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Abstract: The development of fatigue damage in a tool-
steel metal matrix discontinuously reinforced with TiC partic-
ulates is analysed using a numerical cell model. The material
is subjected to cyclic loading, and the matrix material is repre-
sented by a cyclic plasticity model, which uses a superposition
of kinematic and isotropic hardening, with continuum damage
mechanics incorporated to model fatigue damage evolution.
The cell model represents a material with transversely stag-
gered particulates. With focus on low cycle fatigue, the effect
of balanced as well as unbalanced cyclic loading is studied.

1 Introduction

For metal matrix composites (MMC) under monotonic tensile
loading the failure mechanisms can be divided in three groups,
debonding of the matrix-fibre interface, brittle failure of the re-
inforcements, and ductile matrix failure, as has been discussed
by Needleman, Nutt, Suresh, and Tvergaard (1993). Numeri-
cal cell-model studies accounting for these failure mechanisms
have been carried out by a number of authors, in order to obtain
a parametric understanding of the effect of different material
parameters, such as the shape and distribution of fibres, the fi-
bre volume fraction, and the matrix material parameters [Nutt
and Needleman (1987); Tvergaard (1990, 1993, 1995, 1998);
Llorca, Needlemann, and Suresh (1991); Llorca, Suresh, and
Needlemann (1992)].

For cyclic loading the fatigue behaviour of discontinuously re-
inforced metal matrix composites has been discussed by Al-
lison and Jones (1993), with focus on aluminium based com-
posites. Also Llorca and Poza (1995) have tested SiC partic-
ulate reinforced Al under fatigue loading, and Llorca, Suresh,
and Needlemann (1992) have used a material model for duc-
tile failure in unit cell analyses to represent damage develop-
ment during cyclic deformation in metal matrix composites.
Recently Pedersen and Tvergaard (1999) have modelled the
cyclic plasticity of an aluminium reinforced by short SiC fibres
by using a material model that combines isotropic and kine-
matic hardening with continuum damage mechanics [Lemaitre
(1992)]. This nonlinear kinematic hardening rule uses a su-
perposition of isotropic hardening and kinematic hardening
[Lemaitre and Chaboche (1990)], which makes it possible to
describe the Bauchinger effect, cyclic hardening and soften-
ing, ratchetting, and mean stress relaxation. The model has
been employed by Pedersen (2000, 1999) to study fatigue
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damage in cold-forging tools.

In the present paper the approach used in Pedersen and Tver-
gaard (1999) is applied to analyse the evolution of fatigue
damage in a tool-steel metal matrix discontinuously reinforced
with TiC particulates, as the material studied in Srivatsan, An-
nigeri, and Prakash (1997).

2 Cyclic Plasticity Model with Fatigue Damage

The analyses in the present work are based on a small strain
formulation of the field equations. The total strain increment is
given by the sum of the elastic and plastic parts, ε̇i j = ε̇e

i j+ ε̇p
i j.

The elastic stress strain relationship is described by Hooke’s
law, σ̇i j = Li jklε̇e

kl , where the summation convention is adopted
for repeated indices, σi j is the stress tensor, E is Young’s mod-
ulus and ν is Poisson’s ratio.

The plastic strain increment follows the normality rule, ε̇p
i j =

(∂ f =∂σi j) λ̇, where the plastic multiplier, λ̇, is obtained from
the consistency condition, ḟ = 0. A Mises yield surface with
mixed hardening is used, as specified by

f = σ̃e� (R+ k) = 0 (1)

The stress state is described by the effective stress tensor,
σ̃e = (3s̃i js̃i j=2)1=2, where s̃i j = σ̃i j� 1=3δi jσ̃kk is the effec-
tive stress deviator. Here, σ̃i j = σi j=(1�D)�Xi j, where D is
a scalar describing the amount of damage in a material point
[Lemaitre (1992)]. The kinematic hardening is governed by
the back stress tensor, Xi j, representing the centre of the yield
surface in stress space.

The size of the yield surface is described by the scalars R and
k . Here, k is a constant and R a variable, which is used for
describing the isotropic hardening or softening of the material.
The initial conditions of a cyclic hardening material are de-
scribed by k= σy and R = 0, where σy denotes the initial yield
stress. The evolution equation for the variable R is described
as

Ṙ = b (R∞(Λ;q)�R) λ̇ (2)

where b is a material parameter and the value R∞(Λ;q) rep-
resents the limit of isotropic hardening, as described in more
detail in Hopperstad, Langseth, and Remseth (1995); Pedersen
(2000); Pedersen and Tvergaard (1999). The description of the
nonproportionality of the loading path to be used here follows
the form suggested by Benallal, Le Gallo, and Marguis (1988).
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The kinematic hardening of the material is described by means
of the back stress tensor, Xi j, which is taken to be the sum of
three contributions, in order to enhance the description of the
material stress strain response

Xi j =
3

∑
n=1

X
(n)
i j (3)

For each of the back stress deviators, XD(n)
i j , an evolution equa-

tion is specified of the form Ohno and Wang (1993)

ẊD(n)
i j =

2
3

γ(n)X (n)
∞ ε̇p

i j�

 
X (n)

e

X
(n)
∞

!mn

XD(n)
i j γ(n)λ̇ (4)

where the effective back stress is X (n)
e =

�
3=2X (n)

pq X (n)
pq

�1=2
.

Further descriptions of the parameters in Eq. 4 and the repre-
sentation of ratchetting are given in Pedersen (1999); Pedersen
and Tvergaard (1999).

The scalar, D , which is incorporated in the constitutive equa-
tions as outlined in Lemaitre (1992) is here used to describe the
development of fatigue damage in the material. For an undam-
aged virgin material, D = 0, but when the accumulated plastic
strain, p , reaches a threshold value, pd , damage starts devel-
oping in the sense of microvoids or microcracks. As it reaches
a critical value, Dc, the material has a high density of micro-
cracks that are likely to coalesce into a macrocrack leading to
failure of the structural component. The damage development
is described by

Ḋ =
Y
S

ṗα(p); α =

�
1; if p� pd

0; if p < pd
(5)

where S is a material parameter describing the energy strength
of damage, the effective plastic strain increment is determined

as ṗ =
�

2=3ε̇p
i jε̇

p
i j

�1=2
and ṗ = λ̇=(1�D). The strain energy

release rate is given by Y = σ2
eRv=

�
2E(1�D)2

�
, where the

effective stress is denoted σe, and the triaxiality of the stress
field is accounted for by the parameter Rv, which is here taken
to be specified by

Rv =

(
1+C σkk

σy
; σkk � 0

exp
�

C σkk
σy

�
; σkk < 0

(6)

The material parameter C is adjusted to describe the mean
stress sensitivity of damage development [Pedersen (2000)].
The final form of the incremental constitutive relations will not
be repeated here, but can be found in Pedersen and Tvergaard
(1999); Pedersen (2000).

3 Cell Model and Results

The particles are taken to be elastic with Young’s modulus
E f and Poisson’s ratio ν f . Furthermore, perfect bonding is

(a)

(b)

Figure 1 : Periodic arrays of cylindrical particulates with par-
allel axes. (a) Axisymmetric cell-model. (b) Transversely
staggered particulates.

assumed between matrix and particles, and the possibility of
particle fracture is neglected. Thus, the only type of failure
accounted for is the fatigue damage evolution incorporated in
the cyclic plasticity law used for the matrix. In the axisymmet-
ric model, described in more detail in Pedersen and Tvergaard
(1999); Tvergaard (1990), the fibre volume fraction f is

f =
r2

f l f

r2
c lc

(7)

Here, l f and r f are the fibre half length and radius, respec-
tively, lc and rc are the cell length and radius (see Fig. 1), and
the aspect ratios of the fibre and cell are

α f = l f =r f ; αc = lc=rc (8)

The major average principal stress σ1 in the composite is taken
to be in the axial direction, and the use of an axisymmetric
cell model implies that only cases with a uniform transverse
average stress σ2 are considered. In the cases to be analysed a



Fatigue Damage Development in a Steel Based MMC 91

Figure 2 : Mesh used for the numerical computations

Figure 3 : Overall stress-strain loops for first 20 cycles
with balanced stress controlled cycling, σmax=E =�σmin=E =
0:011, and ρ = 0.

fixed ratio between the axial and transverse average stresses is
assumed, σ2 = ρσ1.

In the present analyses the values of the tool-steel material
parameters are chosen equal to those determined by Peder-
sen [Pedersen (2000, 1999)] for Calmax, i.e. k=E = 0:0054,
ν = 0:3, b = 1:1, R∞=E = 0, R0=E = 0:0006, αR = 0:7,
βR = 160, γR = 0:5, and Cq = 0:5. Furthermore, in the back-
stress evolution equations [Eq. 3-4] the parameter values used
are γ1 = 2000, γ2 = 180, γ3 = 50, X1

∞=E = 0:00125, X2
∞=E =

0:00375, X3
∞=E = 0:001, m1 = 0, m2 = 0, and m3 = 0. In

the damage evolution equations [Eq. 5-6] the parameter values
are S=E = 0:000914, pd = 0, Dc = 1:0 and C = 0:5. Further-
more, the elastic constants of the TiC fibres are specified by
E f =E = 2:185 and ν f = 0:199 [see Srivatsan, Annigeri, and
Prakash (1997)].

In all the cases to be analysed here the particulates are taken

(a)

(b)

Figure 4 : Contours of constant strain or damage, at maximum
tensile stress, after 20 cycles with balanced stress controlled
loading, σmax=E =�σmin=E = 0:011, and ρ = 0.

to be periodically distributed in the material and transversely
staggered (Fig. 1), as described in Pedersen and Tvergaard
(1999); Tvergaard (1990). The aspect ratios are α f = αc = 1,
and the volume fraction of TiC particulates is taken to be
f = 0:35, to relate to one of steel matrix composites considered
in Srivatsan, Annigeri, and Prakash (1997). In all cases anal-
ysed the material is subjected to uniaxial cyclic stress, ρ = 0.
Fig. 2 shows the mesh used for the numerical analyses, with
the hatched region representing the particulate.

Fig. 3 shows the overall stress-strain loops for the first 20 cy-
cles, when the loading is stress controlled with balanced cy-
cling, σmax=E = �σmin=E = 0:011. This is the type of test
where strain ratchetting is possible and is in fact rather com-
monly observed [Allison and Jones (1993)], and also Fig. 3
shows ratchetting, since clearly the mean strain moves a small
step in the negative direction for each cycle.

The corresponding distributions of the maximum principal
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Figure 5 : Overall stress-strain loops for first 20 cycles, corre-
sponding to loading cases with ρ = 0. Balanced stress con-
trolled cycling with σmax=E = �σmin=E = 0:009, and bal-
anced strain controlled cycling with εmax = �εmin = 0:012

strain ε and damage D at the end of cycle no. 20, at maximum
tensile stress, are illustrated by the contour curves in Fig. 4.
Here, the location of the particulate is indicated by dashed
lines. It should be noted that the apparent small amount of
damage inside the sharp fibre edge, as indicated in Fig. 4b, is
entirely due to a plotting inaccuracy resulting from averaging
in the plotting programme. It is seen in Fig. 4a that the strains
concentrate at the sharp fibre edge, which results in rapid fa-
tigue damage evolution in the matrix just around the fibre edge.
However, the largest amount of damage is found at the bottom
right side of Fig. 4b, centrally between two particulate ends.
This distribution of damage is better understood if different fi-
bre spacings are considered, and a study for Aluminium matrix
composites has shown that for well separated fibres the high-
est level of damage along the axis of the cylindrical cell would
tend to occur about one fibre radius ahead of the fibre end. It
is expected that the interaction of two such regions results in
the maximum damage region found in Fig. 4b.

Fig. 5 shows the overall stress-strain loops for the first 20 cy-
cles, corresponding to two different loading cases. One case
is stress controlled loading with balanced cycling, σmax=E =
�σmin=E = 0:009, i.e. like the case in Fig. 3 but with smaller
stress amplitude. It is directly seen that there is less plasticity,
and the width of the hysteresis loop is smaller. Fig. 6 gives the
corresponding distributions of strain and damage after 20 cy-
cles, showing clearly less strain concentration at the fibre edge
in Fig. 6a. The much lower levels of plastic straining after 20
cycles result in much reduced levels of damage, by a factor of
about 1/4 , but Fig. 6b shows that the distribution of damage
is still much like that in Fig. 4b. The other stress-strain loops
in Fig. 5 represent strain controlled loading with balanced cy-
cling, εmax = �εmin = 0:012, so that in this case the loading

(a)

(b)

Figure 6 : Contours of constant strain or damage, at maximum
tensile stress, after 20 cycles with balanced stress controlled
loading, σmax=E =�σmin=E = 0:009, and ρ = 0.

prevents ratchetting. The resulting peak stresses are a little
higher than those in Fig. 3, resulting in somewhat higher plas-
tic strains and about twice as high fatigue damage levels after
20 cycles, still with a damage distribution very similar to that
in Fig. 4b.

Overall stress-strain loops are shown in Fig. 7 for two cases
with unbalanced stress controlled cyclic loading. The stress
ranges are the same in both cases, (σmax�σmin)=E = 0:0208,
but one case has positive mean stress while the other case has
negative mean stress. These mean stresses are chosen to give
approximately equal amounts of strain ratchetting in positive
and negative directions, respectively. Thus, the positive mean
stress is numerically larger than the negative mean stress, as
would be expected, since zero mean stress gave negative ratch-
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Figure 7 : Overall stress-strain loops for first 20 cycles, cor-
responding to loading cases with ρ = 0 and unbalanced stress
controlled loading.

(a)

(b)

Figure 8 : Contours of constant damage after 20 cycles with
ρ= 0 and unbalanced stress controlled loading. (a) σmax=E =
0:0116, σmin=E = �0:0092. (b) σmax=E = 0:010, σmin=E =
�0:0108.

etting in Fig. 3. The amounts of fatigue damage evolution af-
ter 20 cycles are compared in Fig. 8. The damage distributions
are in both cases rather similar to that shown in Fig. 4b, but
the damage levels are somewhat smaller. This agrees with the
somewhat smaller stress range in Figs. 7 and 8, as compared
to the case of Figs. 3 and 4. It is also noted that the maximum
damage level in Fig. 8a is larger than that in Fig. 8b. This is
entirely due to the larger mean stress levels in the case of Fig.
8a, which affects the rate of fatigue damage evolution due to
the positive value of C in Eq. 6.

It is noted that the parameter values used here to control the
rate of fatigue damage evolution are not very accurately deter-
mined in Pedersen (2000, 1999) for the tool-steel Calmax. In
particular, the most realistic modelling of material behaviour
will often require a threshold value of the plastic strain before
damage evolution starts [Lemaitre (1992)], i.e. a value pd > 0
in Eq. 5. This would mean that for a reasonably low stress am-
plitude, with only a small amount of plastic yielding in each
cycle, the material could sustain a rather large number of cy-
cles before fatigue failure would be predicted. Also, the value
used for C may be too high, but there is no doubt that C > 0
is needed to predict the realistic trend in the stress dependence
of fatigue damage evolution, as illustrated in Fig. 8.
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