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Abstract: This paper presents a new approach to a shape
optimization problem of a body located in the unsteady incom-
pressible viscous flow field based on an optimal control theory.
The optimal state is defined by the reduction of drag and lift
forces subjected to the body. The state equation used is the
transient incompressible Navier–Stokes equations. The shape
optimization problem can be formulated to find out geometri-
cal coordinates of the body to minimize the performance func-
tion that is defined to evaluate forces subjected to the body.
The fractional step method with the implicit temporal integra-
tion and the balancing tensor diffusivity (BTD) formulation
are employed for the discretization with the equal–order finite
element approximation, while the Crank–Nicolson scheme is
used for the temporal discretization. LMQN (Limited-memory
quasi–Newton) method, which is an iterative procedure saving
the computational memory, is applied for minimizing the per-
formance function. For the numerical study, the optimal shape
of the body which has circular shape as the initial state can be
finally obtained as the streamlined shape.

keyword: shape optimization, incompressible Navier–
Stokes equations, optimal control theory, cyrculaer cylinder,
BTD+FS method, LMQN method, finite element method

1 Introduction

The purpose of this paper is to formulate and to solve a shape
optimization problem based on an optimal control theory. A
formulation concerned with the shape optimization of fluid
forces reduction problem of the body located in the incom-
pressible visous flow is presented. The flow can be assumed
to be controlled by the geometrical surface coordinates of the
body. The optimal state is defined by the reduction of drag
and lift forces subjected to the body. The shape optimizaton
problem is to find out geometrical surface coordinates of the
body to minimize the performance function, which shows the
magnitude of the forces. The present performance function
consists of integration of a square sum of fluid forces and of a
square residual sum between state and initial geometrical co-
ordinates. The state equation acts as constraint condition of
the performance funciton. The state equation is expressed as
the transient incompressible Navier–Sokes equations. The La-
grange multiplier method is applied to the constraint condition
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of the performance function and a Lagrange multiplier equa-
tion is obtained. This equation is equivalent to the adjoint op-
erator of a linealized version of the state equation, which is
referred to as the adjont equation. The equation is dependent
on the state equation and has to be solved backwards in time,
starting from a final condition called the transversality condi-
tion. It is convenient to obtain the gradient of the performance
funciton with respect to the geometrical surface coordinates,
introducing an efficient method for the minimization of the
performance function.

The fractional step method [Hayashi, Hatanaka and Kawahara
(1991)] with the implicit temporal integration and the balanc-
ing tensor diffusivity (BTD) formulation [Gresho, Chan, Lee
and Upson (1984)] called the BTD+FS method are employed
in this paper for the discretization with the equal–order finite
element approximation. The Limited–memory quasi–Newton
(LMQN) method [Zou, Navon, Berger and Phua (1993)] with
the L–BFGS invese Hessian updating formula, which is an it-
erative procedure saving the computational memory, is applied
to the minimization algorithm of the performance funciton.
This algorithm is easy to implement and its convergence rate
is stable. As a numerical example, the present shape optimiza-
tion method is applied to the fluid force reduction problem
of a circular cylider located in the viscous flow at Reynolds
number Re = 200. Computed results for optimized case are
displayed with the inital state. An efficient idea for dealing
with the transversality condition of the adjoint equations for
the shape optimization problem is also proposed.

2 State Equations

Let Ω denote the spatial domain representing xxx the coordi-
nates associated with Ω at the time t 2 (0; T ). Let Γ denote
the boundary of Ω supposing that the incompressible viscous
fluid flow, which occupies Ω. The state equation of the flow
can be written by the following incompressible Navier–Stokes
equation in the non–dimensional form:

∂uuu
∂t

+uuu �∇uuu+∇p�∇ �
�

ν
�
∇uuu+(∇uuu)T �	 = 0

in Ω� (0; T ); (1)

∇ �uuu= 0 in Ω� (0; T ); (2)

where, uuu and p are velocity and pressure, ν is inverse of the
Reynolds number (ν = 1=Re), respcetively.
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Figure 1 : Analytical domain and boudary conditions

Consider a typical problem described in Fig. 1, in which a solid
body of cross–section B with the boundary ΓB is laid in the ex-
ternal flow. Suppose that the boundary of Ω is denoted by
Γ = ΓU [ΓD[ΓS[ΓB. The boundary of B is also assumed to
be included for the boundary of optimal shape that can control
fluid force on γ � ΓB by the movable surface. The boundary
condition and divergence–free initial condition for this prob-
lem are given as:

uuu = (U; 0) on ΓU � (0; T ); (3)

ttt =
�
�pIII +ν

�
∇uuu+(∇uuu)T �	 �nnn = 0 on ΓD� (0; T ); (4)

t1 = 0; u2 = 0 on ΓS� (0; T ); (5)

uuu = 0 on ΓB[ γ� (0; T ); (6)

uuu(xxx;0) = uuu0 (with ∇ �uuu0 = 0) in Ω0; (7)

where U is constant inflow velocity, ttt is traction vector, III is
identity tensor, nnn is unit vector of outward normal to Γ, re-
spectively.

The fluid forces acted on the cylinder B are denoted by (D; L),
where D and L are drag and lift forces, respectively. The fluid
forces (D; L) are obtained by integrating the traction ttt on ΓB.

(D; L) = �
Z

ΓB

ttt dΓ (8)

3 Formulation for Shape Optimization

The shape optimization problem can be formulated using an
optimal contorl strategy. In case of optimal control problem
with constraint condition, the performance function should be
minimized satisfying the state equation. This problem can be
transformed into the minimization problem without constraint
condition by the Lagrangian multiplier or the adjoint equation
using adjoint variable for state variable of the state equation.

3.1 Performance Function

The shape optimization problem is formulated by the opti-
mal control theory in which a performance function is defined
and geometrical suface coordinates xxxc of the body is found
to minimize the performance function. Abergel and Temam

pointed out that for the optimal control problem of the Navier–
Stokes equation, the performance function can be formulated
using the square sum of velocity itself, energy dissipation and
curl of velocty [Abergel and Temam (1990)]. In this paper,
a fluid force control problem is considered, thus, the fluid
force is directly used in the performance function. The per-
formance function J(xxxc) is defined by the temporal integration
of a square sum of fluid forces and of square residual sum be-
tween state geometrical coordinate xxxc and referrence geomet-
rical coordinates xxx� from time t = 0 to t = T .

J(xxxc) =
1
2

Z T

0
(q1D2 +q2L2)dt +

1
2

Z T

0

Z
γ
r(xxxc�xxx�)2 dΓdt (9)

where q1; q2 and r are the weighting parameters, and it is noted
that the the state vector is denoted by xxxc and referrence surface
coordinates of the body is xxx�.

The state equations (1) and (2) are the constraint conditions
of the performance function J(xxxc). The Lagrange multiplier
method is suitable for the optimal control problem with the
constraint conditions. The Lagrange multipliers for the state
equations (1) and (2) are defined as the adjoint velocity yyy and
adjoint pressure λ. The temporal integration of a dot product
between adjoint velocity yyy and pressure λ and state equations
(1) and (2) is added to the performance function J(xxxc), the
extended performance function J�(xxxc) can be obtained as fol-
lows:

J�(xxxc) =
1
2

Z T

0
(q1D2 +q2L2)dt +

1
2

Z T

0

Z
γ
r(xxxc �xxx�)2 dΓdt

�
Z T

0

Z
Ω

yyy � f
∂uuu
∂t

+uuu �∇uuu+∇p�∇ � fν[∇uuu+(∇uuu)T ]ggdΩdt

+
Z T

0

Z
Ω

λ∇ �uuudΩdt (10)

If the state equations (1) and (2) are satisfied, the third and
fourth terms can be zero. The essence of the performance
function J(xxxc) does not change with the addition of the ex-
tended performance function J�(xxxc).

3.2 Derivation of Adjoint Equation

To minimize the performance function J(xxxc), the gradient of
the performance function J(xxxc) with respect to goemetrical
surface coordinatess xxxc should be introduced. The optimal
control problem with the constraint condition of the state equa-
tions (1) and (2) results in solving a stationary condition of the
extended performance function J�(xxxc) instead of the original
performance function J(xxxc). The necessary condition for the
stationary condition is that the first variation of the extended
performance funciton J�(xxxc) vanish. The first–order necessary
condition for the optimality condition is derived from the first
variation of the extended performance function J�(xxxc),

δJ�(xxxc) = 0: (11)
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Taking an integration by parts for each necessary term, the first
variation of the performance function J(xxxc) yields as follows:

δJ�(xxxc) = δuuu
∂J(xxxc)

∂uuu
+δp

∂J(xxxc)

∂p
+δyyy

∂J(xxxc)

∂yyy

+δλ
∂J(xxxc)

∂λ
+δxxxc

∂J(xxxc)

∂xxxc

=�
Z T

0

Z
Ω

δuuu � f�
∂yyy
∂t

+(∇uuu)Tyyy� (uuu �∇)yyy

+∇λ�∇ � fν[∇yyy+(∇yyy)T ]ggdΩdt

+
Z T

0

Z
Ω

δp∇ �yyydΩdt +
Z T

0

Z
ΓU

δttt �yyydΓdt

+
Z T

0

Z
ΓS

δt2 ys dΓdt

+
Z T

0

Z
ΓB

fδt1(y1�q1D)+δt2(y2 �q2L)gdΓdt

�
Z T

0

Z
ΓD

δuuu �sssdΓdt�
Z T

0

Z
ΓS

δu1 s1dΓdt

�
Z T

0

Z
γ
δxxxc � f(∇uuu)Tsss� r(xxxc�xxx�)gdΓdt

�
Z

Ω
δuuu(xxx; T ) �yyy(xxx; T )dΩ = 0; (12)

where sss is,

sss = fuuuyyy�λIII+ν[∇yyy+(∇yyy)T ]g �nnn (13)

and the following relation is used:

Z T

0
(δDq1D+δLq2L)dt

=�
Z T

0
(δ
Z

ΓB

t1dΓq1D+δ
Z

ΓB

t2dΓq2L)dt

=�
Z T

0

Z
ΓB

(δt1 q1D+δt2 q2L)dΓdt: (14)

Setting each term equal to zero to satisfy the optimality con-
tidition, the following adjoint equation, adjoint boundary con-
ditions and terminal condition can be obtained, respectively:

�
∂yyy
∂t

+(∇uuu)Tyyy�uuu �∇yyy+∇λ�∇ � fν
�
∇yyy+(∇yyy)T

�
g= 0

in Ω� (0; T ); (15)

∇ �yyy= 0 in Ω� (0; T ); (16)

yyy = 0 on ΓU � (0; T ); (17)

sss = 0 on ΓD� (0; T ); (18)

s1 = 0; y2 = 0 on ΓS � (0; T ); (19)

yyy = (q1D; q2L) on ΓB [ γ� (0; T ); (20)

yyy(xxx; T ) = 0 in Ω: (21)

Solving state and adjoint equations, the gradient of perfor-
mance function J(xxxc) with respect to geometrical surface co-

ordinates xxxc is calculated by the following equation:

δxxxc
∂J(xxxc)

∂xxxc
=
Z T

0

Z
γ
δxxxc � f(∇uuu)Tsss� r (xxxc �xxx�)gdΓdt: (22)

Let xxxc be the optimal solution, then the following equality
holds,

(∇uuu)T sss� r (xxxc�xxx�) = 0 on γ� (0; T ): (23)

4 Discretization

4.1 Performance Function and Its Gradient

The discretization of the boundary γ and geometrical surface
coordinates xxxc of the body is defined as M connected compo-
nents γm and geometric surface coordinates xxxc(m),

γ =
M[

m=1

γm; (24)

8m = 1; 2; � � � ; M; xxxc = xxxc(m) on γm� (0; T ) (25)

The total number of time steps is denoted by N and the time
increment is by ∆t = T=N , where T is the total computational
time. The performance function (9) and its gradient (22) can
be discretized as:

J∆t(xxx
(n)
c(m)) =

1
2

N

∑
n=1

(q1D(n)2 +q2L(n)2)∆t

+
1
2

N

∑
n=1

M

∑
m=1

Z
γm

r (xxx(n)c(m)�xxx�(n)(m) )
2dΓ∆t; (26)

δ(xxx(n)c(m))
∂J∆t(xxx

(n)
c(m))

∂xxx
(n)
c(m)

=

Z
γm

δxxx(n)c(m) � f(∇uuu(n))Tsss(n)� r (xxx(n)c(m)�xxx�(n)
(m) )gdΓ∆t (27)

4.2 Governing Equation

The Crank–Nicholson method is applied to momentum equa-
tion (1), for the temporal discretization:

uuun+1 �uuun

∆t
+uuun �∇uuun+ 1

2 +∇pn+1�ν∇2uuun+ 1
2 = 0

in Ω� (0; T ); (28)

∇ �uuun+1 = 0 in Ω� (0; T ); (29)

where uuun+ 1
2 denotes (uuun +uuun+1)=2, and the advection velocity

in the non–linear term is approximated by the known velocity
uuun.

The BTD+FS method [Hayashi, Hatanaka and Kawahara
(1991)][Gresho, Chan Lee and Upson (1984)] is employed for
momentum equation (28) and continuity equation (29). The
approximated functions of the weighting and trial functions
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for the velocity and pressure are denoted by wwwh, qh,uuuh and
ph, respectively. The bi– or trilinear interpolation function is
used for wwwh, qh,uuuh and ph in this paper. The weighting residual
equations can be obtained as:

Z
Ω

qh∇ �uuun
h dΩ

+
Z

Ω
∆t∇qh � fuuu

n
h �∇uuun

h +∇pn+1
h �ν∇2uuun

hgdΩ = 0; (30)

Z
Ω

wwwh � f
uuun+1

h �uuun
h

∆t
+uuun

h �∇uuu
n+ 1

2
h gdΩ

+
Z

Ω
∇wwwh : f�pn+1

h III +ν∇2uuu
n+ 1

2
h gdΩ

+
Z

Ω

∆t
2

uuun
h �∇wwwh � f

uuun+1
h �uuun

h

∆t
+uuun

h �∇uuu
n+ 1

2
h

+∇pn+1
h �ν∇2uuu

n+ 1
2

h gdΩ = 0; (31)

In equation (30), to increase a computational efficiency, the
unknown velocity uuun+ 1

2 is approximated by the known velocity
uuun.

4.3 Adjoint Equation

The Crank–Nicholson method is also applied to adjoint mo-
mentum equation (15), and the adjoint continuity equation (16)
is also treated as the full implicit scheme for the temporal dis-
cretization:

yyyn�1 �yyyn

∆t
+(∇uuun)T yyy�uuun �∇yyyn� 1

2 �∇λn�1�ν∇2yyyn� 1
2 = 0

in Ω� (0; T ); (32)

∇ �yyyn�1 = 0 in Ω� (0; T ); (33)

where yyyn� 1
2 denotes (yyyn +yyyn�1)=2.

The BTD+FS method is employed for adjoint momentum (32)
and adjoint continuity (33) equations. The approximated func-
tions of weighting and trial functions for velocity and pressure
are denoted by wwwh, θh,yyyh and λh, respectively. The bi– or tri-
linear interpolation function is used for wwwh, θh,yyyh and θh in this
paper. The weighting residual equation can be obtained as:

Z
Ω

θh∇ �yyyn
h dΩ�

Z
Ω

∆t∇θh � f(∇uuun
h)

T yyy

�
Z

Ω
∆t∇θh ��uuun

h �∇yyyn
h +∇λn+1

h �ν∇2yyyn
hgdΩ = 0; (34)

Z
Ωn

wwwh � f
yyyn�1

h �yyyn
h

∆t
+(∇uuun

h)
Tyyyn

hgdΩ

+
Z

Ωn

∇wwwh : fuuun
hyyy

n� 1
2

h �λn�1
h III +ν∇2yyy

n� 1
2

h gdΩ

�
Z

Ωn

∆t
2

uuun
h �∇wwwh � f

yyyn�1
h �yyyn

h

∆t
+(∇uuun

h)
T yyyn

h

�uuun
h �∇yyy

n� 1
2

h +∇λn�1
h �ν∇2yyy

n� 1
2

h gdΩ = 0; (35)

In equation (34), to increase a computational efficiency, the
unknown velocity yyyn� 1

2 is approximated by the known velocity
yyyn.

5 Minimization Algorithm

Limited–memory quasi–Newton (LMQN) mehtod [Zou,
Navon Berger and Phua (1993)] is applied for the minimiza-
tion algorithm. The advantage of this mehtod is applicable
for large–scale problem because of the modest storage require-
ments using a sparse approximation to the Hessian matrix. The
Limited–memory BFGS (L–BFGS) method is used for updat-
ing the approximation of the inverse Hessian matrix.

Consider a problem of finding a control vector vvv to minimize
the performance function J(vvv), the algorithm of the LMQN
method is given as follows:

1. Chose an initial vvv and a positive definite initial approxi-
mation to the inverse matrix m̄H0, which may be chosen
as the identity matrix.

2. Compute

GGG0 =
∂J(vvv0)

∂vvv
: (36)

and set

ddd0 = �HHH0 GGG0 : (37)

3. For k = 0; 1; : : : set

vvvk+1 = vvvk +αk dddk (38)

where αk is the step size that is obtained by the linear
search.

4. Compute

GGGk+1 =
∂J(vvvk+1)

∂vvv
: (39)

5. Generate a new search direction dddk+1 by setting.

dddk+1 = �HHHk+1GGGk+1 : (40)

6. Check for convergence: If

kGGGk+1k � εkvvvk+1k (41)

then stop where ε is a positive small allowance, otherwise
continue from step 3.

For the linear search, a rough linear search method is used. the
width of search αk can be given as the following equation.

J(vvvk +αk dddk)� J(vvvk)+0:0001 αkGGGt
k dddk (42)

j
GGG(vvvk +αk dddk)

t dddk

GGGt
k dddk

j � 0:9 (43)
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Figure 2 : Analytical domain

Figure 3 : Finite element mesh
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Figure 4 : Time history of fluid forces

Figure 5 : Iso–pressure contours
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Figure 6 : Number of iterations versus performance funciton
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The renewal of the inverse of Hessian matrix can be given by
the following L–BFGS formula. In the L–BFGS formula, the
inverse of Hessian matrix can be given by vvv and GGG at last mth

iteration.

HHHk+1 = (wwwt
k � � �www

t
k�m̂)HHH0 (wwwk�m̂ � � �wwwk)

+ρk�m̂ (wwwt
k � � �www

t
k�m̂+1)pppk�m̂ pppk�m̂ (wwwk�m̂+1 � � �wwwk)

+ρk�m̂+1 (www
t
k � � �www

t
k�m̂+2)pppk�m̂+1 pppk�m̂+1

(wwwk�m̂+2 � � �wwwk)+ � � �+ pppk pppk (44)

where, pppk = vvvk+1�vvvk; qqqk = GGGk+1�GGGk; ρk = 1=(qqqt
k pppk); wwwk is

wwwk = III�ρk qqqk pppt
k. And III is a unit matrix.

6 Numerical Example

For numerical examples, the present shape optimization
method is applied to fluid force reduction problem of a circu-
lar cylinder located in the viscous flow. Fig. 2 and 3 show the
domain used for the present analysis and finite element mesh.
The number of control boundary γm is M = 60. The domain
Ω n B̄ is (�4; 4)� (�4; 12) and B is the disk of center (0; 0)
and of radius 0:5. The total number of time steps is N = 800,
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Figure 8 : Time history of drag force

Figure 9 : Iso–pressure contours (optimal)

and the time increment is ∆t = 0:05, thus the terminal time is
T = 40. The Reynolds number based on tye cylinder diame-
ter and inflow velocity is Re = 200 (ν = 0:005). Fig. 4 shows
time history of fluid forces. Fig. 5 shows iso–pressure contours
(t = 40). Allowance ε is 10�5.

6.1 Drag Force Reduction Problem

The purpose of the present is reduce the drag force, while
the lift force and the circular cilinder volume are not kept un-
changed in this case. The weighting parameters are chosen as
q1 = 1; q2 = 0; r = 1. Thus, this control problem is only drag
force reduction. Fig. 6 shows the number of iterations ver-
sus the relative performance funciton J. It is observed that the
reduction of the performance function is achived and 10 itera-
tions need to be converged. It is seen that the amplitude of the
drag force is reduced. For this numecical example, the optimal
shape of the body which has circular shape as the initial state
can be finally obtained as the streamlined shape like a wing
shown in Fig. 7. For the drag force to be redueced, the optimal
shape has been obtained as flat configuration. However the
initial shape has a smooth edge. This means that the precent
shape optimization method has to be able to treat the apparition
of signular points. No particluar treatment such as a Spline in-
terpolation has been done for this case. The initial drag force
should be positive as the flow direction is uniform. This means
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Figure 10 : Number of iterations versus performance funciton
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Figure 11 : Initial and optimal shape

that the optimal shape is ansymmetric. Fig. 8 shows the time
history of the drag force D. Iso–pressure contours in optimal
(t = 40) is shown in Fig. 9.

6.2 Lift Force Reduction Problem

This control problem is only lift force reduction, thus The
weighting parameters are q1 = 0; q2 = 1; r = 1, thus, Fig. 10
shows the number of iterations versus the relative performance
funciton J. It is observed that the reduction of the performance
function is achived and 14 iterations need to be converged. It is
seen that the amplitude of the lift force is reduced. For this nu-
mecical example, the optimal shape of the body which has cir-
cular shape as the initial state can be finally obtained as shown
in Fig. 11. This shape is the streamlined one like a wing. The
initial lift force should be periodic as the initial shape is sym-
metric. The optimal shape is almost symmetric. Fig. 12 shows
the time history of the drag force L. Iso–pressure contours in
optimal (t = 40) is shown in Fig. 13.
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Figure 12 : Time history of lift force

Figure 13 : Iso–pressure contours (optimal)

7 Conclusion

A formulation for shape optimization of the incompressible
Navier–Stokes equations has been presented in this paper. The
BTD+FS method has been used for the spatial discretization,
while the Crank–Nicolson scheme was used for the temporal
discretization. The LMQN (Limited–memory quasi–Newton)
method has been applied as the mimization technique. A com-
putational method of optimal shape design for the body located
in the transient incompressible viscous fluid flow has been pre-
sented to feature a new shape optimization approach based
on the optimal control theory. As a numerical example, fluid
force reduction problem of a circuler cylinder located in the
the present shape optimization method is applied to fluid force
reduction problem of a circular cylider located in the viscous
flow at Reynolds number Re = 200. The modified transversal-
ity condition that is the solution of the steady Lagrange mul-
tiplier equation has been proposed. The shape optimization is
presented in this peper successful, and it is confirmed that the
present shape optmization method is very effective and robust
to implement for the incompressible Navier–Stokes equations.
Future work will include to expand this technique in three–
dimensional configuratins.
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