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Abstract: The method of Absorbing Boundary Conditions
(ABCs) is considered for the numerical solution of a class
of nonlinear exterior wave scattering problems. Recently, a
scheme based on the exact nonlocal Dirichlet-to-Neumann
(DtN) ABC has been proposed for such problems. Although
this method is very accurate, it is also highly expensive com-
putationally. In this paper, the nonlocal ABC is replaced by a
low-order local ABC, which is obtained by localizing the DtN
condition in a certain “optimal” way. The performance of the
new local scheme is compared to that of the nonlocal scheme
via numerical experiments in two dimensions.

keyword: Exterior problems, Absorbing boundary condi-
tion, Unbounded domain, Dirichlet-to-Neumann (DtN), Finite
elements.

1 Introduction

One class of numerical methods to solve exterior wave scat-
tering or radiation problems is based on Absorbing (or Artifi-
cial) Boundary Conditions (ABCs). In this method, an artifi-
cial boundary B is introduced around the scatterer, a special
boundary condition is imposed on B, and the problem is then
solved numerically in the finite domain Ω bounded by B and
the scatterer’s surface Γ. The method of ABCs is commonly
used for the solution of problems in unbounded domains, side
by side with other methods such as Boundary Elements, In-
finite Elements and Absorbing Layers. For a review on the
subject, see Givoli (1991)–Tsynkov (1998).

The setup for the method of ABCs is illustrated in Fig. 1. The
artificial boundary B is chosen to be a circle (in two dimen-
sions) or a sphere (in three dimensions), although some ABC
schemes are able to accommodate artificial boundaries of more
general shapes. The domain exterior to B, which is eliminated
in this method, is denoted D. The problem in Ω is usually
solved by the finite element method.

Linear exterior wave problems have been dealt with quite a
lot using the method of ABCs. On the other hand, a similar
treatment of nonlinear wave problems is much more problem-
atic, since most ABCs were not directly designed to account
for nonlinearities in the exterior domain. As an important ex-
ample, the family of Bayliss-Turkel ABCs (Bayliss and Turkel

1 Hummingbird Communications, Toronto, Canada
2 Department of Aerospace Engineering,Technion, Israel

B

Ω

D

R

Γ

Figure 1 : Setup for the method of ABCs.

(1980)) is based on an exact solution of the governing equa-
tions in the far field, and such an exact solution is non-available
with nonlinearities which extend to infinity. The method of
ABCs was applied to nonlinear flow problems in Ferm and
Gustafsson (1982)–Verhoff and Stookesberry (1992) for the
solution of the Euler flow equations in an infinite domain, and
in Hagstrom (1991)–Danowitz, Abarbanel and Turkel (1995)
for the Navier-Stokes equations.

Recently (Givoli and Patlashenko (1998)), we devised a new
ABC-type method for nonlinear exterior wave problems. This
method makes a sequential use of the Dirichlet-to-Neumann
(DtN) boundary condition. The DtN condition is a nonlocal
ABC which is exact when applied to linear elliptic problems,
such as the Helmholtz equation. See Givoli (1999) for recent
review articles on the subject. The method proposed in Givoli
and Patlashenko (1998) for a nonlinear hyperbolic wave prob-
lem is based on reducing the original problem into a sequence
of linear elliptic problems, and applying the DtN condition on
B for each problem.

This method yields very accurate results, but it also requires a
large computational effort. The computationally intensive part
of the scheme is the repeated calculation associated with the
nonlocal DtN boundary condition. In addition, the nonlocality
of the DtN condition generates a small full block in the finite
element stiffness matrix, thus reducing the sparseness of the
matrix. This does not introduce any difficulties if an iterative
linear solver is used (see Givoli (1999); Malhorta and Pinsky
(1996)), but with a direct solver this is commonly regarded as
a deficiency.

Therefore, it is desirable to replace the nonlocal DtN condition
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by a much simpler local ABC. Of course, this would result
in some loss of accuracy, or, looked at differently, this would
require to set the artificial boundary B further away from the
scatterer in order to maintain the same level of accuracy. How-
ever, the use of a simple local ABC is very appealing, since
it may be coded easily into standard finite element software,
and it does not entail any compromise in the sparseness of the
global stiffness matrix. Also, we shall see that if the local ABC
used on B is properly designed, the errors it generates are not
much larger than those generated by the DtN condition. On the
other hand, as was shown in Givoli and Patlashenko (1998),
the use of a overly “naive” local ABC like the Sommerfeld
condition may lead to totally erroneous numerical results.

In this paper, we use the general scheme proposed in Givoli
and Patlashenko (1998) for the solution of nonlinear exterior
wave problems, but we replace the nonlocal DtN condition on
B by one of the “optimal” local ABCs devised in Givoli and
Patlashenko (1998) (in the context of linear elliptic problems).
These ABCs are obtained by localizing the DtN condition in a
way which aims at making the “distance” between the new lo-
cal ABC and the nonlocal DtN condition as small as possible,
in the L2 sense. The theoretical properties of the optimal local
ABCs have been investigated in Sidi and Givoli (2000). Their
use has recently been extended to time-dependent waves in
Patlashenko and Givoli (2000), still in the linear regime. Here
we show that their use for nonlinear time-dependent waves re-
sults in a numerical scheme which is almost as accurate as the
original scheme proposed in Givoli and Patlashenko (1998)
and significantly more efficient.

Nonlinear waves in unbounded media are encountered in a va-
riety of applications Whitham (1974)–Strauss (1989). The
nonlinearity may originate from the material constitutive re-
lations, from the large amplitude of the motion, or from the
presence of a free boundary. In this paper we develop the nu-
merical framework in the context of a model problem, gov-
erned by the two-dimensional nonlinear Klein-Gordon equa-
tion (Strauss (1989)). This equation has important applica-
tions in quantum physics. It also describes waves in a mem-
brane lying on a nonlinear elastic foundation. However, more
importantly, it serves as a relatively simple model for nonlin-
ear wave problems which helps to bring to light most of the
computational issues involved.

Following is the outline of the paper. In Section 2 we state the
model problem under consideration, and discretize it in time,
using the two-parameter implicit Newmark family of time in-
tegration schemes. This leads to a time-stepping scheme,
where a nonlinear exterior elliptic problem has to be solved in
each time step. In Section 3 we introduce an artificial bound-
ary B which bounds the computational domain Ω. Then we
apply a simple-iteration procedure to repeatedly linearize the
elliptic problem in the infinite domain D outside B. To com-
plete the scheme we apply an optimal local ABC on B. In
Section 4 we discuss the finite element solution procedure and

some computational aspects of the scheme. In Section 5 we
demonstrate the performance of the scheme via numerical ex-
periments. We conclude with some remarks in Section 6.

2 Problem Statement and Time Discretization

We consider the two-dimensional infinite domain R outside
an obstacle with boundary Γ. In R , the nonlinear version of
the Klein-Gordon equation governs (Strauss (1989)):

ü� c2∇2u = f (u) (1)

Here u(x; t) is the unknown wave function, x is the position
vector in space, t is time, c is a given constant wave speed, and
f (u) is a given nonlinear function. A superposed dot denotes
differentiation with respect to t .

The obstacle boundary Γ is divided into two parts: Γ = Γg [
Γh. On Γg a Dirichlet condition is given, whereas on Γh a
Neumann condition is given:

u = g on Γg (2)

∂u
∂ν

= h on Γh (3)

Here ∂=∂ν is the normal derivative on Γh, and g and h are given
functions. Initial conditions are given for u and u̇:

u(x;0) = u0(x); u̇(x;0) = v0(x) (4)

Here u0 and v0 are given functions with compact support. At
infinity the solution is bounded.

The first step in the proposed numerical method is to discretize
the problem in time. To fix ideas we choose the two-parameter
Newmark family of time-integration schemes, although other
algorithms can be considered as well. Let ∆t be the (constant)
time-step interval, and let tn be the time after n time-steps.
Also, let un, vn and an be the approximations of u, u̇ and ü
at time tn, and let 0 < β � 0:5 and 0 � γ� 1 be the two New-
mark parameters which determine the stability and accuracy
properties of the scheme. We are interested only in implicit
schemes, and therefore we exclude the case β = 0. The New-
mark method applied to equations (1)–(3) may be written in a
predictor-corrector form, namely:

Prediction:

ũn+1 = un +∆tvn +
(∆t)2

2
(1�2β)an (5)

ṽn+1 = vn +∆t(1� γ)an (6)

Solution:

(1� (∆t)2βc2∇2) un+1 = ũn+1 +(∆t)2β f (un+1) (7)

un+1 = gn+1 on Γg (8)

∂un+1

∂ν
= hn+1 on Γh (9)

un+1 < ∞ at infinity (10)
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Correction:

an+1 =
1

β(∆t)2 (un+1 � ũn+1) (11)

vn+1 = ṽn+1 + γ∆tan+1 (12)

Thus, in addition to the updating performed in the prediction
and correction phases, one has to solve in each time-step the
elliptic problem (7)–(10) in the unbounded domain R .

To write (7) more concisely we define,

α = (c∆t
p

β)�1; f̃ (un+1) = α2 �ũn+1 +(∆t)2β f (un+1)
�

(13)

Then (7) becomes,

∇2un+1�α2un+1 + f̃ (un+1) = 0 (14)

3 Truncation, Linearization and Application of ABC

We now introduce a circular artificial boundary B of radius
R which encloses the obstacle and bounds the computational
domain Ω. The infinite domain outside B is denoted D, i.e.,
D = R �Ω. See Fig. 1.

We employ a simple-iteration procedure to replace the nonlin-
ear equation (14) in D by a sequence of linear equations. The

solution un+1 in iteration i is denoted u(i)n+1. Equation (14) is
replaced by,

∇2u(i+1)
n+1 �α2u(i+1)

n+1 =� f̃ (u(i)n+1) in D (15)

Since u
(i)
n+1 is known at the i+1 iteration, the function f̃ in (15)

is just a given function of x, and thus (15) is a linear elliptic
equation. Also, the boundedness condition (10) is written as

u(i+1)
n+1 < ∞ at infinity (16)

Note that (15) replaces (14) only in the exterior domain D. In
the computational domain Ω, the governing equation remains
the nonlinear equation (14).

The next step is to solve the problem (15) and (16) in D an-
alytically in order to obtain the exact nonlocal DtN boundary
condition. In the remainder of this section we shall omit the
index (i+1) for brevity. We shall also use f̃ to mean f̃ (u(i)n+1).
Note that at the current iteration f̃ is a known function. By fol-
lowing Givoli (1992) (but slightly simplifying the expressions
given there), we obtain at time-step n+1:

un+1(r;θ) =
1
π

∞

∑
m=0

0
Km(αr)
Km(αR)

Z 2π

0
cosm(θ�θ0) un+1(R;θ0)dθ0

+
∞

∑
m=0

0

Z ∞

R
ξGm(r;ξ)( f̃ c

n+1;m(ξ)cosmθ

+ f̃ s
n+1;m(ξ) sinmθ)dξ (17)

Here a prime after a sum indicates that a factor of 1/2 multi-
plies the term with n = 0. Also,

f̃ c
n+1;m(ξ) =

1
π

Z 2π

0
cosmθ f̃n+1(ξ;θ)dθ

f̃ s
n+1;m(ξ) =

1
π

Z 2π

0
sin mθ f̃n+1(ξ;θ)dθ (18)

are the Fourier coefficients of f̃n+1, and Gm(r;ξ) is the one-
dimensional Green’s function given by

Gm(r;ξ) =

8>>>><
>>>>:

Km(αξ)
Km(αR) [Im(αr)Km(αR)�Km(αr)Im(αR)]

r � ξ
Km(αr)
Km(αR) [Im(αξ)Km(αR)�Km(αξ)Im(αR)]

r � ξ
(19)

In (17) and (19), Im and Km are the modified Bessel functions
of the first and second kind.

Differentiating both sides of (17) with respect to r and then
setting r = R yields, after some algebra,

∂un+1

∂r
=�M un+1 +H[ f̃n+1] on B (20)

M u =
M

∑
m=0

0

Z 2π

0
km(θ�θ0)u(R;θ0)Rdθ0 (21)

km(θ�θ0) =
Zm

πR
cosm(θ�θ0) (22)

Zm = �α
K0

m(αR)
Km(αR)

(23)

H[ f̃ ](θ) =
M

∑
m=0

0
1

RKm(αR)

Z ∞

R
ξKm(αξ)[ f̃ c

m(ξ)cosmθ+

f̃ s
m(ξ) sin mθ]dξ (24)

Equation (20) is an exact DtN boundary condition on B. Note
that in (21) and (24) we have truncated the infinite series after a
finite number of terms, M. For more details see Givoli (1992).

The DtN condition (20) is nonlocal in space. We wish to ap-
proximate it by a local ABC. To this end, we shall use the
methodology of optimal local ABCs devised in Givoli and
Patlashenko (1998) for linear elliptic problems. This method-
ology relates to the homogeneous counterpart of (20), namely
to the replacement of the integral operator M by a differential
operator. The inhomogeneous term H[ f̃n+1] in (20) remains
unchanged, and is calculated by using (24).

In order to approximate the nonlocal operator M by an Nth-
order local operator, we replace (20) by

∂un+1

∂r
=�LNun+1 +H[ f̃n+1] on B ; (25)

where

(LNu)(θ)�
1
R

N

∑
m=0

Am
∂2mu
∂θ2m

: (26)
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Here the Am are constant coefficients. The functions u to which
the operator LN is applied are assumed to be represented by the
truncated Fourier expansion

u =
M

∑
j=0

0(uc
j cos jθ+us

j sin jθ) : (27)

Here, M is a chosen number of modes (the same number as
in (24)), and M � N . Now we pose the following minimiza-
tion problem: Find the coefficients Am in the local ABC (25)–
(26) such that (M � LN)u is minimized in the L2 sense, for
functions u of the form (27). The minimizers Am depend on
both N (the order of the derivatives used in the local ABC)
and on M (the number of represented modes); thus, the proce-
dure described here leads to a two-parameter (N;M) family of
schemes.

To find the desired coefficients Am, we apply both operators
M and L to the function u given by (27), and estimate the
difference jj(M � LN)ujj20, where jj � jj0 is the L2 norm. This
yields (see Givoli and Patlashenko (1998))

jj(M�LN)ujj
2
0 � jjujj20 jjβ

Njj2 ; (28)

where the second norm on the right side is the Euclidian norm
of the vector βN , whose entries are given by

βN
j = Z j �

N

∑
k=0

Ak(�1)k j2k : (29)

Assuming that nothing is known about the exact solution (see
Givoli and Patlashenko (1998) for an alternative case), we
conclude from (28) that the minimization of jj(M � LN)ujj20
leads to the minimization of jjβNjj2. A necessary condition for
a minimum is ∂jjβNjj2=∂Al = 0 for l = 0; :::;N. This gives the
linear symmetric system of equations,

BA = P ; (30)

where

Pl =
M

∑
j=0

Z j(�1)l j2l ; l = 0; :::;N; (31)

Blk =
M

∑
j=0

(�1)(k+l) j2(k+l); k; l = 0; :::;N: (32)

The solution of this system yields the desired coefficients Ak

in the local ABC (25)–(26).

It should be remarked that if N � 2, special finite elements
must be used in the layer adjacent to B, which possess high-
order regularity. This is necessary due to the high-order deriva-
tives that are involved in the ABC (25)–(26) in this case. A hi-
erarchy of such elements in two and three dimensions has been
devised in Givoli and Keller (1994)–Patlashenko and Givoli
(1997). However, here we shall take N = 1; with this choice
standard C0 finite element may be used throughout. We note
that the value of M does not affect the regularity of the finite
element formulation.

4 Computational Aspects

At time step n+1 and at simple-iteration (i+1), the problem
to be solved in Ω consists of the nonlinear elliptic equation
(14), the boundary conditions (8) and (9) on Γ, and the ABC
(25)–(26) on B. This problem is solved by the Galerkin fi-
nite element method. Finite element discretization leads to the
system of nonlinear algebraic equations

Kdn+1 = Fn+1(dn+1) (33)

where

K =
Nel
A

e=1
ke; Fn+1 =

Nel
A

e=1
f e

n+1 (34)

ke = k̄
e
+ k̃

e
; f e

n+1 = f̄
e
n+1 + f̃

e
n+1 (35)

k̄e
ab = α�2

Z
Ωe

∇Na �∇Nb dΩ+
Z

Ωe
NaNb dΩ (36)

k̃e
ab = α�2

Z
Be

NaLNNb dB =

1
Rα2

N

∑
m=0

Am(�1)m
Z

Be

∂mNa

∂θm

∂mNb

∂θm dB (37)

( f̄ e
a)n+1 =

Z
Ωe

Na f̃ (un+1)dΩ+
Z

Γe
h

Nahn+1 dB �

Nen

∑
b=1

(ge
b)n+1k̄e

ab (38)

( f̃ e
a)n+1 = α�2

Z
Be

NaH[ f̃ (u(i)n+1)]dB (39)

In (33), K is the global stiffness matrix, dn+1 is the solution
vector, and Fn+1 is the load vector. In (34), Nel is the to-

tal number of elements and
Nel
A

e=1
is the assembly operator. In

(35), the matrix k̄
e and the vector f̄ e

n+1 are the standard ele-
ment stiffness matrix and load vector, whereas k̃

e
and f̃

e
n+1 are

the contributions due to the ABC (25)–(26) on B. In (36)–
(39), a and b are indices corresponding to the element nodes,
Na is the element shape function associated with node a, Ωe is
the domain of element e, and Γe

h and Be are, respectively, the
parts of the boundary of element e which are on Γh and on B.
In (38), Nen is number of element nodes, and (ge

b)n+1 is either
the value of the function gn+1 at node b of element e, if this
node is located on Γg, and zero otherwise.

Note that we have omitted the index (i+1) from all the vari-
ables in (33)–(39) for brevity; however, in (39) we indicate
that H is calculated based on u from the previous iteration,

i.e., u
(i)
n+1. The nonlinearity of (33) is due to the dependence

of the load vector F on the solution vector d, through f̃ (un+1)
in (38). The nonlinear algebraic system (33) is solved using
Newton iterations. It is easy to show that the tangent stiffness
matrix is symmetric in this case: see Givoli and Patlashenko
(1998).

The overall solution procedure is similar to the one discussed
in Givoli and Patlashenko (1998); the only essential difference



Solution of Nonlinear Exterior Wave Problems 65

Figure 2 : Setup for the initial pulse problem.

is the new definition of k̃
e

in (37), which is based here on the
local ABC (25)–(26), and is thus performed on the element
level. The solution scheme consists of three loops: the time-
step loop (indicated by n), the simple-iteration loop (indicated
by i), and the Newton-iteration process which is the innermost
loop. The convergence criterion for stopping either of the latter
two processes is based on evaluating the residual norms and
comparing them to some given tolerances.

The computation of H[ f̃ ] in (24) involves the calculation of the
Fourier coefficients of the function f̃ given by (13), for ξ � R.
This is most efficiently done by using the discrete Fast Fourier
Transform (FFT). In any event, it is necessary to keep track of
ũn+1, defined by (5), in D. To this end, and for the purpose of
performing the integration in (24) and (17), the annular domain
R � r � rmax, for some sufficiently large rmax, is divided into
integration cells with polar geometry. The integrals in (24) and
(17) are calculated numerically by using a simple trapezoidal
rule per integration-cell in both the r- and θ-directions. For ad-
ditional details on this integration, see Givoli and Patlashenko
(1998).

5 Numerical Experiments

We consider the nonlinear wave equation (1) in the infinite
two-dimensional domain exterior to an obstacle with a circular
boundary Γ of radius a= 0:25. The nonlinear function in (1) is
f (u) = �qu3 where q = 10000. As shown in Strauss (1989)
(see also Givoli and Patlashenko (1998)), for this choice of
nonlinear function, a solution exists globally. The obstacle is
soft, i.e., u = 0 at r = a. No sources are present. The wave ve-
locity is c = 17:5. The initial rate u̇ is zero throughout the do-
main, whereas the initial value of u is zero except at two small
regions, as described in Fig. 2. For the time discretization
we employ the Newmark method with parameters β = 0:25,
γ = 0:5 and with a time-step interval of ∆t = 0:005.

As a reference solution with which all other computed solu-
tions are compared, we numerically construct an “exact” solu-
tion, obtained by using a very large domain (R = 30), a very

fine mesh, and using the DtN condition on B with a large num-
ber of terms. (Note, however, that the time-step size ∆t re-
mains as above.) All other computations are performed using
a circular artificial boundary B of radius R = 0:5, and a finite
element mesh of bilinear quadrilateral elements in Ω, contain-
ing three circumferential layers of elements, with 24 elements
in each layer.

On B, we apply either the nonlocal DtN condition (20)–(24),
with M terms in the expansions (21) and (24), or the optimal
local ABC (25)–(26), of first order (N = 1) and with M modes
taken in (31) and (32). We note that, as was shown in Givoli
and Patlashenko (1998), a “naive” boundary condition on B
like the Sommerfeld-like condition yields very poor accuracy,
and in fact may alter the qualitative behavior of the numerical
solution altogether. On the other hand, the DtN condition, and
as we shall see here also its optimal localized version, capture
the correct behavior of the solution.

Fig. 3 shows the “exact” solution at five values of time. The
graphs show u as a function of the radial location r along the
horizontal line (φ = 0Æ and φ = 180Æ). The waves propagat-
ing from the initial pulses, the waves reflected from the soft
obstacles, and the “wakes” of the waves (which are character-
istic of two-dimensional waves only) are all apparent in the
plots. Also, by comparing these graphs with those appearing
in Patlashenko and Givoli (2000) which correspond to the ex-
act solution of the linear problem, one can notice the effects of
the nonlinearity. The nonlinearity is responsible for significant
changes in the instantaneous amplitude of the wave, although
the general form of the waves is retained.

In Fig. 4, the “exact” solution is compared with the com-
puted solution obtained by using the optimal local ABC with
M = N = 1, along the horizontal line φ= 0Æ. It is apparent that
the simple first-order optimal ABC captures the wave behav-
ior very well. In contrast, the Sommerfeld-like ABC (which
is actually a zero-order ABC, and which is not shown in the
figure) yields a completely erroneous result and quickly goes
beyond the scale of the figure.

We measure jjejj, the L2(B) norm of the error e = u� uh,
where u is the “exact” solution and uh is the finite element solu-
tion. Tab. 1 summarizes the errors generated by using the non-
local and local ABCs on B. It gives the values of log10 jjejj

2

for two time values and various values of M. The nonlocal
condition with M = 20 yields the smallest error; in fact the
error is mainly due to the spatial discretization, since the rep-
resentation of the far-field behavior is very accurate with this
ABC. In contrast, the nonlocal conditions with small M yield
a very large error; much larger than the error produced by the
optimal local condition with the same M. This phenomenon is
related to the well-known fact in the time-harmonic case that
for a sufficiently small M the nonlocal DtN condition is un-
stable due to lack of uniqueness of the problem in Ω on the
continuous level (Patlashenko and Givoli (1997); Harari and
Hughes (1992)).
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Figure 3 : The initial pulse problem: ‘exact’ solution at five time values along the horizontal rays φ = 0Æ and
φ = 180Æ.

Figure 4 : The initial pulse problem: ‘exact’ and computed solutions at five time values along the horizontal ray
φ = 0Æ.
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Table 1 : Errors (log10 jjejj
2) generated by using various non-

local and local ABCs on B.

Nonlocal
M = 0 M = 1 M = 4 M = 10 M = 20

t = 0:01
-0.531 -0.535 -0.579 -0.586 -0.598

t = 0:025
0.560 0.549 0.208 0.184 0.175

Optimal Local, N = 1
t = 0:01

-0.595 -0.595 -0.595 -0.595 -0.595
t = 0:025

0.182 0.179 0.178 0.188 0.194

Another observation from Tab. 1 is that the optimal local ABC
performs very well; the errors produced with M = 1, M = 2
and M = 4 are only slightly larger than the error associated
with the nonlocal ABC with M = 20. It is interesting to note
that M = 4 yields the best result, and that the use of a much
larger M causes the error to increase. The explanation to this is
the following. The local ABCs are optimal in the least-squares
sense (i.e., with respect to the L2 norm), over all the modes
from 1 to M. If the Fourier content of the exact solution is
such that the first M0 modes are dominant whereas all modes
beyond the M0 mode are relatively weak, it would be counter-
productive to take M > M0, thus “smearing” the error over
modes that are not active. In the example considered here there
are four major modes, and this explains the results of Tab. 1.
Of course, in a complicated problem it is often very difficult to
estimate the number of important modes a priori. This diffi-
culty may be overcome by using an iterative scheme in which
M is modified adaptively based on the computed solution.

Some of these observations may also be seen in Fig. 5 and
Fig. 6, where the computed solution is shown at t = 0:025 and
r = 0:417 as a function of the angle φ. In Fig. 5 the result of
using three nonlocal ABCs is compared with the “exact” solu-
tion, whereas in Fig. 6 three optimal local ABCs are employed.
Again it is apparent that the nonlocal ABCs with M = 0 and
M = 1 are unstable, and that the optimal ABCs with M = 1,
M = 2 and M = 4 yield almost the same solution. In both
cases, the errors are larger closer to the regions of the initial
pulses (the shaded regions in Fig. 2), and are very small away
from these regions.

6 Concluding Remarks

In this paper we proposed a finite element scheme for the solu-
tion of nonlinear exterior wave problems. The formulation is
similar to the one devised in Givoli and Patlashenko (1998),
with one major difference: whereas Givoli and Patlashenko

Figure 5 : The initial pulse problem: the solution obtained by
using the nonlocal DtN condition on B as a function of the
angle φ for t = 0:025 and r = 0:417.

Figure 6 : The initial pulse problem: the solution obtained by
using an optimal local ABC on B as a function of the angle φ
for t = 0:025 and r = 0:417.

(1998) is based on the use of the nonlocal exact DtN boundary
condition (20), here we use the local approximate ABC (25)–
(26). The latter ABC is obtained by localizing the DtN condi-
tion in a systematic way which guarantees a minimal distance
(in the L2 sense) between the actions of the local and nonlocal
operators.

We have demonstrated, through numerical experiments, that
the replacement of the DtN condition with a low-order “opti-
mal” local ABC is beneficial, in that it yields results which are
not significantly less accurate that the DtN results, and at the
same time it involves much less computational effort.

One aspect which is worth improving in the present scheme
is the need for integration over a portion of the exterior do-
main. An effort to free the numerical scheme from this need is
currently underway.

We have concentrated on the relatively simple model of the
two-dimensional nonlinear scalar (Klein-Gordon) equation.
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However, we believe that the scheme may be extended to more
complex nonlinear exterior wave problems, such as problems
of large-amplitude water waves and nonlinear elastic waves.
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