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Abstract: The Analog Equation Method is applied to the
static and dynamic analysis of thin cylindrical shell panels.
The Flügge theory is adopted. The three displacement compo-
nents are established by solving two membrane and one plate
bending problems under the same boundary conditions sub-
jected to “appropriate” (equivalent) fictitious loads. Numeri-
cal results are presented which illustrate the efficiency and the
accuracy of the proposed method.
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1 Introduction

Static and dynamic analysis of linear elastic thin shells char-
acterized by complex geometry, loading and boundary condi-
tions require the use of numerical methods, such as the Finite
Difference Method (FDM) and especially the Finite Element
Method (FEM). Both of these methods, in spite of some short-
comings, have been successfully employed for the solution of
a variety of static and dynamic shell problems.

During the last few years the Boundary Element Method
(BEM) has been proven an efficient alternative to the domain
type methods and has been employed to study mainly thin
elastic shallow shells. In the class of general shells Antes
(1981) presented a direct boundary integral formulation BEM
for the static analysis of general shells based on reciprocity.
Explicit expressions for the fundamental solution of the spe-
cial case of circular cylindrical shells were given, but no nu-
merical examples were reported. The literature is much richer
in problems concerned with thin elastic shallow shells. There
are basically two BEM approaches for the static analysis of
shallow shells. The first approach is the conventional BEM
in its direct or indirect form, which employs the fundamen-
tal solution of the problem and is based on the displacement
or the flexural displacement-membrane stress function formu-
lation of shallow shells. Although this method requires only
a boundary discretization, it is not computationally efficient
due to the high complexity of the fundamental solution [Sim-
monds and Bradley (1976); Matsui and Matsuoka (1978)].
This approach, may be advantageous only for special cases
dealing with spherical and circular cylindrical shallow shells,
for which simpler fundamental solutions exist [Newton and
Tottenham (1968); Tosaka and Miyake (1983); Gospodinov
(1984)].
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The second approach is the direct domain/boundary element
method D/BEM, which employs the plate fundamental solu-
tion in flexure and stretching in its formulation. This creates
boundary as well domain integrals due to the flexure-stretching
coupling terms and therefore requires a boundary as well as an
interior discretization. However, the simplicity of the funda-
mental solution results in a more general and efficient scheme
[Forbes and Robinson (1969); Zhang and Atluri (1986); Wang,
Ye and Wang (1986); Ye (1988)].

Although the literature on the static analysis of shallow shells
by the BEM and the D/BEM is rather rich, this is not the case
with the dynamic analysis of these structures. Free and forced
vibrations of shallow shells have been recently studied by the
D/BEM which employs the static fundamental solution of a
plate in flexure and stretching. This creates domain integrals
due to the flexure-stretching coupling terms as well as due to
the inertia terms. This is apparently the only viable solution
to the problem, since there is no any shallow shell fundamen-
tal solution for the dynamic case in the literature, while the
shallow shell static fundamental solution is very complicated
and domain integrals are necessarily present in the formulation
due to the existence of inertia terms. Zhang and Atluri (1986),
were the first to employ the D/BEM to the dynamic analysis
of shallow shells both for small and large deformations. Provi-
dakis and Beskos (1987), developed a D/BEM solution for the
transient forced vibrations of linear elastic shallow shells in
the frequency domain.

In this paper a novel solution approach to the static and dy-
namic analysis of thin shells is presented. It is illustrated
without restricting the generality by applying it for cylindri-
cal shell panels. The proposed method is based on the con-
cept of the Analog Equation Method AEM. This method has
been employed to a variety of engineering problems includ-
ing potential problems [Katsikadelis (1994)], elasticity prob-
lems [Katsikadelis and Kandilas (1997)], plate problems [Kat-
sikadelis and Nerantzaki (1994) (1996)], linear and nonlinear
[Katsikadelis and Nerantzaki (1999)] static as well as dynamic
ones [Katsikadelis, Nerantzaki and Kandilas (1993)]. In the
present investigation the Flügge type differential equations in
terms of the three displacement components are used. Accord-
ing to the AEM the problem governed by the three coupled
Flügge type differential equations is substituted by two mem-
brane and a plate problems subjected to “appropriate” equiva-
lent fictitious time dependent load distributionsunder the same
boundary conditions. Subsequently, using BEM for these three
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linear problems (two Poisson and one biharmonic) the deflec-
tions as well as their derivatives involved in the original Flügge
equations are expressed in terms of the unknown domain fic-
titious loads. Substitution of these quantities (displacements
and derivatives) into the Flügge equations yields a set of linear
algebraic equations, which permit the determination of the fic-
titious loads. Finally, the displacements are obtained from the
integral representations of the analog equations. The method
is utilized to analyse certain static and dynamic example prob-
lems. The obtained results are in good agreement when com-
pared with those obtained from other analytical or computa-
tional techniques. In its present form is D/BEM and requires
domain discretization. Nevertheless the method can be devel-
oped as boundary-only, either by using the Dual Reciprosity
Method [Partridge, Brebbia and Wrobel (1991)] or the Particu-
lar Solution Method presented by Katsikadelis and Nerantzaki
(1999).

2 Governing equations

The Flügge type differential equations are used, which for a
typical thin-walled cylindrical shell of uniform thickness h,
made of an isotropic, linearly elastic material, are written as
[Koumousis (1981)].
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where u, v, w are the axial, circumferential and radial dis-
placements, and Li j (i; j= 1;3) are linear differential operators
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L11 =
∂2

∂x2 +
1�ν

2
∂2

∂s2 +
h2

12r2
0

1�ν
2

1

r2

∂2

∂s2 �

h2

12r2
0

1�ν
2

2r;s
r3

∂
∂s
�

1�ν2

E
ρr2

0
∂2

∂t2 (2)

L12 = L21 =
1+ν

2
∂2

∂x∂s
(3)

L13 = L31 =�
ν
r

∂
∂x

+
h2

12r2
0

1
r

∂3

∂x3 �
h2

12r2
0

1�ν
2

1
r

∂3

∂x∂s2

+
h2

12r2
0

1�ν
2

r;s
r

∂2

∂x∂s
(4)

L22 =
∂2

∂s2 +
1�ν

2
∂2

∂x2 +
h2

12r2
0

3(1�ν)
2

1

r2

∂2

∂x2

�
h2

12r2
0

�
r;s
r2

�2

�
(1�ν)2

E
ρr2

0
∂

∂t2 (5)

L23 =�
1
r

∂
∂s

+
r;s
r2 +

h2

12r2
0

3�ν
2

1
r

∂3

∂x2∂s
+

h2

12r2
0

r;s
r2

∂2

∂s2 (6)

+
h2

12r2
0

r;s
r4 (7)

L32 =�
1
r

∂
∂s

+
h2

12r2
0

3�ν
2

1
r

∂3

∂x2∂s
�

h2

12r2
0

3�ν
2

r;s
r2

∂2

∂x2

�
h

12r2
0

r;s
r2

∂2

∂x2 �
h2

6r2
0

�
r;s
r2

�
;s

∂
∂s

�
h2

12r2
0

�
r;s
r2

�
;ss

�
h2

12r2
0

r;s
r4 (8)

L33 =
h2

12r2
0

∇4 +
h4

12r2
0

1

r2

∂2

∂s2 +
1

r2 +
h2

12r2
0

1

r2

∂2

∂s2 �
h2

3r2
0

r;s
r3

∂
∂s

�
h2

6r2
0

�
r;s
r3

�
;s+

h2

12r2
0

1

r4 +
1�ν2

E
ρr2

0

2

t2 (9)

with r = r�=r0, r� being the radius of curvature of the cross-
section of the shell; r0 is the radius of a circle whose arc length
is equal to that of the cross-section of the non-circular shell; ρ
is the mass density and are the components of the body force
in the axial, circumferential and X , S, Z radial directions, re-
spectively. Note that in the above equations, the inertia forces
have been included in the differential operators.

The shell panel may be subjected to the following boundary
conditions

� Curved edge simply supported Nx = v = w = Mx = 0

� Curved edge clamped Nx = v = w = w;x= 0

� Straight edge simply supported u = v = w = Ms = 0

� Straight edge clamped u = v = w = w;s= 0

An edge may be movable or immovable in the direction of the
middle surface and simply supported or clamped in the trans-
verse direction. In the present analysis we consider cylindrical
shells with rectangular plan form under the following bound-
ary conditions.

a) Curved edge

Nx = 0; v = 0; w = 0; Mx = 0;

Nx = 0; v = 0; w = 0; w;x= 0 (10)

b) Straight edge

α1u+α2Nsx = α3; β1v+β2

�
Ns�

Ms

r

�
= β3;

γ1w+ γ2Qseff = γ3; δ1w;s+δ2Ms = δ3;

Qseff = Qs +Msx;x (11)

where αi(p), βi(p), γi(p), δi(p) p2Γ (i= 1;2;3) are functions
specified on the boundary. Note that all types of conventional
boundary conditions are obtained by specifying approprietly
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these functions, e.g for a movable simply supported edge it is
α2 = 1, α1 = α3 = 0, β2 = 1, β1 = β3 = 0, γ1 = 1, γ2 = γ3 =
0, δ1 = δ3 = 0, δ2 = 1. Moreover Nx, Ns, Nxs, Nsx, Mx, Ms,
Mxs, Msx, Qx, Qs are the stress resultants given as [Koumousis
(1981)].

Nx =
Eh

(1�ν2)r0

�
u;x+ν

�
v;s�

w
r

�
+

1

12r2
0

1
r

w;xx

�
(12)

Ns =
Eh

(1�ν2)r0

h
v;s+νu;x�

w
r
�

h2

12r2
0

c
r

�
w;ss+

w

r2 �
r;s
r2 v

��
(13)

Nxs =
Eh

2(1+ν)r0

�
u;s+v;s +

h2

12r2
0

1
r

�
1
r

v;x+w;xs

��
(14)

Nsx =
Eh

2(1+ν)r0

�
u;s+v;s�

h2

12r2
0

c
r

�
w;xs�

1
r

u;x

��
(15)

Mx = �
D

r2
0

�
w;xx+ν

h
w;ss+

�v
r

�
;s

i
+

1
r

u;x

�
(16)

Mx = �
D

r2
0

�
c

�
w;ss+

w

r2 �
r;s
r2 v

�
+νw;xx

�
(17)

Mxs =
D

r2
0

(1�ν)
�

w;xs+
1
r

v;x

�
(18)

Msx = �
D

r2
0

1�ν
2

�
(1+ c)w;xs+

1
r

v;x�
c
r

u;s

�
(19)

Qx =�
D

r3
0

�
w;xxx+

1
2
[1+ c+ν(1� c)]w;xss

+
1�ν

2
c;s w;xs+

1
r

u;xx�
1�ν

2

�cu;s
r

�
;s

+
1+ν

2

�v
r

�
;xs

�
(20)

Qs = �
D

r3
0

�
cw;sss+w;xxs+c;s

�
w;ss+

w

r2 �
r;s
r2 v

�

+c
� w

r2

�
;s+(1�ν)

1
r

v;xx�c

�
r;s
r2 v

�
;s

�
(21)

D =
Eh3

12(1�ν2)

c = 12 (rr0=h)2
�
(rr0=h) log

1+h=2rr0

1�h=2rr0
�1

�
(22)

For thin shells c differs negligibly from unity. Thus, in the
sequel c will be taken equal to one.

For the dynamic problem the displacements and the velocities
must satisfy the following initial conditions

u(x; s; 0) = u1(x; s) u̇(x; s; 0) = u̇1(x; s)

v(x; s; 0) = v1(x; s) v̇(x; s; 0) = v̇1(x; s) (23)

w(x; s; 0) = w1(x; s) ẇ(x; s; 0) = ẇ1(x; s)

φ = angle(r;n)

3 The Analog Equation Method

The initial-boundary value problem described by Eq. 1, 10-11,
23 can be solved using the Analog Equation Method (AEM)
developed by Katsikadelis (1994). In this particular problem
the method is applied as follows.

Let u, v, w be the sought solution of the problem. If the Lapla-
cian operator is applied to the functions u, v and the bihar-
monic operator to w we obtain

∇2u = q1(s;x; t)

∇2v = q2(s;x; t)

∇4w = q3(s;x; t) (24)

Eq. 24 indicate that the solution of the original shell equations
can be obtained as the deflection surfaces of two membranes
and that of a plate with unit stiffness, subjected to the fictitious
time dependent loads q1, q2, q3 under the given boundary and
initial conditions.

According to the AEM the unknown fictitious loads q1, q2, q3

can be established using the BEM as following.

For the functions u, v, w satisfying the Eq. 24 the follow-
ing integral representations are obtained [Katsikadelis (1989),
(1994)].
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ε = 2π, π, 0 depending on whether the point P is inside the
domain Ω, on the boundary Γ or outside Ω, respectively. The
boundary is assumed to be smooth at the point P; r is the dis-
tance between this point P and the point that varies during in-
tegration.
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In Eq. 25-28 the following notation has been employed

Ω1 = u; X1 =
∂u
∂n

; (34)
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Using the expressions in Eq. 12-21 for the stress resultants and
the notation in Eq. 34-37, the boundary conditions in Eq. 10
for the curved edge become

X1 = 0; Ω2 = 0; Ω3 = 0; Φ3 = 0 (38)

and

X1 = 0; Ω2 = 0; Ω3 = 0; X3 = 0 (39)

Moreover the boundary conditions in Eq. 11 for the straight
edge become

Ω1 = 0; Ω2 = 0; Ω3 = 0; δ1X3 +δ2Φ3 = 0 (40)

The values δ1 = 1 and δ2 = 0 correspond to the clamped edge,
while δ1 = 0 and δ2 = 1 to the simply supported edge.

The boundary conditions in Eq. 38-40 together with the inte-
gral equations in Eq. 25-28, when P 2 Γ, constitute a set of
boundary equations which permit the establishment of the un-
known boundary quantities in terms of the fictitious sources qi

(i = 1;2;3). This can be achieved numerically as follows.

The boundary Γ is discretized into N elements and the domain
into M cells on which the unknown quantities are assumed
constant. Collocation of the boundary equations at the bound-
ary nodal points yields
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where [Ai j] (i; j = 1;2), [Bi j] (i; j = 1;2), [Γi j] (i; j = 1;2;3;4)
are N�N known coefficient matrices, fCig (i = 1;3;4), N�M
known coefficient matrices.

Subsequent collocation of the integral equations at the domain
nodal points and elimination of the boundary quantities using
Eq. 41-43 yields

fug= [G1]fq1g (44)

fvg= [G2]fq2g (45)

fwg= [G3]fq3g (46)

where fug, fvg, fwg and q1, q2, q3 are vectors, including the
values of the respective functions at the M domain nodal points
and [G1], [G2], [G3]are M�M known coefficient matrices. For
nonhomogeneous boundary conditions a constant known vec-
tor will appear in the right hand side of equations Eq. 44-46.

Similar expressions are obtained for the derivatives of u, v,
w involved in Eq. 1 by direct differentiation of their integral
representations Eq. 25-27. Thus we have (See Appendix A
and B)
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fvsg= [G2s ]fq2g (54)
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fvxsg= [G2xs ]fq2g (57)

fvxxsg= [G2xxs ]fq2g (58)

fwxg= [G3x ]fq3g (59)
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Finally, the application of Eq. 1 at the domain nodal points and
the use of Eq. 44-66 yields

[M]fq̈g+[C]fq̇g+[K]fqg= fgg (67)

where [M], [C], [K] are generalized mass, damping, and
stiffness matrices with dimensions 3M � 3M and fggT =
ffXg;fSg;fZgg is a vector including the 3M values of the ex-
ternal force.

Note that in the absence of inertia and damping forces [M] =
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Figure 1 : Radial deflection (w�104 m) of a shell with sim-
ply supported the curved edges and the straight edges under
uniform normal pressure.
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Figure 2 : Radial deflection of a shell with simply supported
curved edges and clamped the straight edges under uniform
normal pressure (w�104 m)

[C] = 0 and eqn Eq. 67 becomes

[K]fqg= fgg (68)

which represents the static problem.

For free, undamped vibrations it is fgg = 0 and setting
q(x; s; t)= Q(x; s)eiωt we obtain

�
[K]�ω2[M]

�
fQg= f0g (69)

from which the eigenfrequencies and mode shapes are estab-
lished by solving a typical eigenvalue problem of linear alge-
bra.

4 Numerical Examples

4.1 Example 1

A circular cylindrical shell (barrel vault problem) with all
edges simply supported and subjected to uniform normal pres-
sure has been analyzed. The numerical results have been ob-
tained with N = 84, M = 14� 28 = 392. The radial deflec-
tions at the mid-shell have been calculated and compared with
a FEM solution. The results from both solutions are shown in
graphical form in Fig.1 and are found in good agreement with
the FEM results (using a 15� 15 = 225 mesh in one quarter
of the shell). The employed data are E = 2:1� 107 KN=m2,
h = 0:20 m, r0 = 10:00 m, l = 24:54 m, ν = 0:25, φ = 70:30Æ.

4.2 Example 2

The cylindrical shell of Example 1 but with different bound-
ary conditions, namely the curved edges simply supported and
the straight ones clamped, under uniform normal pressure has
been analyzed. Again the transverse deflections at the curved

11 /14a

11 /14a

6 /14a

3 /14a 3 /14a

o
r

�

1 1

22

8 /14a

Figure 3 : Shell with two orthogonal cutouts symmetrically
placed to its longitudinal axis.

axis of symmetry of the shell have been calculated and com-
pared with those obtained from a FEM solution using the same
discretization again. The results from both solutions are shown
in graphical form in Fig.2 and are found in good agreement.

4.3 Example 3

The third example is the same circular cylindrical shell but
now cut by two parallel planes symmetrically to its longitu-
dinal axis, so that in planform it has two orthogonal cutouts
(Fig. 3). Its curved edges 1-1 and 2-2 are simply supported,
whereas all other edges are clamped. It is subjected to grav-
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Figure 4 : Radial deflection of a shell with cutouts, simply
supported the curved edges 1-1, 2-2 and clamped the other
edges under gravity loading (w�104 m)
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Figure 5 : Radial deflection (w� 104 m) of a shell with
cutouts, with simply supported all edges under gravity load-
ing.

ity loading. The numerical results have been obtained with
N = 96, M = 356. The radial deflections at the mid-shell have
been calculated and compared with a FEM solution using 99
elements in one quarter of the shell The results from both so-
lutions are shown in graphical form in Fig.4 and are found in
good agreement. The employed data are those of the first ex-
ample.

4.4 Example 4

The circular cylindrical panel with the two cutouts of exam-
ple 3 has been analyzed under gravity loading but with all
edges simply supported. The same discretization has been
used again. The transverse deflections at the mid-shell have
been calculated and compared with a FEM solution. The re-
sults from both solutions are shown in graphical form in Fig.5
and are found in good agreement.

4.5 Example 5

The free undamped vibrations of a simply supported circular
cylindrical shell with l=r0 = 1, v = 0:30, r0=h = 20 and sub-
tended angle 2π=3 have been studied. The computed first 6
eigenfrequencies are presented in Tab. 1 as compared with ex-
isting results from other solutions [Koumousis (1981]. The nu-
merical results have been obtained with M = 400 and N = 100.
The results are in good agreement

4.6 Example 6

The free undamped vibrations of the circular cylindrical shell
of Example 2 with the straight edges clamped have been stud-
ied. The computed first 6 eigenfrequencies are presented in
Tab. 2 as compared with results obtained with a FEM solution

Table 1 : Eigenfrequencies Ω = r0ω
p

(1�ν2)ρ=E of the
shell of the example 5

n Present Koumousis
1 0.539 0.536
2 0.589 0.582
3 0.774 0.731
4 0.872 0.858
5 0.932 1.010
6 1.020 1.234

using a 20�20 mesh over the whole shell. In the present anal-
ysis it has been used M = 800 and N = 120. The results from
the two solutions are very close.

4.7 Example 7

The free undamped vibrations of the shell of Example 3 with
its curved edges 1-1 and 2-2 simply supported, but with all
other edges clamped, have been studied. It has been used N =
96, M = 356 again. The computed first 6 eigenfrequencies
are presented in Tab. 3 as compared with results obtained with
a FEM solution using 356 elements in the whole shell. The
results from the two solutions are in good agreement

4.8 Example 8

The free undamped vibrations of the shell of Example 4 with
all edges simply supported, have been studied. The discretiza-
tion remains the same with that of example 7 for both methods.
The computed first 6 eigenfrequencies are presented in Tab. 4
as compared with results obtained with a FEM solution. The
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Table 2 : Eigenfrequencies Ω = r0ω
p

(1�ν2)ρ=E of the
shell of example 2

n Present FEM
1 0.304 0.290
2 0.441 0.417
3 0.447 0.427
4 0.493 0.465
5 0.579 0.547
6 0.580 0.554

Table 3 : Eigenfrequencies Ω = r0ω
p

(1�ν2)ρ=E of the
shell of example 3

n Present FEM
1 0.510 0.472
2 0.511 0.478
3 0.560 0.508
4 0.558 0.510
5 0.738 0.699
6 0.775 0.733

Table 4 : Eigenfrequencies Ω = r0ω
p

(1�ν2)ρ=E of the
shell of example 8

n Present FEM
1 0.428 0.429
2 0.479 0.441
3 0.493 0.445
4 0.494 0.465
5 0.636 0.599
6 0.731 0.702

results from the two solutions are again very close.

5 Conclusions

The AEM, a BEM-based method is developed for the static
and dynamic analysis of thin shells. The method is illustrated
without restricting the generality for cylindrical shell panels,
which may have cutouts. The basic conclusions that can be
drawn from this investigation are the following:

1. The shell analysis problem is converted to the solution
of two Laplacian and one biharmonic problems, which
can be solved with the BEM using the well known funda-
mental solutions. Thus, the BEM, alleviated from the dif-
ficult task of establishing the fundamental solution of the
coupled partial differential equations with variable coeffi-
cients, becomes a useful and versatile computational tool
for shell analysis.

2. The proposed formulation can be converted to a
boundary-only BEM by expanding the fictitious load into
radial base function series using either the Dual Reci-
procity Method or the Particular Solution Method.

3. The static problem results from the dynamic one as a spe-
cial case (zero inertia and damping forces).
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Appendix A: Derivatives of the kernels Λi(r)

Λ1s =�
sin(ω�φ)

r2 (70)

Λ1xs = �
2 sin(2ω�φ)

r3 (71)

Λ1xx = �
2 cos(2ω�φ)

r3 (72)

Λ1ss =
2 cos(2ω�φ)

r3 (73)

Λ1xxx =�
�6 cosωcosφ(3�4 cos2 ω)

r4 �

6 sinωsinφ(4 cos2 ω�1)
r4 (74)

Λ1xxs = �
6 sinωcosφ(4 cos2 ω�1)

r4 �

6 cosωsinφ(3�4 cos2 ω)

r4 (75)

Λ1xss = �
�6 sinωsinφ(4 cos2 ω�1)

r4 �

6 cosωcosφ(3�4 cos2 ω)

r4 (76)

Λ2s =�
sin ω

r
(77)

Λ2xx = �
cos2ω

r2 (78)

Λ2ss =
cos2ω

r2 (79)

Λ2xs = �
sin2ω

r2 (80)

Λ2xxx =�
2 cosω

r3

�
1�4 sin2 ω

�
(81)

Λ2xxs = �
2 sinω

r3

�
3 cos2 ω� sin2 ω

�
(82)

Λ2xss = �
2 cosω

r3

�
3 sin2 ω� cos2 ω

�
(83)

Λ3s =
1
4
[(2 lnr+3) sinωcosφ+(2 lnr+1)cosωsinφ] (84)

Λ3xx =
sin2ωsinφ

2r
�

cosφ
2r

(85)

Λ3ss =�
sin2ωsinφ

2r
�

cosφ
2r

(86)

Λ3xs =
cos2ωsinφ

2r
(87)

Λ3xxx =�
cos(ω�φ)(1+2 sin2 ω)

2r
+

2 cosωsin2ωsinφ
2r2 (88)

Λ3xxs = �
� sinωcos(2ω�π)+ sinφ cos3ω

2r
(89)

Λ4s =�
1
4

r (2 lnr+1) sinω (90)

Λ4xx =
1
2
(lnr+1)+

1
4

cos2ω (91)
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Λ4ss =
1
2
(lnr+1)�

1
4

cos2ω (92)

Λ4xs =
sin2ω

4
(93)

Λ4xxx =
cosω

2r
(cos2ω�2) (94)

Λ4xxs =
cos2ωsinω

2r
(95)

Λ4xss =�
cos2ωcosω

2r
(96)

φ = angle(r;n) ω = angle(r;x)

Appendix B: Evaluation of singular domain integrals

The kernels in Eq. 47-53 for small values of the argument r

behave as in lnr,
1
r

,
1
r2 ,

1
r3 .

Therefore, we have to evaluate singular and hypersingular
domain integrals on the internal cells. This can be effec-
tively done by converting the domain singular integrals over
a domain cell into regular integrals along its boundary using
Green’s reciprocal identity.

Z Z
Ω

�
u∇2U �U∇2u

�
dσ =

Z
Γ

�
u

∂U
∂n

�U
∂u
∂n

�
ds (97)

Eq. 97 for u = 1 and

∇2U = v� (98)

with v� = lnr+1 or v� =
r2 lnr

4
yields

Z Z
Ω

v�dσ =
Z

Γ

∂U
∂n

ds (99)

The function U is obtained by integrating equation in Eq. 98.
Thus, we have

For v� = lnr+1, U =
r2 lnr

4

For v� =
r2 lnr

4
, U =

(2r4 lnr� r4)

128
For the domain integrals involving derivatives, U must be re-
placed by its corresponding derivative in Eq. 99, namely

Z Z
Ω

v�mdσ =
Z

Γ

∂2U
∂2mn

ds m = x; s;xx; sx; ss; : : : ;xss: (100)




