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Abstract: An iterative numerical method based on Fast
Fourier Transforms has been proposed by Moulinec and Su-
quet (1998) to investigate the effective properties of periodic
composites. This iterative method is based on the exact expres-
sion of the Green function for a linear elastic, homogeneous
reference material. When dealing with linear phases, the num-
ber of iterations required to reach convergence is proportional
to the contrast between the phases properties, and convergence
is therefore not ensured in the case of composites with infinite
contrast (those containing voids or rigid inclusions or highly
nonlinear materials). It is proposed in this study to overcome
this difficulty by using an augmented Lagrangian method. The
resulting saddle–point problem involves three steps. The first
step consists of solving a linear elastic problem, using the
Fourier Transform method. In the second step, a nonlinear
problem is solved at each individual point in the volume ele-
ment. The third step consists of updating the Lagrange mul-
tiplier. This method was applied successfully to composites
with high or infinite contrast. The first case presented here
is that of a linear elastic material containing voids. The sec-
ond example is that of a two-phase composite with power-law
constituents. The third example involves voided rigid-plastic
materials.

keyword: computational method, augmented lagrangians,
fast fourier transforms, nonlinear composites

1 Introduction

An iterative numerical method based on Fast Fourier Trans-
forms was recently proposed by Moulinec and Suquet (1994),
Moulinec and Suquet (1998) to investigate the effective prop-
erties of composites with complex microstructures as well as
their local responses. This method makes direct use of dig-
ital images of the “real” microstructure of the composite. It
is based on the exact expression of the Green function for a
linear elastic, homogeneous material. In the case of linear
elastic phases, the problem is reduced to an integral equation
(Lippmann-Schwinger equation), which is solved iteratively.
The rate of convergence of the method is directly related to the
contrast between the phases. When dealing with linear phases,
the number of iterations required to reach convergence varies
linearly with the elastic contrast, i.e. roughly speaking with the
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ratio between the elastic Young moduli of the phases. Conver-
gence is therefore not ensured in the case of composites with
infinite contrast (those including voids or rigid inclusions).
The method has been successfully applied to linear elastic and
elastic-plastic composites by Moulinec and Suquet (1998). It
cannot however be straightforwardly extended to other non-
linear material behaviors, such as power-law stress/strain rela-
tions: with materials of this kind, the initial moduli are very
large and in addition, the secant moduli are highly contrasted
in zones undergoing very different deformations.

The aim of the present paper is to extend this method to com-
posites containing voids and nonlinear elastic phases.

We propose an augmented Lagrangian method (section 2),
which has proved to be an efficient means of dealing with other
nonlinear problems (see Glowinski and Le Tallec, 1989). The
resulting saddle–point problem involves three steps. The first
step consists of solving a linear elastic problem in the case of a
homogeneous material (reference material) with eigenstresses.
This problem can be solved using the Fourier transform of the
Green function for the reference material. In the second step,
a nonlinear problem is solved locally, i.e. at each individual
point in the volume element. The third step consists of updat-
ing the Lagrange multiplier and is also a local step.

This method is applied successfully in section 3 to composites
with high or infinite contrast. The first case is that of a linear
elastic material containing voids. The second example is that
of a two-phase composite with power-law constituents. The
third example concerns the flow surface of voided rigid-plastic
materials.

The problem under consideration can be stated as follows. A
representative volume element V of the composite is com-
posed of various phases with strain-energy w(x;ε) so that the
stress-strain relation at point x can be written

σ(x) =
∂w
∂ε

(x;ε); (1)

where w is a convex function of ε. Its dependence on x de-
notes a material nonhomogeneity. Material constraints can be
included in the definition of w. For instance, with incompress-
ible materials, w = +∞ when tr(ε) 6= 0.

The volume element V is subjected to an average strain E. Pe-
riodicity conditions are assumed on the boundary of V . To be
more specific, the local strain field ε(u) is split into its average
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E and a fluctuation term ε(v):

ε(u) = E+ ε(v): (2)

By assuming periodic boundary conditions, it is assumed that
the fluctuating displacement v is periodic (notation: v #), and
that the traction σ �n is anti-periodic in order to meet the equi-
librium equations on the boundary between two neighboring
cells (notation: σ �n -#).

It is known (see, for example, Suquet, 1987; Ponte Castañeda
and Suquet, 1998) that the effective behavior of the composite
also results from an effective strain-energy W hom, which can
be characterized by the variational property:

W hom(E) = min
u 2 K (E)

hw(ε(u))i; (3)

where h:i denotes the spatial average over V , and

K (E) = fu such that ε(u) = E+ ε(v); v #g; (4)

is the set of displacement fields which are kinematically ad-
missible with the average strain E.

2 Augmented Lagrangian method

2.1 General formulation

Problem (3) can be reformulated as a minimization problem
under constraint

Min

e

8><>: Min

u 2 K (E)

hw(e)i

9>=>; ; (5)

under the constraint (compatibility condition)

ε(u(x))� e(x) = 0 8x 2V: (6)

Let λ(x) denote the Lagrange multiplier associated with this
constraint, and consider the augmented Lagrangian

Lc0(ε(u);e;λ) = hw(e)i+ hλ : (ε(u)� e)i
+

1
2
h(ε(u)� e) : c0 : (ε(u)� e)i: (7)

The fourth-order tensor c0 possesses the usual symmetries
characteristic of a stiffness tensor. It is chosen depending on
the problem under consideration.

Problem (5) with constraint now turns into a saddle-point prob-
lem for Lc0 . The saddle-point can be reached by means of the
following Uzawa’s algorithm (Glowinski and Le Tallec, 1989;
Licht and Suquet, 1986):

Iterate i : given ei�1 and λi�1,

(1) compute ε(ui) solution of the problem:

Min

u 2 K (E)

Lc0(ε(u);ei�1;λi�1); (8)

(2) compute ei solution of the nonlinear equation (at
each point x):

∂w
∂e

(x;ei)+ c0 : ei(x) = c0 : ε(ui(x))+λi�1(x);

(9)

(3) update λi:

λi(x) = λi�1(x)+d0 : (ε(ui(x))� ei(x)): (10)

d0 is a fourth-order tensor which serves to give the descent
direction in Uzawa’s algorithm. As usual, once convergence
has been reached, e coincides with ε(u) and λ is the stress
∂w(ε(u))=∂ε.

2.2 Step 1: auxiliary Problem (8)

Problem (8) is a classical elasticity problem for a homoge-
neous, linear elastic medium with stiffness moduli c0. This
homogeneous material will be referred to here as the reference
medium. The Euler equations associated with (8) can be for-
mulated in terms of the fluctuation v associated with u

σ(x) = c0 : ε(v(x)) + τ(x) 8x 2V;

div σ(x) = 0 8x 2V; v #; σ �n -#;

)
(11)

where the periodic polarization field τ(x) reads

τ(x) = λi�1(x)� c0 : ei�1(x)+ c0 : E: (12)

Note that c0 : E is constant, and thus divergence-free, and can
be dropped from the previous expression for the determination
of v. The solution of (11) can be expressed in real and Fourier
spaces, respectively, by means of the periodic Green operator
Γ0 associated with the reference medium with elasticity tensor
c0 . In real space

ε(v(x)) = �Γ0 � τ(x) 8x 2V; (13)

or in Fourier space

bε(ξ) =�bΓ0(ξ) : bτ(ξ) 8ξ 6= 0; bε(0) = 0: (14)

The Fourier transform of the operator Γ0 can be explicitly de-
termined by taking the Fourier transform of (11). For instance,
when the stiffness tensor c0 is isotropic, in the form

(c0)i jkh = λ0 δi jδkh+µ0 (δikδ jh+δ jkδih); (15)
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bΓ0 takes the explicit form

bΓ0
i jkh(ξ) =

1
4µ0jξj2 (δkiξhξ j +δhiξkξ j +δk jξhξi+δh jξkξi)

� λ0+µ0

(λ0+2µ0)µ0

ξiξ jξkξh

jξj4 : (16)

Note (with Suquet and Moulinec, 1997) that this operator has
a well defined limit when λ0 ! +∞ (i.e. when the reference
medium is incompressible), which reads:

bΓ0
i jkh(ξ) =

1
4µ0jξj2 (δkiξhξ j +δhiξkξ j +δk jξhξi+δh jξkξi)

� 1
µ0

ξiξ jξkξh

jξj4 : (17)

The pressure field (Lagrange multiplier for the incompressibil-
ity constraint) is also known in Fourier space:

bp(ξ) = ξkbτkh(ξ)ξh

jξj2 : (18)

2.3 Step 2: nonlinear equation (9)

Equation (9) is a tensorial nonlinear equation. When w is con-
vex, i.e. when the operator ∂w=∂ε is monotone, this equation
admits a unique solution which can be reached using any clas-
sical method (Newton’s method, substitution method, etc.).
There exist however three particular cases which are worth
noting.

The first particular case corresponds to a nonhomogeneous lin-
ear material with stiffness c(x). Here (9) reduces to a linear
equation which can be solved explicitly

ei = ε(ui)+(c0+ c)�1(λi�1� c : ε(ui)): (19)

The case of voided materials corresponds to c = 0 in the void
phase.

The second case is that of nonlinear composites where all the
phases are incompressible. The composite itself is incom-
pressible and the reference material is therefore taken to be
incompressible, with shear modulus µ0. In addition, it is as-
sumed that the strain–energy w(ε) depends only on the von
Mises strain. To be more specific, the mean part and the devi-
atoric part of a second-order tensor a are defined as

am =
1
3

tr(a) ; adev = a�ami: (20)

The nonlinear phases are assumed to be isotropic with strain-
energy

w(ε) = f (εeq) when εm = 0; w(ε) = +∞ when εm 6= 0;
(21)

where εeq =
q

2
3 εdev

i j εdev
i j . Then

∂w
∂ε

= �pi+
2
3

f 0(εeq)

εeq
ε: (22)

The nonlinear equation (9) then reduces to 
1

3µ0

f 0(ei
eq)

ei
eq

+1

!
ei = ε(ui)+

1
2µ0

(λi�1)dev: (23)

We deduce from (23) that ei is colinear to ε(ui) +
1=2µ0(λi�1)dev and that

1
3µ0

f 0(ei
eq)+ ei

eq =

�
ε(ui)+

1
2µ0

(λi�1)dev
�

eq
: (24)

The tensorial nonlinear equation (9) reduces to the scalar non-
linear equation (24).

The third case of interest is that of compressible isotropic non-
linear materials with a strain–energy w which can be written

w(ε) = g(εm;εeq): (25)

Then

∂w
∂ε

=
1
3

∂g
∂εm

i+
2
3

1
εeq

∂g
∂εeq

εdev: (26)

The nonlinear equation (9) then reduces to a system of coupled
nonlinear scalar equations

1
3

∂g
∂εm

(ei
m;ei

eq)+3k0ei
m = 3k0εm(ui)+λi�1

m ;

1
3µ0

∂g
∂εeq

(ei
m;ei

eq)+ ei
eq =

�
εdev(ui)+

1
2µ0

(λi�1)dev
�

eq
;

9>>=>>;
(27)

where k0 is the bulk modulus of the reference medium (3k0 =
3λ0+2µ0).

2.4 Step 3: updating the Lagrange multiplier (10)

Although several choices are possible for the fourth-order ten-
sor d0, we have implemented Uzawa’s algorithm with d0 = c0.
This simple choice has some advantages. In the particular case
of voided materials (linear or nonlinear), it can be checked that
it leads to λi = 0 in the voids. Equilibrium is then met in the
voids at each iteration.

2.5 Algorithm

An iterate of the above Uzawa’s algorithm typically reads :

Iteratei : given ei�1 and λi�1;

(a) τi�1(x) = λi�1(x)� c0 : ei�1(x);

(b) bτi�1 = F (τi�1);

(c) bεi(ξ) =�bΓ0 : bτi�1(ξ) 8ξ 6= 0; bεi(0) = E;

(d) εi = F �1(bεi);
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(e) Solve (9) for ei(x);

( f ) λi(x) = λi�1(x)+ c0 : (εi(x)� ei(x));

(g) convergence test:

F and F �1 denote the Fourier transform and the inverse
Fourier transform, respectively.

The convergence test focuses on the compatibility equations
and the stress-strain relations. More specifically, let us define
the following norm for a second-order tensor:

kak= max
x

p
a(x) : a(x): (28)

The iterative procedure is stopped when

max

0B@kεi � eik
kEk ;

kλi� ∂w
∂ε

(εi)k

kh∂w
∂ε

(E)ik

1CA� η; (29)

with, typically in our calculations, η = 10�5.

2.6 Discretization

In order to proceed with the numerical computations, the unit
cell is discretized into N1 � N2 pixels in the case of two-
dimensional problems, or N1�N2�N3 voxels in that of three-
dimensional problems. The Fourier transform is replaced by
the discrete Fourier Transform, which can be computed using
the Fast Fourier Transform (detailed comments on the imple-
mentation of this technique are given in Moulinec and Suquet,
1998). The unknowns u and ε are sampled by taking their val-
ues at these discrete pixels or voxels. The spatial discretization
of the image induces a corresponding spatial discretization for
the frequency ξ in Fourier space. For reasons which are closely
linked to the FFT algorithm, the spatial resolution (number of
pixels or voxels in each direction) is taken to be a power of 2.

2.7 Choice of the reference medium

The rate of convergence of the method depends on the choice
of the stiffness c0. Since we are not aware of any theoretical
procedure yielding the optimum value of this tensor, we per-
form numerical tests to determine this optimum value.

In order to minimize the number of tests to be performed, it
is worth noting that the optimum c0 does not depend very
strongly on the spatial resolution of the image, as shown in
Fig. 1. These results were obtained with the following data.
The problem is a two-dimensional one. The unit cell is a
square containing a circular void with a volume fraction of
0:196. The matrix is isotropic and linear elastic with Young
modulus E and Poisson coefficient ν = 0:25. The reference
medium is isotropic with elastic properties E0 = rE, ν0 = ν.
The loading applied is in-plane shear. The number of itera-
tions at convergence is shown in Fig. 1 as a function of r and
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Figure 1 : Effects of the stiffness of the reference medium on
the number of iterations to be performed at convergence with
the augmented Lagrangian method.

of the image resolution (the number of pixels in the image). It
can be seen that the method is highly sensitive to the choice
of r but that it is relatively insensitive to the spatial resolu-
tion. The optimum value of r can therefore be determined at
low resolutions and then used in computations at higher reso-
lutions.

3 Examples

3.1 Voided linear materials

In this subsection, we discuss the case of a linear elastic matrix
containing voids. The ratio between the Young’s moduli of the
phases is infinite, and this example can serve to check the abil-
ity of the method to deal with composites with infinite contrast.
The cell is a cylinder with a square cross section and a width
of 2a. The void is a cylinder with a circular cross section and a
radius R with R=a = 16 (void volume fraction ' 3:10�3). The
matrix material is isotropic with bulk and shear moduli k and
µ respectively.

The volume element is subjected to an in-plane overall strain
E = Eαβeα 
 eβ, α;β = 1;2. The problem can be solved nu-
merically within the framework of plane strains. Since the void
volume fraction is small, the numerical solution can be com-
pared with the exact result obtained for a void in an infinite
matrix, which is known in the closed form. In the latter case,
the deformation of the void in the infinite medium is homoge-
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Figure 2 : Circular voids with a small volume fraction in a linear elastic material. Comparison between numerical and analytical
results. (a): in-plane isotropic strain. (b): in-plane deviatoric strain.

neous and reads

εvoid
αβ =

K+µ
µ

Eγγ

2
δαβ+2

K+µ
K

�
Eαβ�

Eγγ

2
δαβ

�
; (30)

where K is the in–plane bulk modulus (K = k+(1=3)µ).

Two different types of loading were considered. The first one
corresponds to in–plane compression (E11 = E22 6= 0, other
Ei j = 0). The second type of loading corresponds to in-plane
shear (E12 = E21 6= 0, other Ei j = 0). With each type of load-
ing, the ratio K=µ was varied. The spatial resolution used in
the numerical simulations was 1024� 1024 pixels. The av-
erage deformations of the void obtained numerically and an-
alytically are compared in Fig. 2. Keeping in mind that the
numerical results were obtained with a small volume fraction
(but not strictly 0), the agreement between the numerical re-
sults and the analytical ones can be said to be excellent.

3.2 Power–law materials

3.2.1 Constitutive relations

High-temperature creep in metals is commonly characterized
by a power law relation between the strain-rate and the stress.
Assuming incompressibility and isotropy and interpreting ε as
the Eulerian strain-rate, the potential w of the material takes
the form

w(ε) =
σ0ε0

m+1

�
εeq

ε0

�m+1

when εm = 0;

w =+∞ when εm 6= 0: (31)

where ε0 denotes a reference strain–rate, σ0 is the flow stress
and m is the rate-sensitivity exponent. Note that the strain-
energy has the form (21). The constitutive relation is given

by

σ =�p i+σdev; σdev =
∂w
∂ε
(ε) =

2σ0

3ε0

�
εeq

ε0

�m�1

ε; (32)

where σdev is the stress deviator. Two particular cases of
power-law materials can be mentioned. When m= 1, the mate-
rial is linear incompressible with the shear (viscosity) modulus
µ= σ0=3ε0. When m = 0, the material is rigid-plastic with the
flow stress σ0.

Computing the response of composites with power-law phases
raises the same problems as those encountered with linear
composites with high contrast. The local strain field is highly
heterogeneous (the higher the nonlinearity, the more hetero-
geneous the strain field). Therefore the secant moduli defined
as

µsec(ε) =
σ0

3ε0

�
εeq

ε0

�m�1

; (33)

take values which can be very different. Nonlinear compos-
ites (even two-phase composites) behave like linear compos-
ites with infinitely many phases with highly contrasted secant
moduli.

3.2.2 Cell materials

To illustrate the ability of the present method to overcome
this difficulty, we consider the following class of two-phase
composites, with a view to finding an accurate “self-consistent
scheme” for nonlinear composites.

One of the basic issues which arises in the theoretical predic-
tion of the effective properties of composite materials is to pro-
pose an appropriate description of the effective properties of
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materials where there is no phase playing the role of a matrix.
Polycrystalline materials are a typical example of such com-
posites. Another example is provided by the duplex materials
studied by Siegmund, Werner and Fischer (1993). These ma-
terials can be idealized as cell materials, to use Miller’s termi-
nology (Miller, 1969), in which the whole space is covered by
cells. In the case of polycrystalline materials, the crystalline
orientation of each cell is chosen randomly. In the case of du-
plex materials, the properties of each cell are chosen randomly
to be either those of phase 1 or phase 2, subject only to the
volume fraction constraints.

In the two-dimensional setting, when the materials are lin-
ear and incompressible, this problem has been studied from
the computational point of view in particular by Suquet and
Moulinec (1997). It was observed that when the contrast be-
tween the phases is not too large, the in-plane shear modulus
of this class of composites can be accurately described by the
self-consistent scheme. When the phases have equal volume
fractions, the in-plane shear modulus of composites with inter-
changeable incompressible phases is given by the exact rela-
tion µhom =

p
µ(1)µ(2) (Helsing et al., 1997), which coincides

with the predictions of the self-consistent scheme.

The authors are not aware of the existence of any exact rela-
tions of this kind in the case of nonlinear materials, although
rigorous nonlinear bounds and self-consistent estimates have
been proposed during the past few years. This lack of exact
results has motivated the present numerical study on the effec-
tive properties of nonlinear cell materials.

The microstructures investigated here are similar to those stud-
ied by Siegmund, Werner and Fischer (1993) and Suquet and
Moulinec (1997). The problem is a two-dimensional one (all
the phases are cylindrical in the third direction). The unit cell
is a rectangle covered by hexagons which are identical in size
(we used 16� 16 hexagons). The flow stress σ0 in each in-
dividual hexagon is prescribed randomly to be either that of
phase 1 or phase 2, subject to only the volume fraction con-
straints. 25 different configurations were generated at the same
volume fraction c1 = c2 = 0:5. These 25 configurations were
converted into 50 by exchanging the two phases. Examples of
these microstructures are shown in Fig. 3. Each microstructure
is discretized into 1024�1024 pixels. The loading applied to
the unit cells is a simple shear strain in the plane:

E =
p

3ε0 e1 
s e2: (34)

The computations can be carried out in the framework of plane
strains. The effective in-plane flow stress for each unit cell is
computed as

σhom
0 =

hσ : ε(u)i
ε0

: (35)

Numerical results are presented in Fig. 4a and Fig. 4b for two

values of the contrast between the phases σ(2)
0 =σ(1)

0 = 1:5 and

Figure 3 : Examples of microstructures. Both phases have
equal volume fractions. The microstructures on the bottom
row were deduced from those on the top by exchanging the
phases.

5, and different values of the exponent m. The average values
of the computed in-plane flow stresses for each exponent m are
denoted by circles, while the scattering of numerical results
about these mean values is indicated by error bars.

The numerical results were compared with various estimates
and bounds available in the literature. The variational Reuss
lower bound (VB(R)) is obtained by choosing a uniform stress
field in the dual of the minimum principle (3). The result ob-
tained for the effective in-plane flow stress is σR

0 � σhom
0 , with

σR
0 =

"
c1

(σ(1)
0 )

1
m

+
c2

(σ(2)
0 )

1
m

#
�m

; (36)

where the two phases are in the volume fractions c1 and c2

with flow stresses σ(1)
0 and σ(2)

0 , respectively.

Variational procedures were recently developed (see Ponte
Castañeda and Suquet, 1998, for a review) which improve
on Reuss’s nonlinear bound. Schematically, these procedures
combine bounds or estimates for linear properties (those of a
linear comparison solid) with a nonlinear variational scheme
defining the appropriate linear comparison solid. When lin-
ear upper bounds are used in this procedure, rigorous upper
bounds for the effective nonlinear properties of composites
are obtained. For instance, the linear Hashin-Shtrikman up-
per bound (HS+) turns into a rigorous nonlinear upper bound
for nonlinear composites (denoted VB(HS+)). Assuming that

σ(2)
0 � σ(1)

0 , the variational HS-type upper bound VB(HS+)
reads

σHS+
0 = σ(1)

0 min
ρ>0

f (ρ)
m+1

2

24c1+ c2

 
σ(2)

0

σ(1)
0

! 2
1�m

ρ
m+1
m�1

35
1�m

2

(37)
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with

f (ρ) = 1+ c2
ρ�1

1+ c1
ρ�1
ρ+1

: (38)

Likewise, the self-consistent estimate VE(SC) can be derived
from the variational procedure by estimating the effective
properties of the linear comparison solid with the correspond-
ing classical linear self-consistent scheme. However, when
both phases have equal volume fractions, this nonlinear esti-
mate reads (regardless of the nonlinearity exponent)

σhom
0 =

q
σ(1)

0 σ(2)
0 : (39)

Fig. 4 also shows the predictions of Michel’s self-consistent
scheme (Michel, 1998). In this scheme, one of the phases
plays the role of a matrix while the other phase plays the role of
inclusions. Let us assume for simplicity that phase 2 is harder

than phase 1 (i.e. σ(2)
0 � σ(1)

0 ). When phase 1 is the matrix
(NSC(1)), the self-consistent estimate is given in an implicit
form by the equation

σhom
0 = (1� c2 a2)σ(1)

0

"
σhom

0 � c2 σ(2)
0 am+1

2

c1 σ(1)
0

#m�1
m+1

+ c2 σ(2)
0 am

2 ; (40)

with

σ(2)
0

σhom
0

am
2 = β� (β�1)a2; (41)

where β denotes the stress concentration factor under in–plane
shear of a long rigid fiber in an infinite incompressible power-
law matrix with potential W hom in the form (31) with flow
stress σhom

0 . β depends on m but not on σhom
0 . In the linear case

(m = 1), β can be determined in the closed form: β(1) = 2.
This is no longer the case when m 6= 1 and it is necessary here
to perform a numerical computation for β. Some computed
values of β for different exponents n= 1=m are given in Tab. 1.

When phase 2 is the matrix (NSC(2)), the implicit equation for
the self-consistent estimate reads

σhom
0 = (1� c1 a1)σ(2)

0

"
σhom

0 � c1 σ(1)
0 am+1

1

c2 σ(2)
0

#m�1
m+1

+ c1 σ(1)
0 am

1 ; (42)

with

σ(1)
0

σhom
0

am
1 =

γ�a1

γ�1
; (43)

where γ denotes the strain localization factor under in–plane
shear of a long circular cylindrical void in an infinite incom-
pressible power-law matrix with potential W hom in the form

(31) with flow stress σhom
0 . Again γ depends on m but not

on σhom
0 . Some computed values of γ for different exponents

n = 1=m are given in Tab. 1.

Table 1 : Michel’s self-consistent scheme. Values of β and γ
for different exponents n = 1=m.

n 1 1.5 2 3 5 7 10
β 2. 1.823 1.715 1.588 1.462 1.396 1.337
γ 2. 2.213 2.400 2.709 3.182 3.546 3.980

Finally, when the contrast is small (i.e. when σ(2)
0 =σ(1)

0 = 1:5),
the numerical results can be compared with those obtained
with the small-contrast expansion to second-order procedure
developed by Ponte Castañeda and Suquet (1995).

Several comments can be made on these figures. First of all,
it can be seen that all the numerical simulations and the var-
ious theoretical estimates satisfy the upper and lower varia-
tional bounds. With both contrasts, the numerical results ob-
tained for σhom

0 suggest that the effective flow stress is a non-
decreasing function of m. As mentioned above, the variational
self-consistent estimate VE(SC) does not predict that the non-
linearity exponent m will have any influence, and this is cer-
tainly a limitation of this prediction. With a small contrast

(σ(2)
0 =σ(1)

0 = 1:5), the predictions of the small contrast expan-
sion to second order and those of the two self-consistent esti-
mates NSC(1) and NSC(2) are in good agreement with the nu-

merical results. At a higher contrast (σ(2)
0 =σ(1)

0 = 5), the small
contrast expansion is no longer valid and is not shown. The
self-consistent estimates NSC(1) and NSC(2) diverge signifi-
cantly when the nonlinearity increases. Finally NSC(2) seems
to be the prediction which comes closest to numerical simula-
tions for all values of m.

3.3 Rigid-plastic materials

3.3.1 Effective flow surface of a composite

Consider a composite where the individual constituents are
rigid-plastic. The strength of the individual constituent located
at point x is characterized by a strength domain P(x). P is a
convex domain in the stress space which delimits the set of
stress states which are physically sustainable by the material.
The associated “energy” function w is defined as

w(x;ε) = Sup

τ 2 P(x)

τ : ε: (44)

w is a convex function whenever P is a convex set. For in-
stance, when the strength properties of the phases are de-
scribed by the von Mises criterion, this function reads

w(x;ε) = σ0(x)εeq: (45)
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Figure 4 : Effective in-plane flow stress as a function of the power exponent m for two values of the contrast between the phases.
Comparison between the theoretical predictions and the numerical simulations. VB(HS+): nonlinear Hashin-Shtrikman upper
bound, VE(SC): variational self-consistent estimate, NSC(1): nonlinear self-consistent estimate (40)-(41), NSC(2): nonlinear
self-consistent estimate (42)-(43), Small-contrast expansion Ponte Castañeda and Suquet (1995), VB(R): Reuss lower bound.

The effective strength domain of the composite has been de-
fined as follows (Suquet, 1987)

Phom = fΣ such that there exists σ(x) with hσi= Σ;
σ(x) 2 P(x); divσ(x) = 0 for all x in V;
σ:n�#g:

(46)

The boundary of Phom is the flow surface of the composite.
This surface depends on the strength domain, the volume frac-
tion and the arrangement of the individual phases. The nu-
merical determination of Phom is difficult to perform based on
the static definition (46), and a kinematic characterization is
preferable. Let Whom(:) denote the effective energy function
associated with the individual energy w(x; :) by the variational
principle (3). It follows from Suquet (1987) that

W hom(E) = Sup

Σ 2 Phom

Σ : E = Inf

u 2 K (E)

hw(ε(u))i: (47)

The minimization problem (47) is non-smooth in the sense that
the function w to be minimized is not differentiable at the ori-
gin. In the first step, the energy function is regularized by
adding an elasticity term. This elasticity term is isotropic with
bulk and shear moduli k and µ respectively. In the case of a
von Mises material (45), the regularized energy reads

w(x;ε) =
9
2

k ε2
m + f (εeq);

f (εeq) =

8><>:
3
2

µ ε2
eq+

σ2
0

6µ
when εeq � σ0

3µ
;

σ0εeq when εeq � σ0

3µ
:

(48)

This strain-energy has the form (25).

We now consider the minimization problem (3) for the regu-
larized energy (48), which is still denoted w. This problem is
solved using a step-by-step procedure. The overall strain E is
applied gradually as

E(t) = tE0; (49)

where E0 is a prescribed direction of the strain. This intro-
duces an artificial time into the problem. The evolution of
the local fields σ(t;x);u(t;x) solution of (3) is then computed.
It can be seen that when t goes to infinity, the average stress
Σ(t) = hσ(t)i stands on the flow surface ∂Phom, and E0 is an
outer normal vector to ∂Phom at this point. The method can
be modified to follow a prescribed direction in stress space
Σ(t) = k(t)Σ0, where Σ0 is a given stress direction, instead of
following direction in strain space as done by (49) (see Michel
et al., 1999, for further details along these lines). The latter
stress-controlled method yields a more accurate determination
of the extremal surface.

3.3.2 Voided rigid-plastic materials

We now consider the case of a rigid-plastic matrix containing
voids. This problem involves two difficulties: the matrix is
strongly nonlinear and the contrast between the phases is in-
finite. The problem is a two-dimensional one. The voids are
infinite in the third direction and have a circular cross section
and the same radius. The unit cell cross section is a square.
40 voids are distributed randomly in the unit cell (see Fig. 5a)
and the resulting void volume fraction is f = 0:125. The unit
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Figure 5 : Cylindrical voids randomly distributed in a block of plastic material. (a): configuration with 40 voids. (b): extremal
surface under axisymmetric loading. Solid line: Gurson criterion for cylindrical voids. Squares: numerical results for a square
void distribution. Stars: numerical results for the configuration with 40 randomly distributed voids.

cell cross section is discretized into 1024� 1024 pixels. The
overall stress is an axisymmetric one having the form

Σ = Σ11(e1
 e1 + e2 
 e2)+Σ33e3
 e3: (50)

Three different results are shown and compared in Fig. 5b. The
solid line is the Gurson criterion for cylindrical voids (Gurson,
1977):

Σ2
eq

σ2
0

+2 f cosh

 p
3

2
Σαα

σ0

!
�1� f 2 = 0: (51)

The squares denote the numerical results obtained with the
present method on a simple unit cell consisting of a single cir-
cular void in a square cell with volume fraction f = 0:125.
The stars denote the numerical results obtained on the unit cell
shown in Fig. 5a. The results are plotted with Σαα=2 = Σ11

on the horizontal axis and Σeq = jΣ11 � Σ33j on the vertical
axis. The point on the vertical axis (Σ11 = 0 corresponding to
uniaxial tension in the third direction) is known in the closed
form ((1� f )σ0), independently of the arrangement of the
voids in the unit cell. The three sets of results deviate signifi-
cantly when the triaxiality of the stress increases. The homo-
geneity (or nonhomogeneity) of the strain field within the unit
cell strongly influences the extremal surface. Gurson’s model,
based on the analysis of a hollow cylinder, corresponds to a lo-
cal strain field which is nonzero throughout, whereas the local
field in the unit cell containing 40 voids is highly concentrated
in the necks between the voids. This high strain concentra-
tion results in low strength properties. Finally the single void
configuration comes in between these two extreme cases.

4 Conclusion

A numerical method based on Fast Fourier Transforms was re-
cently proposed to compute the response of periodic compos-
ites (Moulinec and Suquet, 1998; Michel et al., 1999). A major
limitation of the original method is that convergence is slow in
the case of composites with a high contrast and the method
can even diverge when dealing with composites with infinite
contrast (those containing voids or rigid inclusions or show-
ing highly nonlinear behavior). In this paper, an augmented
Lagrangian method is proposed which is free of these limita-
tions. The method is successfully applied to the case of voided
materials and power-law materials.
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