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Abstract: A constitutive model for a porous metal subjected
to general three-dimensional finite deformations is presented.
The model takes into account the evolution of porosity and the
development of anisotropy due to changes in the shape and
the orientation of the voids during deformation. A methodol-
ogy for the numerical integration of the elastoplastic consti-
tutive model is developed. Finally, some sample applications
to plane strain extrusion and compaction of a porous disk are
considered using the finite element method.

1 Introduction

Building on earlier work Ponte Castañeda and Zaidman
(1994, 1996); Kailasam, Ponte Castañeda and Willis (1997a),
Kailasam and Ponte Castañeda (1997, 1998) proposed a gen-
eral constitutive theory to model effective behavior and mi-
crostructure evolution in composites and porous materials un-
dergoing finite deformations. The theory is based on a rig-
orous homogenization analysis and is applicable to heteroge-
neous materials with “particulate” microstructures, consisting
of random distributions of families of inclusions (or voids) of
various shapes and orientations embedded in a matrix.

In this work, the special case of porous metals is considered in
detail. Initially, the pores are assumed to be aligned ellipsoids
of given shape (in particular, spherical) that are distributed
randomly in a perfectly plastic matrix (metal). Under finite
plastic deformation, the voids are assumed to remain aligned
ellipsoids, but to change their volume, shape and orientation.
At every point in the homogenized continuum, a “represen-
tative” ellipsoid is considered with principal axes defined by
the unit vectors n(1); n(2);n(3) = n(1) � n(2) and correspond-
ing principal lengths a, b, and c. The homogenized contin-
uum is locally orthotropic, with the local axes of orthotropy
coinciding with the principal axes of the representative ellip-
soid. The basic “internal variables” characterizing the state of
the microstructure at every point in the homogenized contin-
uum are given by the local void volume fraction or porosity
( f ), the two aspect ratios of the local representative ellipsoid
(w1 = c=a and w2 = c=b) and the orientation of the principal
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axes of the ellipsoid (n(1); n(2);n(3)). Although hardening of
the plastic matrix could easily be incorporated [see, for exam-
ple, Aravas (1992)], in this work the matrix phase is taken to
be perfectly plastic, so as to isolate the hardening or softening
effects generated by the evolution of the microstructure. The
model of Kailasam and Ponte Castañeda (1997, 1998) origi-
nally assumed that the matrix was nonlinearly viscous, includ-
ing rigid-perfectly plastic behavior in the rate-insensitive limit.
Unfortunately, the homogenization analysis of materials made
up of elastic-perfectly plastic constituents is not straightfor-
ward. The difficulty arises, in part, due to the fact that the
macroscopic elastic and plastic strains are not, in general, the
averages of their microscopic counterparts Suquet (1985). In
addition, memory effects can become significant. Thus, it is
not entirely possible to eliminate all the microscopic field vari-
ables in the homogenization analysis. In particular, the macro-
scopic constitutive laws for such materials require the knowl-
edge of the plastic strains at every point in the material, and
therefore of an infinite number of internal variables. Fortu-
nately, as pointed by Suquet (1985), a simplified approach is
possible when the elastic strains are small.

For the case of interest here (porous metals), the voids do not
store any energy and, therefore, elastic effects can arise only
from the elasticity of the matrix phase. Also, for metals, the
plastic deformations can be assumed to be large compared to
the elastic deformations. These hypotheses suggest the use
of an approximate approach, where (i) the elastic and plastic
response of the materials are treated separately, and later com-
bined to generate the complete elastic-plastic response; and
(ii) the evolution of the microstructure in the material under-
going finite deformation is taken to be controlled solely by
the plastic deformations. The development of such a theory
for elastic-plastic porous materials requires that the constitu-
tive theory proposed by Kailasam and Ponte Castañeda (1997,
1998) for rigid-plastic materials be extended in an appropriate
manner. Therefore, constitutive laws are first derived to char-
acterize the instantaneous constitutive behavior of the porous
material in the elastic regime and then corresponding laws are
generated for the plastic regime. The final step in the develop-
ment of the constitutive theory is to obtain evolution equations
for the various microstructural variables.

For convenience, the resulting constitutive model is henceforth
referred to as the anisotropic model, to distinguish it from
more standard isotropic models, such as the model of Gurson
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(1977), in which the voids are assumed to remain spherical as
the porous metal deforms.

The numerical implementation of the developed anisotropic
elastic-plastic model in a finite element program and an algo-
rithm for the numerical integration of the elastoplastic equa-
tions are also presented. Finally, use is made of the anisotropic
constitutive theory in the context of the developed finite el-
ement formulation to model several forming processes in-
cluding plane-strain extrusion of porous metals Govindara-
jan (1992) and compaction of a tapered disk made of porous
metal Zavaliangos and Anand (1993); Parteder, Riedel and
Kopp (1999). Comparisons are made between the predic-
tions of the anisotropic model and those of the isotropic
Gurson model. The most significant difference between the
anisotropic and Gurson models is, of course, that while the
anisotropic model incorporates the effects of the evolving
anisotropy in the porous material as it undergoes deforma-
tion, the Gurson model takes the material to remain isotropic
throughout the deformation process. In addition, it is found
that the evolving anisotropy in the porous material can signifi-
cantly affect its macroscopic response.

Standard notation is used throughout. Boldface symbols de-
note tensors, the orders of which are indicated by the context.
All tensor components are written with respect to a Cartesian
coordinate system, and the summation convention is used for
repeated Latin indices, unless otherwise indicated. A super-
script T indicates the transpose of a second-order tensor and
a superposed dot the material time derivative. Let a and b be
vectors, A and B second-order tensors, and C and D fourth-
order tensors; the following products are used in the text (a

b)i j = aib j, (Aa)i = Ai ja j, (AB)i j = AikBk j, A �B = Ai jBi j,
(A
B)i jkl = Ai jBkl , (CA)i j =Ci jklAkl, (AC)i j = AklCkli j, and
(CD)i jkl = Ci jmnDmnkl . The inverse of a symmetric fourth-
order tensor (Ci jkl = Ckli j) is defined so that CC�1 = I, where
I is the symmetric fourth-order identity tensor with Cartesian
components Ii jkl = (δik δ jl +δil δ jk)=2.

2 Description of the Constitutive Model

In this section, the anisotropic constitutive model for porous
metals is described. The main ingredient in the derivation of
the constitutive relations is the variational procedure of Ponte
Castañeda (1991) which is used to estimate the effective prop-
erties of the nonlinear porous material in terms of an appropri-
ate “linear comparison composite.” In turn, the properties of
the relevant linear comparison composite are obtained from
Hashin-Shtrikman estimates of Ponte Castañeda and Willis
(1995) for composites with “particulate” microstructures. In
the original derivation, the elastic strains, being small, were
neglected and ideal plasticity was considered as the appropri-
ate limit of a nonlinearly viscous solid. Here, mostly for nu-
merical convenience, elastic effects are incorporated. As dis-
cussed in the Introduction, an approximate approach is used,
where the elastic and plastic response of the porous materials

are treated independently, and later combined to obtain the full
elastic-plastic response. Thus, the average rate-of-deformation
tensor D̄ at every point in the porous material is taken to be of
the form

D̄ = D̄e + D̄p; (1)

where D̄e and D̄p are the elastic and plastic parts.

For simplicity and because spatial distributions effects are not
expected to be significant for porous materials [see Kailasam,
Ponte Castañeda and Willis (1997b)], the assumption is made,
within the context the estimates of Ponte Castañeda and Willis
(1995), that the “shape” and “orientation” of the two-point cor-
relation function characterizing the distribution of the voids in
space has the same shape and orientation as the voids them-
selves. Then, it can be assumed that, as the material de-
forms, both the voids and their distribution evolve with iden-
tical shapes and orientations. This allows the use of the sim-
plified linear-elastic estimates of Willis (1977, 1978), as was
done by Ponte Castañeda and Zaidman (1994) in their original
treatment of microstructure evolution in porous metals. In par-
ticular, this means that the porous material develops and main-
tains general orthotropic symmetry, with axes aligned with the
axes of the ellipsoidal voids.

The model is presented next in three parts. The first part of
the model deals with the elastic response of the porous metal.
The yield condition and the plastic flow rule are presented in
the second part. The third part of the model is concerned with
evolution laws for the internal variables. Finally, the elastic
and plastic constitutive equations are combined in order to de-
rive the rate form of the elastoplastic equations, which relate

the rate of deformation D̄ to the Jaumman derivative σ̄σσ
5

of the
Cauchy (true) stress tensor σ̄σσσσσσσσ.

2.1 Elastic constitutive relations

A hypoelastic form is assumed for the elastic part of the rate-
of-deformation tensor:

D̄e = M̃
Æ
σ̄σσ; (2)

where M̃ is the effective elastic compliance tensor and
Æ
σ̄σσ is a

rate of the Cauchy stress which is corotational with the spin of
the voids, i.e.,

Æ
σ̄σσ = ˙̄σσσ�ωωωσ̄σσ+ σ̄σσωωω (3)

where ωωω is the spin of the voids relative to a fixed laboratory
frame. It is such that ṅ(i) = ωωωn(i), where the three vectors n(i)

(i = 1;2;3) form an orthonormal basis, serving to define lo-
cally the principal axes of the ellipsoidal voids. The tensor ωωω,
which corresponds to what is normally called the “microstruc-
tural spin”, is calculated in subsection 2.3 on microstructure
evolution (equation(16)).
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Making use of the simplifying assumption discussed earlier
about the shape and orientation of the void distribution, the
effective compliance tensor may be written as

M̃ = M+
f

1� f
Q�1: (4)

In this expression, M is the elastic compliance tensor of the
matrix material, which is the inverse of its elastic modulus ten-
sor L:

L = 2µK+3κ J; M = L�1 =
1
2µ

K+
1

3κ
J;

J =
1
3

δδδ
δδδ; K = I�J; (5)

where µ and κ denote the elastic shear and bulk moduli of the
matrix, and δδδ and I, the second- and symmetric fourth-order
identity tensors. Also, f is the porosity and Q is a microstruc-
tural tensor Willis (1977), which is related to the tensor S of
Eshelby (1957) via the relation

Q = L(I�S): (6)

An expression for Q is given in the Appendix; more explicit
expressions for S may be found in the original reference Es-
helby (1957). Note that S, and therefore Q, depend on the
shape and orientation of the ellipsoidal voids. Thus, the rel-
evant internal variables characterizing the state of the mi-
crostructure in the porous metal are indeed the porosity ( f ),
the two aspect ratios (w1 and w2) of the ellipsoidal voids,
and the orientation of the voids as defined by the vectors n(i)

(i = 1;2;3). Note that only three scalar quantities are required
to completely specify these vectors; they could be written,
for example, in terms of three Euler angles: θ, φ and ψ [see
Kailasam and Ponte Castañeda (1998)]. For convenience, the
following set of internal variables is defined:

s =
�

f ;w1;w2;n(1);n(2);n(3)
�
: (7)

It is important to emphasize that the components of M̃ in ex-
pression (4) are not constants; they depend on the porosity, and
the shape and orientation of the voids, which evolve in time.
It is also recalled that the hypoelastic form (2) is consistent, to
leading order, with hyperelastic behavior, because the elastic
strains in porous metals are small relative to the plastic strains
[see Needleman (1985); Aravas (1992)].

2.2 Yield condition and plastic flow rule

Next, expressions are given to characterize the plastic part of
the macroscopic deformation for the porous metal. The con-
stitutive behavior of the matrix phase could be taken to be of
a fairly general type, including rate-dependent and hardening
effects. However, as the main goal of this work is to inves-
tigate the effect of microstructure evolution, the matrix phase

is taken to be isotropic and ideally plastic. Then, the nonlin-
ear variational procedure of Ponte Castañeda (1991) allows the
calculation of an effective yield function for the porous mate-
rial in terms of the effective viscous compliance tensor of a fic-
titious linear comparison porous material which has the same
microstructure as the perfectly plastic porous material. Thus,
the effective yield function can be written in the form:

Φ̃(σ̄σσ; s) =
σ̄σσ � (m̃(s)σ̄σσ)

1� f
� (σy)

2 ; (8)

where σy is the yield strength in tension of the matrix material.
In the above expression, m̃ corresponds to an appropriately
normalized effective viscous compliance tensor m̃ for the fic-
titious linear comparison porous material. It is given by

m̃(s) = 3µ M̃jκ!∞ =
3
2

K+
f

1� f
3µ Q�1jκ!∞; (9)

where the expression for M̃ is precisely the same as in (4).
However, because of the assumed plastic incompressibility of
the matrix phase, the limit as κ ! ∞ must be taken in the ex-
pression (4) for M̃. This limiting process, which is compli-
cated by the fact that the hydrostatic component of L blows
up in the definition (6) of the tensor Q, can be evaluated more
conveniently by considering the more explicit expressions for
Q given in the Appendix. It follows that Φ̃ is only a function
of σ̄σσ, the microstructural variables s and the yield strength of
the matrix phase σy. In the most general case, Φ̃ exhibits or-
thotropic symmetry with symmetry axes aligned with the axes
of the voids, i.e., aligned with the vectors n(i) (i = 1;2;3). It is
emphasized that the plastic behavior described by the macro-
scopic potential Φ̃ is fully compressible, in agreement with ex-
perimental observations Ponte Castañeda and Zaidman (1994).

At this point, it is emphasized that although the matrix material
here has been taken to be elastic-perfectly plastic, it is possible
to incorporate hardening effects in a straightforward manner
by treating the yield strength σy of the matrix material as a
function of a properly defined “equivalent plastic strain” ε̄p, as
is done, for example by Hill (1950). In such a case, ε̄p is an
additional internal variable to the model.

The plastic rate-of-deformation tensor D̄p is obtained in terms
of Φ̃ from the relation

D̄p = Λ̇N; N =
∂Φ̃
∂σ̄σσ

; (10)

where Λ̇ � 0 is the plastic multiplier, which depends on the
matrix hardening and the evolution of the microstructure and
is obtained from the “consistency condition” as discussed in
subsection 2.4 .

2.3 Evolution of the microstructure

When the porous material deforms, the state variables evolve
and, in turn, influence the response of the material. In the cur-
rent application to porous metals, it is assumed that all the
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changes in the microstructure occur only due to the plastic
deformation of the material. This is expected to be reason-
able, because the elastic strains here are relatively small com-
pared to the plastic strains. The evolution equations for these
variables can then be determined from the kinematics of the
deformation by assuming that, on the average, the evolution
of the relevant internal variables is characterized by the aver-
age deformation and spin fields in the void phase, and making
use of the aforementioned homogenization procedure to esti-
mate consistently the average rate of deformation and spin in
the voids Ponte Castañeda and Zaidman (1994); Kailasam and
Ponte Castañeda (1998).

In view of the plastic incompressibility of the matrix phase,
the evolution equation for the porosity f follows easily from
the continuity equation and is given by

ḟ = (1� f ) D̄p
kk = Λ̇(1� f )Nkk � Λ̇h(σ̄σσ; s): (11)

Evolution equations for the aspect ratios of the voids w1 and
w2 are obtained from the definition of the average value of the
rate of deformation in the voids, given by Dp = AD̄p, where A
is the relevant strain-rate concentration tensor. The resulting
equations are

ẇ1 = w1

�
Dp

33
0
�Dp

11
0
�
= Λ̇w1

�
A0

33i j�A0
11i j

�
N 0

i j

� Λ̇h1(σ̄σσ; s); (12)

ẇ2 = w2

�
Dp

33
0
�Dp

22
0
�
= Λ̇w2

�
A0

33i j�A0
22i j

�
N 0

i j

� Λ̇h2(σ̄σσ; s): (13)

In these relations, and for the rest of this section, primed quan-
tities indicate components in a coordinate frame that coin-
cides instantaneously with the local orientation of the voids,
as determined by the vectors n(i) (i = 1; :::;3). For example,
N = ∑

i; j
N 0

i j n(i)
n( j), A = ∑
i; j;k;l

A0
i jkl n(i)
n( j)
n(k)
n(l),

etc. The strain-rate concentration tensor for the void phase
is given by

A(s) = [I� (1� f )S]�1 jκ!∞: (14)

Note that A becomes independent of material properties and
depends only on the microstructural variables s. Again, it is
emphasized that the strain-rate concentration tensor A is con-
sistent with overall compressibility for the plastic deformation
of the porous metal.

Finally, the evolution of the average void orientation is ob-
tained from the relations

ṅ(i) = ωωωn(i) (i = 1;2;3); (15)

where ωωω is the spin of the Eulerian axes of the average defor-
mation of the voids determined by the well-known kinematical

relation Ogden (1984)

ω0
kl =W 0

kl�
w2

k +w2
l

w2
k �w2

l

Dp
kl
0
; k 6= l; w3 = 1; wk 6= wl:

(16)

In this relation, Dp = AD̄p as before, W is the average spin in-
side the void phase, and primed quantities indicate again com-
ponents in a coordinate frame that coincides instantaneously
with the local principal axes of the ellipsoidal voids. Note
that the average spin in the void phase W is different from the
“macroscopic”, or “continuum” spin W̄. In fact, the homog-
enization analysis of Kailasam and Ponte Castañeda (1998)
established that

W = W̄�CD̄p; (17)

where the spin-concentration tensor is given by

C(s) = (1� f )ΠΠΠ [(1� f )S� I]�1 jκ!∞: (18)

Here ΠΠΠ is the Eshelby tensor serving to determine the spin of
an isolated void in an infinite matrix. Again, because of the
plastic incompressibility of the matrix phase, the limit as κ!
∞ is taken, and ΠΠΠ becomes independent of material properties.
It follows that the spin-concentration tensor C depends only
on the microstructural variables s.

It should be noted that equation (15) can be written also in the
form

n
Æ(i) = 0; (19)

where nÆ(i) is the rate of n(i) corotational with the spin of the
voids, i.e.,

n
Æ(i) = ṅ(i)�ωωωn(i): (20)

The microstructural spin ωωω can be used also to define the so-
called “plastic spin” Wp, which is the spin of the continuum
relative to the microstructure Dafalias (1985), i.e.,

Wp = W̄�ωωω: (21)

Combination of the last equation with (17) and (16) leads to
the expression

Wp = Λ̇ΩΩΩ; (22)

where ΩΩΩ is a second-order antisymmetric tensor with compo-
nents

Ω0
kl =

�
C0

kli j�
w2

k +w2
l

w2
k �w2

l

A0
kli j

�
N 0

i j; k 6= l;

wk 6= wl; w3 = 1 (no sum over k; l): (23)
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When two of the wi are equal, say w1 = w2, the material be-
comes locally transversely isotropic about the n(3)-direction,
and

Ω0
kl = 0; when k 6= l; wk = wl (with w3 = 1): (24)

Finally, when all three aspect ratios are equal (w1 = w2 = 1),
the material is locally isotropic and Dafalias (1985)

Wp = ΩΩΩ = 0: (25)

It should be noted that the constitutive functions Φ̃, N, h, h1,
h2, and ΩΩΩ are isotropic functions of their arguments, i.e., they
are such that

Φ̃(R σ̄σσRT ; f ;w1;w2;Rn(i)) = Φ̃(σ̄σσ; f ;w1;w2;n(i)); (26)

N(R σ̄σσRT ; f ;w1;w2;Rn(i)) = RN(σ̄σσ; f ;w1;w2;n
(i))RT ; (27)

etc., for all orthogonal second-order tensors R. The mathe-
matical isotropy of the aforementioned functions guarantees
the invariance of the constitutive equations under superposed
rigid body rotations. It should be emphasized, however, that
the material is anisotropic, due to the tensorial character of the
n(i)’s.

Making use of relation (21) and of the Jaumann derivative of

n(i), given by n
5
(i) = ṅ(i) � W̄n(i), it is possible to write the

evolution equation for the axes of anisotropy of the porous ma-
terial in the form

n
5
(i) =�Wpn(i) =�Λ̇ΩΩΩn(i): (28)

It follows that the evolution equations for all the microstruc-
tural variables s, as given by relations (11), (12), (13), and (28)
can be written compactly in the form

s
5

= Λ̇g (σ̄σσ; s) ; (29)

where g is a collection of suitable isotropic functions. The
plastic multiplier Λ̇ can be computed from the so-called “con-
sistency condition” as described in the following subsection.

In summary, constitutive laws have now been developed to de-
scribe the behavior of the elastic-plastic porous material. In
the elastic regime the behavior is characterized by equations
(2) to (6) and in the plastic regime by equations (8) to (10).
The evolution of the microstructural variables s, as defined by
relation (7), is characterized by equations (11), (12), (13), and
(28).

2.4 Rate form of the elastoplastic equations

The above-developed constitutive equations are now combined
in order to derive an equation of the form

σ̄σσ
5

= L̃ep D̄; (30)

where L̃ep is the fourth-order tensor of the elastoplastic moduli
of the porous metal. The derivation is as follows.

Substitution of D̄e = D̄� D̄p = D̄� Λ̇N into (2) yields

Æ
σ̄σσ = L̃D̄� Λ̇L̃N: (31)

Since Φ̃ is an isotropic function, the “consistency condition”
˙̃Φ = 0 can be written in the form Dafalias (1985)

˙̃Φ =
∂Φ̃
∂σ̄σσ

�
Æ
σ̄σσ+

∂Φ̃
∂s
�
Æ
s = 0; (32)

where
Æ
s = ( ḟ ; ẇ1; ẇ2;n

Æ(1);nÆ(2);nÆ(3)). In view of the fact that
nÆ(i) = 0 (eqn (19)), the last relation can be written as

N �
Æ
σ̄σσ+

∂Φ̃
∂ f

ḟ +
∂Φ̃
∂w1

ẇ1 +
∂Φ̃
∂w2

ẇ2 = 0: (33)

Substitution of
Æ
σ̄σσ, ḟ , ẇ1 and ẇ2 from (31), (11), (12) and (13)

into the last equation yields

N � (L̃D̄)� Λ̇[N � (L̃N)+Hc] = 0;

Hc = �

�
∂Φ̃
∂ f

h+
∂Φ̃
∂w1

h1 +
∂Φ̃
∂w2

h2

�
; (34)

from which it follows that

Λ̇ =
1
L

N � (L̃D̄) =
1
L
(NL̃) � D̄;

L = Hc +N � (L̃N): (35)

Substitution of Λ̇ into (31) yields

Æ
σ̄σσ =

�
L̃�

1
L
(L̃N)
 (NL̃)

�
D̄: (36)

The Jaumann derivative σ̄σσ
5

is related to
Æ
σ̄σσ by the following ex-

pression

σ̄σσ
5

=
Æ
σ̄σσ+σ̄σσWp�Wpσ̄σσ =

Æ
σ̄σσ+Λ̇(σ̄σσΩΩΩ�ΩΩΩσ̄σσ)

=
Æ
σ̄σσ+

1
L
(σ̄σσΩΩΩ�ΩΩΩσ̄σσ)(NL̃) � D̄: (37)

Finally, substitution of (36) into (37) yields the desired equa-

tion σ̄σσ
5

= L̃ep D̄ with

L̃ep = L̃�
1
L
(L̃N� σ̄σσΩΩΩ+ΩΩΩσ̄σσ)
 (NL̃): (38)

3 Numerical Implementation of the Constitutive Model

In this section, the numerical integration of the constitutive
equations is described. For simplicity, and since there is no
chance of confusion between averages over the void phase and
over the porous material, the overbars and tildes are dropped in
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the presentation, so that, for example, the macroscopic strain
rate D̄, stress σ̄σσ and yield function Φ̃ are now written D, σσσ and
Φ, respectively. In a finite element environment, the solution
is developed incrementally and the constitutive equations are
integrated at the element Gauss integration points. Let F de-
note the deformation gradient tensor. At a given Gauss point,
the solution (Fn;σσσn; sn) at time tn as well as the deformation
gradient Fn+1 at time tn+1 are known, and the problem is to
determine (σσσn+1; sn+1).

The time variation of the deformation gradient F during the
time increment [tn; tn+1] can be written as

F(t) = ∆F(t)Fn = R(t)U(t)Fn; tn � t � tn+1; (39)

where R(t) and U(t) are the rotation and right stretch tensors
associated with ∆F(t). The corresponding deformation rate
D(t) and spin W(t) tensors are given by

D(t)�
�
Ḟ(t)F�1(t)

�
s =
�
∆Ḟ(t)∆F�1(t)

�
s ; (40)

and

W(t)�
�
Ḟ(t)F�1(t)

�
a =

�
∆Ḟ(t)∆F�1(t)

�
a ; (41)

where the subscripts s and a denote the symmetric and anti-
symmetric parts respectively of a tensor.

If it is assumed that the Lagrangian triad associated with ∆F(t)
(i.e., the eigenvectors of U(t)) remains fixed in the time inter-
val [tn; tn+1], it can readily be shown that

D(t) = R(t)Ė(t)RT (t); W(t) = Ṙ(t)RT (t); (42)

and

σσσ
5

(t) = R(t) ˙̂σσσ(t)RT (t); n
5
(i)(t) = R(t) ˙̂n(i)(t); (43)

where E(t) = lnU(t) is the logarithmic strain associated
with the increment, σ̂σσ(t) = RT (t)σσσ(t)R(t), and n̂(i)(t) =
RT (t)n(i)(t).

It is noted that at the start of the increment (t = tn)

Fn = Rn = Un = δδδ; σ̂σσn = σσσn; n̂(i)n = n(i)n ;

and En = 0; (44)

whereas at the end of the increment (t = tn+1)

∆Fn+1 = Fn+1F�1
n = Rn+1Un+1 = known;

and En+1 = lnUn+1 = known: (45)

Taking into account that Φ, N, h, h1, h2 and ΩΩΩ are isotropic
functions of their arguments, the elastoplastic equations can

be written in the form

Ė = Ėe + Ėp; (46)
˙̂σσσ = L̂Ėe + Λ̇ [σ̂σσΩΩΩ(σ̂σσ; ŝ)�ΩΩΩ(σ̂σσ; ŝ)σ̂σσ]; (47)

Φ(σ̂σσ; ŝ) = 0; (48)

Ėp = Λ̇N(σ̂σσ; ŝ); (49)

ḟ = Λ̇h(σ̂σσ; ŝ); (50)

ẇ1 = Λ̇ h1(σ̂σσ; ŝ); (51)

ẇ2 = Λ̇ h2(σ̂σσ; ŝ); (52)

˙̂n
(i)

= �Λ̇ΩΩΩ(σ̂σσ; ŝ)n̂(i); (53)

where L̂i jkl = Rmi Rn j Rpk Rql Lmnpq and ŝ =

( f ;w1;w2; n̂(1); n̂(2); n̂(3)).

Integration of equation (46) gives

∆E = ∆Ee +∆Ep; or ∆Ee = ∆E�∆Ep; (54)

where the notation ∆A = An+1�An is used. The forward Euler
method is used for the numerical integration of equations (47)
and (49):

σ̂σσn+1 = σσσn +Ln∆Ee +∆Λ(σσσnΩΩΩn�ΩΩΩnσσσn); (55)

∆Ep = ∆ΛNn; (56)

where use has been made of the fact that L̂n = Ln. Then, using
(54) and (56), equation (55) can be written as

σ̂σσn+1(∆Λ) = σσσn +Ln(∆E�∆ΛNn)+∆Λ(σσσnΩΩΩn�ΩΩΩnσσσn):
(57)

The evolution equations of the internal variables f , w1 and w2

are also integrated by using a forward Euler scheme:

fn+1(∆Λ) = fn +∆Λh(σσσn; sn); (58)

(w1)n+1(∆Λ) = (w1)n +∆Λh1(σσσn; sn); (59)

(w2)n+1(∆Λ) = (w2)n +∆Λh2(σσσn; sn); (60)

Also, the evolution equation for n̂(i) is approximated by

˙̂n(i) =�
∆Λ
∆t

ΩΩΩnn̂(i); (61)

which, in turn, can be integrated exactly to give4

n̂n+1(∆Λ) = exp(�∆ΛΩΩΩn)n
(i)
n : (62)

The exponential of an antisymmetric second-order tensor A
(AT = �A) is an orthogonal tensor that can be determined

4 Note that direct application of the forward Euler scheme in (53) would give
n̂n+1 = (δδδ�∆ΛΩΩΩn)nn , where δδδ�∆ΛΩΩΩn is a two-term approximation of
the orthogonal tensor exp(�∆ΛΩΩΩn). Use of this approach would not keep
the n̂(i)’s unit vectors.
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from the following formula, which is often attributed to Ro-
drigues,

exp(A) = δδδ+
sin a

a
A+

1� cosa
a2 A2; (63)

where a =
p

Ai j Ai j=2 is the magnitude of the axial vector of
A.

Equations (57)–(60) and (62) define the quantities σ̂σσn+1 and
ŝn+1 in terms of ∆Λ. Finally, substitution of σ̂σσn+1(∆Λ) and
ŝn+1(∆Λ) in the yield condition (48) gives an equation of the
form

Φ(σ̂σσn+1(∆Λ); ŝn+1(∆Λ)) = 0: (64)

The above equation is an algebraic equation which is solved
for ∆Λ by using the secant method. Once ∆Λ is found, equa-
tions (57)–(60) and (62) define σ̂σσn+1, fn+1, (w1)n+1, (w2)n+1,

n̂(1)n+1, n̂(2)n+1, and n̂(3)n+1. Finally, σσσn+1 and n(i)n+1 are computed
from

σσσn+1 = Rn+1σ̂σσn+1RT
n+1; and n(i)n+1 = Rn+1n̂(i)n+1; (65)

which completes the integration process.

4 Applications

The constitutive model presented in the previous sections is
implemented in the ABAQUS general purpose finite element
program Hibbitt (1984). This code provides a general interface
so that a particular constitutive model can be introduced as a
“user subroutine”. The integration of the elastoplastic equa-
tions is carried out using the algorithm presented in section
3. The finite element formulation is based on the weak form
of the momentum balance, the solution is carried out incre-
mentally, and the discretized nonlinear equations are solved
using Newton’s method. In the calculations, the Jacobian of
the Newton scheme is approximated by the tangent stiffness
matrix derived using the moduli L̃ep given by equation (38).
Such an approximation of the Jacobian is first order accurate as
∆t ! 0; it should be emphasized, however, that the aforemen-
tioned approximation influences only the rate of convergence
of the Newton loop and not the accuracy of the results.

In the following examples, a porous material with initial poros-
ity f0 = 0:15 is used. The matrix material is elastic-perfectly
plastic with yield stress in tension σy, Young’s modulus E =
300 σy, and Poisson’s ratio ν = 0:49. The porous material is
assumed to be composed initially of a statistically isotropic
distribution of spherical voids, i.e., the initial values of the as-
pect ratios w1 and w2 are (w1)0 = (w2)0 = 1.

In the finite element calculations, during the first increment
of plastic deformation at a material point, the material is
isotropic, and the n(i)’s are not defined. In such a case the
calculations are carried out as follows. If ∆F1 is the value of
the deformation gradient associated with the first plastic in-
crement at a material point, then the n(i)’s at the end of that

increment are identified with the unit eigenvectors of the left-
stretch-tensor B = ∆F1∆FT

1 . For subsequent increments, the
evolution of the n(i)’s is determined by using equations (62)
and (65b).

4.1 Applications to a Plane Strain Extrusion Process

ABAQUS is used to analyze a plane strain extrusion process
with a height reduction ∆h = 0:6 h0, where h0 is the initial
height of the specimen (see Fig.1). The die is shaped linearly
and the length of the reduction region is taken to be L = 3h0.
For more comprehensive results, including 20% and 40% re-
duction ratios, as well as axisymmetric extrusion processes,
the reader is referred to Kailasam (1998). The driving force
is provided by a rigid smooth piston acting against the rear
face of the billet. The effects of friction along the metal-die
interface are neglected.

The analysis is carried out with four-node isoparametric plane
strain elements with 2� 2 Gauss integration. In the finite el-
ement calculations all tensor components are calculated with
respect to a fixed Cartesian coordinate system Ox1x2x3 with
base vectors e1, e2 and e3. The position x2 = 0 defines the start
of the reduction region. The material undergoes plane strain
deformation on the x2�x3 plane, and the unit vectors n(i), that
define the local orientation of the voids, can be written as

n(1) = e1; (66)

n(2) = cosθ e2+ sin θ e3; (67)

n(3) = � sinθ e2+ cosθ e3; (68)

where θ is the angle between n(2) and the direction of extrusion
(axis Ox2) and defines the orientation of the voids on the x2�
x3 plane.

With the objective of assessing the new features of the consti-
tutive model proposed in this work, and in particular the im-
plications of the evolution of the anisotropy, three models are
used to characterize the response of the porous material:

(i) The general anisotropic constitutive theory developed in
Section 2, which is referred to as the “anisotropic” model.

(ii) A special case of the general constitutive theory devel-
oped in Section 2, consisting in fixing the aspect ratios
of the voids to remain spherical (w1 = w2 = 1), which is
referred to as the “isotropic” model.

(iii) The Gurson (1977) theory for porous metals, which is
referred to as the “Gurson” model.

Note that for the Gurson and isotropic models, there is only
one state variable — the porosity, the shape of the voids being
taken to be spherical throughout the deformation process.

The mesh at the end of the extrusion process is shown in Fig-
ure 1. Due to the symmetry of the problem, only the top half of
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Figure 1 : The deformed finite element mesh.

(a)

(b)

(c)

Figure 2 : Contour plots of porosity in the extruded speci-
men: (a) anisotropic constitutive theory, (b) Gurson theory, (c)
isotropic theory.

the specimen is considered. The specimen is subjected to non-
uniform loads during the extrusion process, and it is expected
that the microstructure of the material evolves in a complex
manner. For the anisotropic model, the decrease in porosity for
this level of deformation is accompanied by the aspect ratios
of the voids becoming very small (the voids tend to become
cracks in certain parts of the specimen). As is known from ear-
lier work, numerical difficulties can arise while modeling the
microstructural changes in this limiting case. To avoid these
difficulties, the porosity and the aspect ratio of the voids were
not allowed to continue to change once the porosity reached
a level of 0.1% ( f = 0:001). However, the predictions that
are generated by making use of this approximation are still ex-
pected to be quite accurate.

Figures 2 and 3 show comparisons of the porosity distribu-

(a)

(b)

Figure 3 : Variation of porosity along the extrusion specimen:
(a) variation along the top row of elements in Fig. 1, (b) vari-
ation along the bottom row of elements in Fig. 1.

tions predicted by the three models. Figure 2 shows contour
plots of the porosity throughout the specimen and Figure 3
shows the variation of the porosity along the top and bottom
row of elements (which corresponds to the middle of the actual
specimen). The anisotropic model predicts a smaller porosity
throughout the specimen than that predicted by the Gurson or
the isotropic models. In fact, the anisotropic model predicts
that the material becomes fully dense ( f � 0:001) even before
the specimen exits the die, while the other models predict a
small, but finite, porosity at the end of the process (the Gur-
son model predicts a minimum porosity of 0:006, while the
isotropic model predicts a minimum of 0:024). The average
porosity predicted by the anisotropic model across a section
of the material undergoing steady deformation is 0.001, while
the Gurson and the isotropic models predict 0.012 and 0.022,
respectively. These results are consistent with the predictions
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(a)

(b)

(c)

Figure 4 : Contour plots of the anisotropic state variables: (a) variation of the out-of-plane aspect ratio w1, (b) variation of the
in-plane aspect ratio w2, (c) angle θ (in degrees) that defines the orientation of the voids relative to the direction of extrusion
(axis Ox2) on the plane of deformation.

of Ponte Castañeda and Zaidman (1994), who observed that,
for uniform loading conditions, the change in shape of the
voids could lead to much larger changes in porosity than when
the voids are fixed to remain spherical, particularly in situa-
tions where the stress triaxialities are small. It is further noted
that the isotropic version of the model of Kailasam and Ponte
Castañeda (1998) is known to be stiffer than the Gurson model
(which is also isotropic, as noted already), especially for hy-
drostatic loading conditions where the Gurson model is known
to be very accurate. This would suggest that, in fact, the ac-
tual porosity reduction relative to the Gurson model may be
larger than predicted by the anisotropic model. For the extru-
sion problem considered here, it was found that the stress tri-
axialities are small enough to make the effects of the changes
in the shapes of the voids significant.

Figure 4 shows contour plots of the anisotropy variables in the
specimen. It can be seen that the aspect ratios of the voids
are indeed very small — the average value of the out-of-plane
aspect ratio w1 = c=a across a transverse cross-section is 0.032
and that for the in-plane aspect ratio w2 = c=b is 0.018 (recall
that the aspect ratios are not allowed to change for f � 0:001).
The longest principal axis of the voids lies on the x2�x3 plane
and is aligned locally with n(2). The orientation of the voids
is determined by the angle θ, which becomes now the angle
between the longest local principal axis of the voids and the
extrusion direction (see eqn (67)). The orientation of the voids
in the extrusion zone has a rather complex distribution — the
voids are flattened and aligned with the extrusion direction at
the middle of the specimen, and are oriented at different angles
as we move towards the top of the specimen. It is also observed

Figure 5 : The normalized extrusion force as a function of the
normalized piston displacement.

that when the material exits the die, the voids are more or less
flattened, and aligned with the extrusion direction.

Figure 5 shows the normalized extrusion force F=(σyh0) as
a function of the normalized piston displacement u=h0 for all
three cases. It is observed that the force increases as the ma-
terial deforms and reaches a steady value, when the deforma-
tion process also becomes steady. The force predicted by the
anisotropic model is the least, while that predicted by the Gur-
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son model is the largest—the steady force in the anisotropic
case is about 6% less than that predicted by the Gurson model.
This can be explained by recalling that the anisotropic model
takes into account the changes in the shape and orientation of
the voids, along with the changes in porosity. Although the
decrease in the porosity tends to make the material response
stiffer, the changes in shape and orientation of the voids tend
to make the material more compliant, and, therefore, cause the
extrusion force to be smaller for the anisotropic model than for
the isotropic models.

It is noted that the isotropic model predicts a slightly smaller
extrusion force than that predicted by the Gurson model, even
though the Gurson model is known to predict a softer re-
sponse than the isotropic model at high stress triaxialities
Ponte Castañeda and Zaidman (1994). This can be explained
by noting that the stress triaxialities in the present case are
small enough so that the difference in the stiffness of the
porous materials predicted by the two models (Gurson and
isotropic) are not very different. Furthermore, it is observed
that the average porosity in the specimen predicted by the
isotropic model is larger than that predicted by the Gurson
model (Figure 4), so that the effective response of the mate-
rial tends to be softer (larger porosity implies softer material
response). However, it is important to emphasize that the dif-
ference in the magnitude of the forces in the three cases is not
very significant (less than 6%) for this level of deformation.

These observations are consistent with the predictions for the
stresses across the specimen, shown in Figure 6, where it is
shown that the stresses in the reduction region (0< x2=h0 < 3)
predicted by the anisotropic model are generally the least and
those predicted by the Gurson model tend to be the largest.

The residual stresses in the specimen vary in a complex fash-
ion for all three models; the residual tresses predicted by the
anisotropic model tend to be larger that those predicted by the
other two models, especially away from the center of the spec-
imen. Figure 7 shows the predicted variation of the longitu-
dinal stress σ̄22 across the section of the billet after the exit
from the die (x2 = 4 h0). These results are consistent with the
earlier findings of Govindarajan (1992), who in addition to an-
alyzing the extrusion of a Gurson type porous material using
the finite element method, carried out an asymptotic analysis
of the process Govindarajan and Aravas (1991). The quanti-
tative differences between the predictions given here for the
Gurson model and those arising from the implementation of
Govindarajan (1992) are due to the differences in the initial
porosities and die shapes.

4.2 Applications to Compaction of a Tapered Disk

In this section, the anisotropic constitutive theory is used to
model the compaction of an axisymmetric tapered disk. Fol-
lowing Parteder (1998), the height of the disk is taken to be 80
mm, the diameters at the top and middle of the specimens, 60
and 120 mm, respectively, and the taper angle, 33.6 degrees.

(a)

(b)

(c)

Figure 6 : Variation of the σ̄11, σ̄22, and σ̄33 stress components
along the bottom row of elements of Fig. 1.
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Figure 7 : Residual stress distribution across the section of the
billet.

Figure 8 : The finite element mesh representing one quarter of
a longitudinal section of the tapered disk.

The top surface of the disk is taken to be in contact with a
rigid piston which is gradually moved downwards to simulate
the compaction process. The coefficient of friction between
the rigid piston and the disk is taken to be 0.08. Results are
presented for the case where the height of the disk is reduced
by 37.5 %. The predictions of the anisotropic constitutive the-
ory are compared with results obtained by using the Gurson
model and also with the experimental results of Zavaliangos
and Anand (1993) (see also Haghi (1992), Parteder (1998) and
Parteder et al. (1999)).

The analysis is carried out with four-node isoparametric ax-
isymmetric elements with 2�2 Gauss integration. In the finite
element calculations all tensor components are calculated with
respect to a fixed Cartesian coordinate system Orx2z with base
vectors er , e2 and ez. The axis Oz coincides with the axis of
symmetry of the specimen, and the location z = 0 defines the
plane of symmetry of the specimen that is normal to the axis

(a)

(b)

Figure 9 : Contour plots of porosity in the disk at a height
reduction of 37.5%: (a) anisotropic model, (b) Gurson model.

of symmetry. The unit vectors n(i), that define the local orien-
tation of the voids, can be written as

n(1) = cosθ er + sinθ ez; (69)

n(2) = e2; (70)

n(3) = � sinθ er + cosθ ez; (71)

where θ is the angle between n(1) and the plane of symmetry
z = 0, and defines the orientation of the voids on the longitudi-
nal cross section of the disk. Due to symmetry considerations,
only one quarter of the longitudinal cross-section of the disk is
considered (see Figure 8).

Figures 9(a) and (b) show contour plots of porosity on a
longitudinal cross-section of the disk, as predicted by the
anisotropic and Gurson models. For the anisotropic model
(part a), it is observed that regions close to the center of the
disk are almost completely densified, whereas regions near the
outer edges show an increase in porosity to a value of 16.2%
(a value that is higher than the initial porosity of 15%). This
variation of porosity in the specimen is caused by the nonuni-
form stresses and strains that develop inside the disk. In par-
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(a)

(b)

Figure 10 : Contour plots for the aspect ratios in the disk as
predicted by the anisotropic model: (a) the in-plane aspect ra-
tio, (b) the out-of-plane aspect ratio.

ticular, as noted by Zavaliangos and Anand (1993), the hy-
drostatic component of the stress ranges from a highly com-
pressive value near the center of the specimen to a slightly
tensile value toward the outer edges. For the Gurson model,
the predictions for the distribution of the porosity are quali-
tatively similar, but the predicted densification levels are sig-
nificantly lower. For example, the anisotropic theory predicts
that approximately 13% of the cross-sectional area of the disk
near the center of the disk reaches a porosity level below 1%,
whereas for the Gurson model the porosity in the same region
attains values below only 5%, not reaching values below 1%
anywhere in the disk. The greater amount of densification to-
wards the center predicted by the anisotropic model is consis-
tent with the experimental results of Zavaliangos and Anand
(1993) and Parteder (1998). On the other hand, toward the
outer edges of the specimen, the Gurson model generally pre-
dicts larger values of the porosity. This last observation is also
in agreement with the results of Ponte Castañeda and Zaidman
(1994), who observed that fixing the voids to remain spherical,

Figure 11 : Contour plots of the orientation of the voids as
predicted by the anisotropic model. The angle θ (plotted in
degrees) is the angle between the longest local principal direc-
tion of the voids and the horizontal direction.

as is the case with the Gurson model, results in an overestima-
tion of the porosity for tensile loading conditions.

Figures 10(a) and (b) show contour plots of the pore in-plane
(w1 = c=a) and out-of-plane (w2 = c=b) aspect ratios, respec-
tively, as predicted by the anisotropic model. It is observed
that the voids become increasingly flattened toward the center
of the specimen, the aspect ratios reaching values of less than
0.1 for a region of about the same size as the region where the
porosity reaches levels of less than 1%. On the other hand,
the voids become slightly elongated toward the outer edges of
the specimen. These predictions are consistent with the exper-
imental observations of Zavaliangos and Anand (1993), and,
to the best of our knowledge, this is the first time any theory
has been able to predict this experimental fact. (Of course, the
Gurson theory assumes a priori that the voids remain spherical
throughout.) Figure 11 shows contour plots of θ, which is the
angle between the longest local principal axis of the voids and
the horizontal direction. It is noticed that the voids are aligned
with the axes of the disk throughout most of the specimen. It
is only towards the outer edges that the voids become tilted
making angles of about 30Æ with respect to the horizontal.

Figure 12 shows the loads required for the compaction of the
disk, as predicted by the anisotropic and the Gurson models.
The response predicted by the anisotropic model tends to be
softer than that predicted by the Gurson model. This is due
to the higher degree of kinematic freedom of the anisotropic
model which is better able to account for changes in the shape
and orientation of the voids to accommodate the imposed de-
formation.
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Figure 12 : Load-stroke curves as predicted by the anisotropic
and Gurson models.
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Ponte Castañeda, P. and Willis, J. R. (1995): The effect
of spatial distribution on the effective behavior of composite
materials and cracked media. J. Mech. Phys. Solids 43, 1919–
1951.
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Appendix A: The Tensor Q

The tensor Q is most easily computed from the expression

Q = L�LPL (72)

in terms of the tensor P = SM, which is given in Willis (1977).
The tensor P can be written in the form (e.g., see Willis, 1981)

P =
1

4πjZj

Z

jξξξj=1

H(ξξξ) jZ�1ξξξj�3 dS(ξξξ); (73)

where

Hi jkl(ξξξ) =
�
L�1

2 (ξξξ)
�

ik ξ j ξl j(i j)(kl); (74)

[L2(ξξξ)]ik = Li jkl ξ j ξl; (75)

Z = w1 n(1)
n(1)+w2 n(2)
n(2)+n(3)
n(3); (76)

and the notation

A(i j)(kl)=
1
4
(Ai jkl +Ai jlk+A jikl +A jilk) (77)

is used.

Since

1
4πjZj

Z

jξξξj=1

jZ�1ξξξj�3 dS(ξξξ) = 1; (78)

combination of (72) and (73) leads to following alternative ex-
pression for Q

Q =
1

4πjZj

Z

jξξξj=1

E(ξξξ) jZ�1ξξξj�3 dS(ξξξ); (79)

where

E(ξξξ) = L�LH(ξξξ)L: (80)

For isotropic materials L = 2 µ K+3 κ J= 2 µ I+(κ� 2
3 µ)δδδ


δδδ, so that

L2(ξξξ) = µ jξξξj2 δδδ+
�

κ+
1
3

µ

�
ξξξ
ξξξ; (81)

and

L�1
2 (ξξξ) =

1
µ jξξξj4

"
jξξξj2 δδδ�

 
κ+ 1

3 µ

κ+ 4
3 µ

!
ξξξ
ξξξ

#
: (82)

Use of the last formula for L�1
2 (ξξξ) in (80) leads to following

expression for the components of E(ξξξ)

Epqrs(ξξξ) = µ
�

δprδqs +δpsδqr

�
1

jξξξj2
(δprξqξs +δpsξqξr +δqrξpξs +δqsξpξr)

+2

 
κ� 2

3 µ

κ+ 4
3 µ

!"
δpqδrs�

1

jξξξj2
(δpqξrξs +δrsξpξq)

#

+
4

jξξξj4

 
κ+ 1

3 µ

κ+ 4
3 µ

!
ξpξqξrξs

)
:

Note that Q has the diagonal symmetry of an elasticity ten-
sor. It is therefore easier to use than the Eshelby tensor S
(Eshelby, 1957), to which it can be related via the expres-
sion Q = L(I� S). Note also that the incompressible limit
(as κ! ∞) can be generated easily from these expressions by
replacing the terms in parentheses depending on κ by unity.
The tensor Q may be given explicitly for the special cases of
spherical and spheroidal inclusions. More generally, the dou-
ble (surface) integral in expression (79) can be simplified to a
single integral, the final result being expressible in terms of el-
liptic integrals, as is the case for the tensor S (Eshelby, 1957).


