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Abstract: Laminar, gravity-driven flow of a liquid down
an inclined wall with large-amplitude sinusoidal corrugations
is studied numerically by a spectral spatial discretization
method. The synchronous resonance between the wall and the
free surface is investigated for corrugations with wavelength
0.002 m, which – according to linear theory – lead to strongest
interaction. Free surface profile and flow structure are stud-
ied as a function of the film Reynolds number and the wall
amplitude. Streamline patterns are computed and conditions
leading to flow reversal are established. The distribution of the
shear stress along the wall and of the normal velocity gradient
close to the free surface are computed and related to heat/mass
transport.
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1 Introduction

Gravity-driven flow of a liquid film along a plane wall is an
intensely studied subject. The linear stability characteristics
of this flow have been addressed in numerous investigations
[Benjamin (1957); Yih (1963); Benney (1966)]. Recent efforts
have focused on the understanding of nonlinear dynamics [for
a review see Chang (1994)]. A much less studied problem in-
volves film flow along a periodic, wavy wall. Practical motiva-
tion is provided by the extensive application of “modified” sur-
faces in process equipment, aiming at enhancing heat and mass
transfer rates. Typical examples are corrugated surfaces en-
countered in condensers and evaporators, and structured pack-
ings used in absorption columns and distillation trays [Fair and
Bravo (1990)].

Recent studies of film flow over wavy walls include asymptotic
and numerical analyses in the limit of creeping flow [Wang
(1981); Pozrikidis (1988); Shetty and Cerro (1993); Kang and
Chen (1995)], linear analysis of finite Re number flow in the
limit of corrugations of vanishing amplitude [Bontozoglou and
Papapolymerou (1997)] and only two numerical computations
of finite Re flow along large corrugations [Trifonov (1998);
Malamataris and Bontozoglou (1999)]. There is also some
activity in the related problem of film flow inside a cylin-
drical wall with periodic diameter modulations [Kouris and
Tsamopoulos (1998)]. Experimental results for these flows
are available only for highly viscous liquids and vanishing Re
[Zhao and Cerro (1992); Shetty and Cerro (1993)].
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There are some indications from the above studies that non-
trivial modifications of the flow take place when inertia forces
become significant. Bontozoglou and Papapolymerou (1997)
predicted a weak resonant interaction resulting in stationary,
free surface waves with amplitude more than twice the wall
disturbance, for wall corrugations with wavelength around 2
mm and Re in the range 180-200. This resonance has been
confirmed by a finite-element computation of the steady, de-
veloping flow over a large amplitude sinusoidal wall [Mala-
mataris and Bontozoglou (1999)]. Trifonov (1998), comput-
ing by a spectral method the flow over sinusoidal waves with
length L � 1 � 57 mm and height H � 0 � 175 mm, predicted the
existence of a re-circulation zone at the wall trough. This zone
disappeared at an intermediate range of Re numbers (130 –
290) and, in the same range, the disturbance height at the free
surface exceeded that of the wall.

Flow over a wavy bed has been studied thoroughly in terms of
potential theory [Kennedy (1963)], motivated by the phenom-
ena of dune formation during sediment transport in rivers and
Bragg scattering of surface waves in harbors. When horizon-
tal, uniform base flow with constant velocity U is considered,
linear theory predicts that resonance takes place between a sta-
tionary free surface wave and the bottom forcing when

U2 � � g
k � tanh � kh � (1)

Weakly nonlinear solutions have been computed [Mei (1969)]
and their linear stability [Miles (1986)] and long-time evolu-
tion [Sammarco, Mei and Trulsen (1994)] have been investi-
gated. Numerical results for the fully nonlinear problem [Bon-
tozoglou, Kalliadasis and Karabelas (1991)] have provided ev-
idence for subharmonic resonances, where the dominant sur-
face wave is one half and one third the bed wave.

The results of potential theory are not applicable to the laminar
flow of thin films, as they do not account for the effect of grav-
ity in the direction of flow and for the effect of viscosity, which
is expected to be significant in the small geometric scale of the
film flow problem. However, it is interesting to note that the
notion of a wall/free surface resonance is a unifying feature of
the two models.

In this paper, laminar film flow along a wall will large am-
plitude, periodic corrugations is studied. A numerical scheme
is employed based on the streamfunction formulation and in-
volving Fourier and Chebyshev expansions in the streamwise
and normal directions respectively. The nonlinear extension of
the resonance predicted by Bontozoglou and Papapolymerou
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Figure 1 : Sketch of the flow with all the pertinent parameters.

(1997) is considered, and the effect of corrugation height is
systematically investigated.

2 Problem formulation

Two-dimensional flow down a wall with an average inclina-
tion φ relative to the vertical direction is considered, with flow
rate per unit span equal to q (Fig. 1). The wall has sinusoidal
corrugations of wavelength L (wavenumber k � 2π � L), at right
angles to the flow direction. The flow is described by a carte-
sian coordinate system, with the x axis in the streamwise and
the y axis in the normal direction. The origin of the y-axis is
set at the mean wall level, and the corrugations are described
by the equation

y � b 	 x 
 (2)

The free surface is assumed to be periodic and time-
independent and to be described by the equation

y � f 	 x 
 (3)

Physical constants of the liquid include the density, ρ, kine-
matic and dynamic viscosity, ν, µ and the surface tension, σ.

The streamfunction, ψ, is introduced, in terms of which the x
and y velocity components are expressed as

u � ∂ψ
∂y

(4)

v ��� ∂ψ
∂x

(5)

and the equation of motion becomes� ∂ψ
∂x

∂ 	 ∇2ψ 

∂y 
 ∂ψ

∂y
∂ 	 ∇2ψ 


∂x
� ν∇2 	 ∇2ψ 
 (6)

The no-slip and no-penetration conditions along the solid wall
give

ψ � 0 on y � b 	 x 
 (7)

∂ψ
∂n

� ∇ψ � n � 0 on y � b 	 x 
 (8)

where n is the unit vector locally normal to the wall.

The kinematic boundary condition at the free surface requires

ψ � q on y � f 	 x 
 (9)

where q is the flow rate per unit span. The tangential and nor-
mal stress balance on the free surface are expressed in terms
of the stress tensor, σ, as follows	 σ � n 
�� t � 0 (10)	 σ � n 
�� n ��� p0 
 σ

��� � d2 f � dx2 ��
1 
 	 d f � dx 
 2 � 3 � 2 ���� (11)

where

t ��� 1 � d f
dx  �"! 1 
 	 d f � dx 
 2 (12)

n � � d f
dx

�#� 1  � ! 1 
 	 d f � dx 
 2 (13)

are unit vectors locally tangential and normal to the free sur-
face. By expressing the rate of strain in terms of the stream-
function, Eq. 10-11 become� ∂2ψ

∂y2 
 ∂2ψ
∂x2 
 4

∂2ψ
∂x∂y $ 	 d f � dx 


1 �%	 d f � dx 
 2 & � 0 (14)

p 
 σ ' 	 d2 f � dx2 
(
1 
 	 d f � dx 
 2 ) 3 � 2 *


 2µ
∂2ψ
∂x∂y

'"+ 1 
 	 d f � dx 
 2 ,(
1 �-	 d f � dx 
 2 ) * � 0 (15)

Eq. 6 and boundary conditions Eq. 7-9, 14 and 15 are
nondimensionalized using as characteristic length the inverse
wavenumber of the periodic wall corrugations, 1 � k, and as
characteristic velocity the product, kq. The following dimen-
sionless numbers then appear:

Re � q
ν

Reynolds number (16)

Fr � k3q2

gx
Froude number (17)

We � σh
ρq2 Weber number (18)

hN � kh dimensionless Nusselt film thickness (19)

where h is the Nusselt film thickness, corresponding to laminar
flow over a flat wall and given by

h � � 3νq
gx  1 � 3

(20)
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Term gx is the component of gravity in the direction of flow.
The dimensionless numbers are coupled through the expres-
sion

hN . 3Fr
Re

(21)

3 Numerical procedure

The problem formulated in section 2 is highly nonlinear and
involves nonlinear boundary conditions on the free surface,
whose location is not known a priori and has to be found as
part of the solution. To circumvent this difficulty, a coordi-
nate transformation is performed from the / x 0 y 1 to the / x 0 w 1
system, where the w coordinate is defined as

w . y 2 b / x 1
f / x 132 b / x 1 . y 2 b / x 1

h / x 1 (22)

and h / x 1 is the local film thickness. Under this transformation,
the wavy wall corresponds to w . 0 and the free surface to
w . 1.

The stream function, ψ / x 0 y 1 . Ψ / x 0 w 1 , is expressed as a trun-
cated Fourier series in the x-direction and as an expansion in
Chebyshev polynomials in the w-direction:

Ψ / x 0 w 1 . m

∑
j 4 0

n

∑
k 4 0 5 a jk cos / kx 176 b jk sin / kx 198 Tj / w 1 (23)

The local film thickness is expressed as a truncated Fourier
series

h / x 1 . n

∑
k 4 0

Ak cos / kx 1:6 Bk sin / kx 1 (24)

The coefficients of Eq. 23-24 are the unknowns in the numeri-
cal formulation. Taking into account that b j0 and B0 are iden-
tically zero, the number of unknowns is / 2n 6 1 1;/ m 6 2 1 .
Derivatives of the streamfunction, ψ / x 0 y 1 , appearing in the dif-
ferential equation and the boundary conditions, are expressed
in terms of Ψ / x 0 w 1 and h / x 1 by application of the chain rule.
For example,

∂ψ
∂x . ∂Ψ

∂x
6 ∂Ψ

∂w
∂w
∂x

∂ψ
∂y . ∂Ψ

∂w
∂w
∂y

(25)

∂2ψ
∂x2 . ∂2Ψ

∂x2 6 2
∂w
∂x

∂2Ψ
∂x∂w

6 ∂2w
∂x2

∂Ψ
∂w

6=< ∂w
∂x > 2 ∂2Ψ

∂w2

Derivatives of the new coordinate, w, are computed from
Eq. 22 and Eq. 24. For example,

∂w
∂x . 2 / db ? dx 1

h / x 1 2A@ y 2 b / x 1CBD/ dh ? dx 1@ h / x 1EB 2
∂w
∂y . 1

h / x 1 (26)

Particular attention is paid to the implementation of the nor-
mal stress boundary condition, Eq. 15, as the pressure is not
directly calculated in the streamfunction formulation. The ac-
tual boundary condition implemented involves the derivative
of Eq. 15 along the free surface set equal to zero. The deriva-
tive of the pressure (first term of Eq. 15) is calculated as,< dp

dx > w 4 1
. ∂p

∂x
6 ∂p

∂y
< dy

dx > w 4 1
. ∂p

∂x
6 ∂p

∂y
d f
dx

(27)

The partial derivatives of pressure in the cartesian coordinate
system are now computed from the x- and y-component of the
Navier-Stokes equation. This procedure amounts to a pro-
jection of the Navier-Stokes equation along the free surface
(Pozrikidis, 1997). The second term of Eq. 15 can be routinely
differentiated, whereas the chain rule – as applied in Eq. 27
– is again invoked when computing the derivative along the
free surface of the expression ∂2ψ ? ∂x∂y, appearing in the third
term of Eq. 15.

A collocation scheme is used for the numerical solution. The
boundary conditions are applied at each point

xk . 2πk ?3/ 2n 6 1 1F0 k . 0 0HGIGIGI0 2n (28)

along the boundaries w . 0 and w . 1, and the differential
equation in Eq. 6 is applied at points / xk 0 w j 1 , where

w j . 1
2 J 1 6 cos < π j

m >LK 0 j . 1 0HGIGIGM0 m 2 1 (29)

Included in Eq. 29 is a transformation mapping the @ 2 1 0 1B do-
main of definition of the Chebyshev polynomials into @ 0 0 1Badopted for variable w. The above implementation results
in / 2n 6 1 1F/ m 6 4 1 equations, which exceed by 2 / 2n 6 1 1 the
number of unknowns. This is a common problem with spectral
methods and is presently overcome by discarding two rows of
collocation points around w . 0 G 5.

The resulting system of algebraic equations is solved by New-
ton’s method, in double precision arithmetic. The Jacobian
matrix of the partial derivatives is calculated numerically for
each iteration. Convergence is quadratic and 4 – 6 iterations
are usually enough to bring residues down to 10 N 13. Accu-
racy is tested by confirming independence of the results on the
number of terms retained in Eq. 23-24. The magnitude of error
can typically be monitored by the ratio of the last to the largest
coefficient in the x and w expansions.

As expected, higher wall corrugations demand more Fourier
harmonics for correct representation of the flow field. The ma-
jority of the results is computed using 15 harmonics and the
ratio of last to largest coefficient is in the range 10 N 8 – 10 N 10 .

The number of Chebyshev polynomials needed has a more pe-
culiar behavior. Twenty terms have been used throughout the
calculations and seem to give accurate results irrespective of
the degree of nonlinearity of the wall corrugations. (Calcu-
lations with thirty terms have been performed and agreement
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Figure 2 : Free surface amplification (a) and phase shift (b) of a sinusoidal wall disturbance, as predicted by linear theory for
φ =60 P and seven different wavelengths. Points are results computed using the numerical scheme with ka Q 0 R 001.

to the forth decimal figure is attained) However, using signifi-
cantly fewer than 20 terms (for example, 10) produces in some
cases erroneous results even in the limit of wall with small am-
plitude waves. In these problematic cases, the iteration con-
verges normally and the ratio of last to largest coefficient is in
the deceivingly confortable range 10 S 2 – 10 S 3. Thus, a ratio
of 10 S 6 – 10 S 7 is used as a safe criterion.

Accuracy of the numerical scheme is confirmed by two tests.
First, a very small wall amplitude is used (ka Q 0 R 001) and
the linear resonance curve is fully recovered. The agreement
is demonstrated in Fig. 2a, where numerical results are shown
as points. A second test is the duplication of representative re-
sults of Trifonov (1998), concerning the flow of liquid nitrogen
over a sinusoidal wall with specific dimensions. The stream-
line patterns of the two computations turn out to be visually
indistinguishable.

4 Results

4.1 Small corrugations

In the limit of small sinusoidal corrugations, the problem can
be linearized and solved semi-analytically. This study has
been presented elsewhere [Bontozoglou and Papapolymerou
(1997)] but the key results are recounted here in order to bring
out the physical implications and to provide background for
investigating the nonlinear case.

Linear analysis predicts a free surface profile with the same
wavelength as the wall corrugations, but different amplitude
and phase. The amplification, defined as the ratio of free sur-
face to wall amplitude, and the phase shift are presented in

Fig. 2a and 2b respectively, for water flowing along a wall in-
clined by 60 P with respect to the vertical. These results are also
valid for all other inclinations, as the effect of inclination was
found to be insignificant unless the channel becomes nearly
horizontal. The physical properties used in the computation
are ρ Q 1000 kg T m3, µ Q 0 R 001 kg/ms, σ Q 0 R 072 N T m and
results are plotted for seven different wavelenghts in the range
0.01 – 0.001 m.

The most interesting behavior appears for wavelengths around
0.002 m. Significant amplification is calculated for a short
range of Re numbers, while a jump in the phase shift – de-
picted in Fig. 2b – indicates resonant interaction. The am-
plification pattern presented in Fig. 2a shows that, for shorter
waves, the resonant behavior decreases in intensity and is con-
veyed to higher Re. For longer waves, the interaction moves to
lower Re and loses its sharpness. It is finally noted that the lin-
ear amplification is always finite, indicating a weak resonance.
The small characteristic length predicted by linear theory to
have the strongest interaction indicates the importance of wall
microstructure in modifying the film flow. In this context, it
is of interest to note that structured packings and other cor-
rugated surfaces encountered in process equipment, possess
small-scale structure of similar dimensions, which has been
shown in practice to have a significant effect on their perfor-
mance [Fair and Bravo (1990)].

4.2 Free surface profiles over corrugations of finite ampli-
tude

Linear analysis indicated that the most pronounced wall/free
surface interaction occurs for wall corrugations with length
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Figure 3 : Free surface profiles for wall corrugations with dimensionless amplitude ka U 0 V 2 (a) and 0.4 (b).

around 0.002 m. The rest of our study is devoted to nonlin-
ear phenomena related to sinusoidal corrugations of this length
and of finite height. The free surface profile and the structure
of the flow are investigated for corrugations of varying ampli-
tude. The shape of the free surface is roughly sinusoidal with
amplitude and phase that depend on the Re number of the flow.
The intensity of the free surface disturbance is again quantified
by the amplification factor.

Representative free surface profiles are depicted in Fig. 3a-b
for various values of Re number. Two sets of data are pre-
sented, corresponding to dimensionless wall amplitude ka U
0 V 2 (3a) and 0.4 (3b). The shift in phase associated with cross-
ing of resonance conditions is observed in both cases. Thus,
the free surface is almost 180 out-of-phase with the wall at sub-
critical Re and almost in-phase at supercritical Re (actually, in
both cases the free surface somewhat anticipates the wall).

Focusing on the wave amplitudes in Fig. 3a-b, we observe that
the free surface is almost flat in the limit of low and high flow
rates, but it is highly disturbed around Re U 180 – 220 (the
curve marked as Re U 220 (1) in Fig. 3b corresponds to the
upper branch in a Re range where the solution is triple-valued,
as shown next). By comparing Fig. 3a and 3b, however, it
becomes evident that the deflection of the free surface does
not increase in proportion with the steepness of the wall cor-
rugations for the highly corrugated walls considered. This is
a manifestation of a feature of the flow structure to be consid-
ered in the next section.

The complete nonlinear resonance curve is produced by con-
sidering a specific corrugated wall and then computing the am-
plification for a wide range of flow rates. Such results (am-
plification vs. Re) are presented in Fig. 4 for dimensionless
wall amplitudes ka U 0 V 1, 0.2 and 0.4. All curves are skewed
toward high Re numbers. For large amplitude corrugations,
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Figure 4 : Resonance curves for wall corrugations with di-
mensionless amplitude ka U 0 V 0, 0.1, 0.2 and 0.4.

there exist two turning points, and the solution is triple-valued
between them, as is typical of nonlinear resonance phenom-
ena (the middle branch has not been computed). The turning
points are expected to coalesce with decreasing wall steepness
and, indeed, the resonance curve is single valued for ka U 0 V 1
and becomes triple-valued for ka slightly below 0.2.

4.3 Structure of the flow over finite amplitude corrugations

The shape of the free surface discussed in the previous sec-
tion provided information about the intensity of the nonlin-
ear wall/free surface interaction. Further characteristics of the
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Figure 5 : Evolution of streamline patterns with Increasing corrugation steepness for Re X 160 and Re X 220.

flow are revealed by considering its structure in more detail.
Streamline patterns, shear stress distribution at the wall and
velocity variations close to the interface are examined.

Changes of flow structure with increasing wall height are
shown in two series of streamline plots (Re X 160 and 220
respectively) in Fig. 5. In both cases, the flow close to the
wall goes through the following stages. For corrugations of
small amplitude, streamlines roughly follow the shape of the
boundary. With increasing amplitude, the flow decelerates at
the trough of the waves, as indicated by the increasing dis-

tance separating consecutive streamlines. A steep wall re-
sults in flow separation and formation of a recirculating zone,
which extends farther from the wall as the corrugations be-
come steeper.

The difference between the subcritical (Re X 160) and the su-
percritical (Re X 220) flow structure is mainly in the appear-
ance and the extent of the separation zone and is related to the
difference in the free surface patterns. Thus, for Re X 220 the
free surface is roughly in-phase with the corrugations and, in
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Figure 6 : Minimum wall steepness for separation to occur as
a function of Re number.

this way, counterbalances the deceleration caused by the wall
trough and delays separation. The opposite effect is caused by
the out-of-phase free surface in subcritical flow, which leads
to earlier separation and a more extensive recirculation zone.

In both cases, once formed, the separation zone grows with in-
creasing corrugation height and thus acts as a buffer between
the wall and the flow, minimizing the additional effect of very
steep corrugations. This behavior offers an explanation for the
previously observed insensitivity of the free surface to corru-
gation height for very steep corrugations (Fig. 3a-3b).

The minimum corrugation amplitude leading to separation is
shown for several values of Re number in Fig. 6. As gener-
ally expected, inertial effects promote the appearance of sep-
aration. This is indicated on the left and right side of Fig. 6,
where the minimum wall amplitude for flow separation is seen
to decrease with Re. However, separation is also postponed
around the resonance conditions, as is indicated by the central
part of the figure. As previously noted, the solution is triple-
valued in a region of Re around resonance, and the two curves
in Fig. 6 – which cross at Re Y 222 – correspond to the upper
and lower branch of this solution. Thus, it is seen that resis-
tance to separation is a common feature of both branches.

The observation that flow separation is postponed for a range
of Re numbers was first made by Trifonov (1998), who
computed the flow of liquid nitrogen (ρ Y 808 kg Z m3 , µ Y
0 [ 0001147 kg Z ms, σ Y 0 [ 00887 N Z m) over sinusoidal corruga-
tions with length L Y 1 [ 57 mm and amplitude a Y 0 [ 0875 mm
(ka Y 0 [ 35). He found that there is no separation for Re num-
ber in the range 130 – 290, which is a wide range around the
resonance for his system parameters. It is noted that the values
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Figure 7 : Shear stress distribution along the wall for Re Y
160.

of viscosity and surface tension used in Trifonov’s computa-
tion are an order of magnitude smaller than the respective val-
ues for water, and it has been demonstrated that both these fac-
tors tend to suppress flow separation [Malamataris and Bonto-
zoglou (1999)].

The distribution of shear stress along the wall is studied next.
Wall shear stress is important in processes involving heat and
mass transfer to or from the wall. Also, during material dis-
solution or deposition, wall shear stress determines the shape
of emerging patterns. A typical shear stress distribution Is pre-
sented in Fig. 7 for Re Y 160 and for various wall amplitudes.
In all cases, the values are normalized with the stress for the
same flow conditions but for a perfectly plane wall.

The overall behavior is qualitatively attributable to the accel-
eration and deceleration of the fluid above the crest and trough
respectively. It can be anticipated by simple mass conserva-
tion arguments, on the assumption that the presence of the free
surface does not greatly affect the flow in the vicinity of the
wall.

With increasing amplitude, separation and flow reversal at the
trough are manifested by the appearance of negative stress val-
ues, while the maximum close to the crest becomes steeper.
Finally, at very high amplitude, a secondary pattern develops
in the recirculating zone, involving two local maxima in the
absolute value of shear stress, located roughly symmetrically
with respect to the trough.

The distribution of fluid velocity at the free surface is con-
sidered next. It has been argued in the literature that liquid
fluctuations very close to a gas/liquid interface determine the
rate of absorption of sparingly soluble gases [McCready and
Hanratty (1985); Magnaudet, George, Masbernat, and Caus-
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Figure 8 : Distribution of dimensionless normal velocity gra-
dient along the free surface for small-amplitude corrugations
and various Re numbers.

sade(1990); Jahne (1990)]. Gas absorption is a phenomenon
of great importance in many industrial processes aiming at
pollution abatement, and in environmental phenomena such
as oxygenation of water masses and global CO2 recirculation.
The thickness of the concentration boundary layer of this mass
transfer problem is known to be very small, typically on the or-
der of 10 – 200 µm. Because of this, the velocity component
normal to the interface dominates mass convection. Given that
for time independent flows the normal velocity is zero right on
the interface, it can be locally represented by a Taylor expan-
sion in the distance, y, from the interface

v ] βy ^ O _ y2 ` (30)

In the general case of a curved interface, β is the directional
derivative (normal to the interface at y ] 0) of the normal com-
ponent of the velocity. It can be calculated from the expression

β ] ∇ _ u a n ` a n (31)

where u and n are the velocity vector and unit normal to the
free surface respectively.

Results for term β are presented in Fig. 8 and 9a-b. Fig. 8
shows the distribution of β along the free surface for the
weakly nonlinear case, ka ] 0 b 05, and various Re numbers.
Positive values correspond to inflow from the interface towards
the bulk of the liquid, and negative values to the reverse di-
rection. All curves are roughly sinusoidal – indicating small
departure from linear behavior – and combination of an in-
flow and an outflow region occurs over each wavelength. The
location of inflow lags by roughly 90 c behind the wall phase
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Figure 9 : Distribution of dimensionless normal velocity gra-
dient along the free surface as a function of corrugation steep-
ness for Re ] 160 (a) and 220 (b).

at subcritical Re, and is shifted to 270 c at supercritical Re.
Approach of the resonance conditions is seen to intensify the
velocity disturbance. The effect of nonlinearity is shown in
Fig. 9a-b for Re ] 160 and 220 respectively. In both cases,
inflow and outflow maxima are seen to reach plataux values
at intermediate wall amplitudes, and remain unaffected by fur-
ther increase of the corrugation height.

A gradual expansion of the inflow region is evident with in-
creasing amplitude for Re=160, with loss of the sinusoidal
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shape and appearance of an inflow “shoulder”. These features
can be qualitatively explained by inspection of the streamline
pattern for high wall amplitudes (Fig. 5). With the growth of
the recirculation zone, there are two locations along a wave-
length where the flow decelerates and develops a component
towards the wall. One is at the beginning of the trough and the
second in the neighborhood of flow reattachment. The latter
seems to coincide with the shoulder in Fig. 9a. The veloc-
ity pattern at Re d 220 – which is typical of the supercritical
behavior – can be understood by referring to the respective
streamline plot (Fig. 5). In particular, the deflection of the
free surface over the trough, in combination with the stagna-
tion zone, create a restriction followed by an expansion of the
active flow cross-section. This modification is believed to re-
sult in the extensive outflow and then inflow regions at the free
surface.

5 Concluding remarks

Laminar, gravity driven flow of a liquid down an inclined wall
with sinusoidal corrugations is studied. The approach is nu-
merical, through a spectral spatial discretization method in-
volving Fourier modes in the streamwise direction and Cheby-
shev polynomials across the film. The problem is formulated
using boundary-fitted coordinates, and steady solutions are ob-
tained for corrugations of large amplitude.

The synchronous resonance between wall and free surface
is investigated for corrugations with length 0.002 m, which
– according to linear theory – lead to the strongest interac-
tion. Nonlinear resonance curves, including a triple-valued
range, are computed and the free surface profile is shown to
be highly disturbed around resonance and to change in phase
when switching from subcritical to supercritical flow.

Flow separation, resulting in the formation of a recirculation
zone inside the wall trough, is computed for high enough cor-
rugations. Separation is shown to occur easier and be more ex-
tensive at subcritical flows. The minimum corrugation height
for separation to occur generally decreases with Re number,
but attains larger values around the resonance conditions.

Shear stress distribution at the wall is shown to deviate signif-
icantly from the flat film flow, a result with implications for
various wall-to-fluid transport processes. The spatial distribu-
tion of velocity gradient normal to the free surface is computed
and regions of inflow (from free surface to the bulk) and out-
flow are identified. These results are of interest in determining
heat and mass transfer rates in process equipment involving
gas-liquid flow.

The stability of presently computed steady solutions is a ques-
tion open for research. Intuition, based on available results of
film flow over a plane wall, leads one to expect that this flow
will also become unstable beyond a Re number. It is, however,
expected that salient features of the steady solutions presently
computed will persist in the more complex time-dependent

flow.
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