction
α=100

0 2 4 6 8 10 12 14 16 18 20 220

1

2

3

4

5

6

7

8

9

10

11

penalty parameter

ei
ge

nv
al

ue
s

L−−shaped domain −− N=8 −−  exact integration 

0 2 4 6 8 10 12 14 16 18 20 220

1

2

3

4

5

6

7

8

9

10

11

penalty parameter

ei
ge

nv
al

ue
s

L−−shaped domain −− N=16 −−  exact integration 

Figure 11 : Displacement-type approximation for L-shaped
domain.

Now three sets of eigenvalues appear: the eigenvalues joined
with dotted lines, which coincide with the eigenvalues of the
Neumann problem; the eigenvalues joined with continuous
lines, which are multiples of the eigenvalues of Dirichlet prob-
lem and the eigenvalues joined with curved lines. These eigen-
values correspond to the H1- eigensolutions of (9), which re-
place the singular solutions of problem (4). For small val-
ues of the penalty parameter the eigenvalues are ordered in the

same way as those of problem (13). For example the first
eigenvalue passes the second one for α � 5 and tends to a fi-
nite value when α increases. In Fig. 12 and 13 we report the
first and the second eigenfunction, respectively, for α = 1. In
Fig. 14 and 15 we report the same quantities for α = 100.
When the formulation (9) is used, we do not have the regular-
ity result stated in Prop. 2. According to that, the pressures
computed with the scheme (10) seem to be less regular than
those obtained with the projection procedure (13). Moreover
the first eigensolution for α = 1 becomes the second one for
α = 100. It tends to a regular function with zero value at the
corner. In Fig. 16 we report the value of the first eigenfunction
at the corner respect to the mesh size N , for different values of
the penalty parameter both for the reduced and exact integra-
tion scheme. In the latter case the eigenfunction (as well as the
corresponding eigenvalue) is changing as the penalty parame-
ter increases and tends to zero at the corner.
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Figure 12 : Displacement-type approximation: 1st eigenfunc-
tion α=1
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Figure 13 : Displacement-type approximation: 2nd eigen-
function α=1

On the other hand in the former case the eigensolution is in-
dependent of the penalty parameter and depends only on the
mesh refinement: when N increases its value at the corner gets
bigger and the discrete eigenfunction approximates the singu-
lar solution.

Finally we evaluate the error E between the first three eigen-
values of the Neumann problem (5) and the corresponding

eigenvalues computed with the reduced integration procedure.
In Fig.17 we plot, in loglog scale, the results obtained for
α = 100 and for different meshes (N=4,8,16). The slope of
the lines allows an estimate of the order of convergence. As
expected the first eigenvalue converges slower than the other
two eigenvalues, since it corresponds to a singular eigenfunc-
tion.
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Figure 14 : Displacement-type approximation: 1st eigenfunc-
tion α=100
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Figure 15 : Displacement-type approximation: 2nd eigen-
function α=100
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volume RMA23 of Récherches en mathematiques appliquées.
Masson, Paris.
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