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Abstract: The truly meshless local Petrov-Galerkin
(MLPG) method holds a great promise in solving boundary
value problems, using a local symmetric weak form as a natu-
ral approach. In the present paper, in the context of MLPG and
the meshless interpolation of a moving least squares (MLS)
type, a method which uses primary and secondary nodes in the
domain and on the global boundary is introduced, in order to
improve the accuracy of solution. The secondary nodes can be
placed at any location where one needs to obtain a better res-
olution. The sub-domains for the shape functions in the MLS
approximation are defined only from the primary nodes, and
the secondary nodes use the same sub-domains. The shape
functions based on the MLS approximation, in an integration
domain, have a single type of a rational function, which re-
duces the difficulty of numerical integration to evaluate the
weak form. The present method is very useful in an adap-
tive calculation, because the secondary nodes can be easily
added and/or moved without an additional mesh. The essential
boundary conditions can be imposed exactly, and non-convex
boundaries can be treated without special techniques. Several
numerical examples are presented to illustrate the performance
of the present method.

keyword: meshless method, MLPG method, local symmet-
ric weak form, MLS, primary node, secondary node.

1 Introduction

Meshless methods are attractive in adaptive error-control in
computations to solve boundary value problems, by adding or
removing nodes without the burdensome task of remeshing,
each time. Several meshless methods have been proposed,
each with certain advantages and disadvantages. These in-
clude: the smooth particle hydrodynamics (SPH) [Gingold and
Monaghan (1977)], the element free Galerkin (EFG) method
[Nayroles, Touzot, and Villon (1992)], the reproducing kernel
particle method (RKPM) [Liu, Jun, and Zhang (1995)], the
hp-cloud method [Duarte and Oden (1996)], the finite point
method [Oñate, Idelsohn, Zienkiewicz, and Taylor (1996)],
the partition of unity [Babus̃ka and Melenk (1997)], the lo-
cal boundary integral equation (LBIE) method [Zhu, Zhang,
and Atluri (1998a,b)], and the meshless local Petrov-Galerkin
(MLPG) method [Atluri and Zhu (1998a,b)]. In these meth-
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ods, the construction of a trial approximation, which does
not rely on element connectivity, is a significant development.
However, most meshless methods, except the LBIE/MLPG
methods, are not truly meshless approaches, since these meth-
ods require background meshes for numerical integration of
the weak form. In these methods, an additional cost is asso-
ciated with the construction of a background mesh, if nodes
are added or deleted in a domain. The MLPG/LBIE methods,
however, are more natural approaches, because these meth-
ods use a local weak form, and use numerical integration over
sub-domains, which can be of arbitrary shapes such as circles,
ellipses, rectangulars and parallelopipeds in a 2-dimensional
geometry.

In spite of the novel concepts embodied in the MLPG method,
difficulties in the numerical integration for evaluation of the
weak form still persist, as reported by Atluri, Cho, and Kim
(1999a) and Atluri, Kim, and Cho (1999b). This is due to the
complexity of the non-element interpolation functions, which
result from the moving least squares (MLS), the partition of
unity, and the hp-cloud methods. In addition, circular sub-
domains make the numerical integration difficult, because the
intersections between such sub-domains result in highly com-
plex functions in the integration domain. As a result, a large
number of integration points may be required to obtain ac-
curate solutions [Atluri, Cho, and Kim (1999a) and Atluri,
Kim, and Cho (1999b)]. In this paper, we present a viable
method, based on the MLPG, that use secondary nodes to ob-
tain an improvement in the accuracy of solution, without an
additional mesh. The sub-domains for the MLS shape func-
tions are generated only from the primary nodes, and the sec-
ondary nodes use the same sub-domains. The secondary nodes
in the domain, and on the global boundary, do not necessi-
tate the creation of new sub-domains, and the shape functions
for the secondary nodes can be easily defined on the origi-
nal sub-domains, using the MLS approximation. Numerical
integration is carried out over a polygonal cell, which is the
intersection of the sub-domains constructed only from the pri-
mary nodes. As a consequence of the alignment of the bound-
aries of sub-domains and integration domains, the shape func-
tions have a single type of a rational function in a domain of
integration. This greatly alleviates the difficulty in the nu-
merical integration of the weak form in the MLPG method.
The essential boundary conditions can be imposed exactly,
and the non-convex boundaries can be treated without using
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Figure 1 : A schematic representation of the sub-domain ΩI
s,

with node I as its center, and ∂ΩI
s as its boundary. The global

domain is Ω, with a global boundary Γ, where displacements
are prescribed at Γu, and tractions are prescribed at Γt .
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Figure 2 : A schematic illustrating various shapes for sub-
domains, and the region bounding all the nodes in Ω which
may influence the interpolation at a generic x in a meshless
approximation.

any special techniques. The primary advantage of the present
MLPG method is that the secondary nodes can be easily added
and/or removed, without the burdensome task of constructing
a new mesh, because the secondary nodes use the same sub-
domains defined from the original primary nodes. The use of
the secondary nodes to improve the computational solutions to
a boundary value problem is independent of the mesh derived
from the primary nodes. The present MLPG method offers
a very useful tool for an adaptive calculation, by controlling
errors in the computed results.

There have been several efforts to develop ways to improve
the accuracy of a numerical solution, using a coarse primary
mesh. Oden, Duarte, and Zienkiewicz (1998) introduced a
new hp-finite element method, by using a combination of the
conventional FEM and the partition of unity, to achieve a dif-
ferent order of basis for each node. In this method, how-
ever, a new global mesh is needed to add nodes for refine-
ments, and a careful choice of the basis functions has to be
made to prevent their linear dependence. The so-called gen-
eralized finite element (GFEM) [Strouboulis, Babuska, and
Copps (1998)] uses special functions from known analytical
solutions in order to improve the FEM solution, in a way that
is similar to the conventional hybrid FEM [Atluri, Gallagher,
and Zienkiewicz (1983)]. Liu, Uras, and Chen (1998) used a
coupling of the RKPM and the FEM to achieve an adaptive
calculation by adding nodes. Although this coupling of the
RKPM and the FEM has features that are similar to the present
MLPG method, the basic approaches of two methods are quite
different. The enrichment using the RKPM is not based on a
local weak-formulation, and the coupling of the RKPM and
the FEM may not give rise to consistent solutions, because of
the difficulty of numerical integration over an integration do-
main when the boundaries of sub-domains and the integration
domains are not aligned with each other.

The outline of this paper is as follows. In section 2, the local
symmetric weak form is explained, as a key concept in the
MLPG method. In section 3, we review the characteristics of
the MLS approximation and of the numerical integration. In
this part, we emphasis the difficulty of numerical integration
to evaluate the weak form in meshless methods. In section 4,
the concept of ”primary” and ”secondary” nodes is introduced.
To construct proper shape functions for the primary and the
secondary nodes in the domain and on the global boundary,
weight functions in the MLS approximation should be defined
appropriately over sub-domains, in order to preserve a single
type of a rational function in each integration domain. Towards
this end, we present a method to construct the weight functions
in the MLS approximation, for the primary and the secondary
nodes. Numerical examples in linear elasticity are presented
in section 5. Finally, the conclusions are given in section 6.

2 The meshless local Petrov-Galerkin (MLPG) formula-
tion

The equilibrium equations of linear elasticity, in a global do-
main Ω bounded by Γ, are given by

σi j; j+bi = 0 in Ω (1)

where σi j is the stress tensor, bi are the body forces, ()
; j de-

notes ∂()=∂x j, and a summation over a repeated index is im-
plied. The boundary conditions are assumed to be

ui = ui at Γu (2)

σi jn j = ti at Γt (3)

where Γu and Γt are the global boundaries with prescribed
displacements and tractions, respectively. In a conventional
Galerkin finite element formulation, the global weak form is
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used to solve the boundary value problem numerically. How-
ever, the MLPG method starts from a weak form over a lo-
cal sub-domain, or a patch, ΩI

s inside the global domain Ω as
shown in Fig. 1. Let fΩI

sg be a system of overlapping patches
which covers the global domain Ω, where I(= 1;2; � � � ;N) in-
dicates a node, and N is the total number of nodes. We implic-
itly introduce the concept of ”nodes” with ”local domains”.
The sub-domain ΩI

s is thus called the sub-domain of node I.
The sub-domain ΩI

s can be a circle, a rectangle, or an ellipse
in two dimensions (or a sphere, a parallelopiped, or an ellip-
soid in three dimensions) in the MLPG formulation, but it can
be extended to any kinds of geometry as shown in Fig. 2.

A generalized local weak form of the equilibrium equation is
written as
Z

ΩI
s

(σi j; j+bi)vi dΩ = 0 (4)

where vi is the test function. Using the divergence theorem in
Eq. 4, we obtain the following local weak-form:
Z

∂ΩI
s

σi jn jvi dΓ�
Z

ΩI
s

(σi jvi; j +bivi)dΩ = 0 (5)

where n j is the outward unit normal to the boundary ∂ΩI
s.

In the MLPG method, the trial and test functions can be cho-
sen from different spaces. In particular, the test functions need
not vanish on the boundary where the essential boundary con-
ditions are specified. Also, in order to simplify Eq. 5, we
deliberately select the test functions vi such that they vanish
over ∂ΩI

s, except when ∂ΩI
s intersects with the global bound-

ary Γ. This can be easily accomplished in the MLPG method
by using the nodal-test-shape function whose value at the local
boundary ∂ΩI

s is zero, as long as ∂ΩI
s does not intersect with

Γ. Using these test functions in Eq. 5, we obtain the following
Local Symmetric Weak Form (LSWF):
Z

ΩI
s

σi jvi; j dΩ =
Z

ΓI
st

tivi dΓ+
Z

ΩI
s

bivi dΩ (6)

where ti = σi jn j, and ΓI
st is the intersection of Γt and the

boundary ∂ΩI
s of ΩI

s. The MLPG method based on the lo-
cal formulation in Eq. 4 makes clear the basic concepts for
integrating the local weak form in Eq. 6. The MLPG formula-
tion enables us to use different interpolations for the trial and
the test functions. Furthermore, the sizes and shapes of the
sub-domains of trial and test functions, respectively, do not
need to be the same in the MLPG formulation. Therefore, the
MLPG method can include all other meshless methods as spe-
cial cases. In the present method, we use the same function
space for the trial and the test functions as a special case. Note
that the value of the trial function at each point x inside ΩI

s,
is influenced by a set of values of the function at an arbitrary
number of nodes in the vicinity of each x, in a non-element,
diffuse interpolation of the moving least square (MLS) type.
Thus, Eq. 6 leads, for each ΩI

s, to the Ith equation in the system

stiffness matrix, involving all the J nodes, whose sub-domains
ΩJ

s intersect with ΩI
s, such that the integrand in Eq. 6 is non-

zero.

To obtain the discrete equations from the MLPG formulation
in Eq. 6, based on meshless interpolations, which are ex-
plained in the next section, the following interpolations are
used. The global forms of interpolations for the trial and the
test functions, respectively, can be written as

uh
i (x) =

N

∑
J=1

φJ(x)ûJ
i (7)

vh
i (x) =

N

∑
I=1

ψJ(x)v̂I
i (8)

where φJ(x) and ψI(x) are the nodal shape functions for the
trial and the test functions centered at nodes J and I, respec-
tively. In general, in meshless interpolations, v̂I

i and ûJ
i are

fictitious nodal values. Substitution of Eq. 6 into the MLPG
formulation in Eq. 5 leads to following discretized system of
linear equation:

N

∑
J=1

Z
ΩI

s

(BI
v)

T DBJûJ dΩ =
Z

ΓI
st

VItdΓ+
Z

ΩI
s

VIbdΩ (9)

where, in two-dimensional space,

BI
v =

2
4 ψI

;1 0
0 ψI

;2
ψI

;2 ψI
;1

3
5 ;BJ =

2
4 φJ

;1 0
0 φJ

;2
φJ

;2 φJ
;1

3
5 ;N =

�
n1 0 n2

0 n2 n1

�

VI =

�
ψI 0
0 ψI

�
;uJ =

�
ûJ

1
ûJ

2

�

D =
E

1�ν2

2
4 1 ν 0

ν 1 0
0 0 (1�ν)=2

3
5

with

E =

�
E

E
1�ν2

and ν =

�
ν for plane stress

ν
1�ν for plane strain

In the above equations, (n1;n2) is the normal vector at the
boundary, and E and ν are the Young modulus and Poisson’s
ratio, respectively. The local symmetric weak form in Eq. 9
makes the ”stiffness” entries, KIJ (which is the stiffness ma-
trix in multi-dimensional space), in the row corresponding to
the node I, and to the nodes J, depending only on the non-zero
values of the integrands in the weak form, over the intersection
of ΩI

s and ΩJ
s . Then, the global equation can be written as

N

∑
J=1

KIJ ûJ = fI (10)

where

KIJ =
Z

ΩI
s

(BI
v)

T DBJ dΩ
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Figure 3 : Conceptual explanation of the moving least square
interpolation, in one-dimension.

fI =
Z

ΓI
st

VItdΓ+
Z

ΩI
s

VIbdΩ

Therefore, in the MLPG method, the usual assembly process
is not required to form a global stiffness matrix. Theoretically,
as long as the union of all local domains covers the global
domain, the equilibrium equation and the boundary conditions
will be satisfied in the global domain Ω and its boundary Γ,
respectively.

3 Characteristics of moving least square (MLS) approxi-
mation & numerical integration

In this section, we review the characteristics of the moving
least square (MLS) approximation, including some difficulties
in the numerical integration of the weak form to evaluate the
stiffness matrix, which was well explained in Atluri, Cho, and
Kim (1999a) and Atluri, Kim, and Cho (1999b). The MLS
method is generally considered to be one of the schemes to in-
terpolate random data with a reasonable accuracy. Nayroles,
Touzot, and Villon (1992) were the first to use the MLS in-
terpolation in a Galerkin formulation, which they called the
”diffuse element method”. The MLS approximation always
preserves completeness up to the order of the basis, and rea-
sonably interpolates the irregularly distributed nodal informa-
tion. However, the nodal shape functions that arise from the
MLS approximation have a very complex nature. They are not
only rational, but they are also of different types across the
boundaries of sub-domains. This complexity results in diffi-
culties with the numerical integration of the weak form in the
MLPG method.

We consider the approximation of a function u(x) in a local
region centered at x̃ in a domain Ω as shown in Fig. 3.

The moving least-square approximation starts from a local ap-
proximation in the neighborhood of x̃, such as

ulocal(x; x̃) = pT (x)a(x̃) 8x 2 B(x̃) (11)

where, B(x̃) is a sphere centered at x̃, pT (x) =

[p1(x); p2(x); : : : ; pm(x)] is a complete monomial basis
of order m; and a(x̃) is a vector containing the coefficients
a j(x̃), j = 1;2; : : : ;m which are functions of the space
coordinates x = [x;y; z]T . The commonly used bases in 2-D
problems are the linear basis:

pT (x) = [1;x;y] (12)

or the quadratic basis:

pT (x) = [1;x;y;x2;xy;y2] (13)

The coefficient vector a(x̃) is determined by minimizing a
weighted discrete L2-norm, defined as:

Y(x̃) =
N

∑
I=1

wI(x̃)[p
T (xI)a(x̃)� ûI ]2

= [P� a(x̃)� û]T � W(x̃)�[P� a(x̃)� û] (14)

where wI(x̃) is a weight function defined in a sub-domain ΩI
s,

with the node I as its center; and with wI(x̃) > 0 for all x̃ in
the support of wI(x̃) and wI(x̃) = 0 at the boundary of ΩI

s, xI

denotes the value of x at node I, and the matrices P and W are
defined as

P =

2
664

pT (x1)
pT (x2)
� � �

pT (xN)

3
775

N�m

(15)

W =

2
4 w1(x̃) � � � 0

� � � � � � � � �
0 � � � wN(x)

3
5

N�N

(16)

and

ûT = [û1; û2; � � � ; ûN] (17)

Here it should be noted that ûI ; I = 1;2; � � � ;N are the fictitious
nodal values. In fact, only those neighboring nodes J, whose
sub-domains ΩJ

s intersect with the sub-domain ΩI
s of node I,

have an influence in constructing the shape function for node
I. For convenience, x̃ in the above relations is replaced by x,
because a local point x̃ can be extended to all points in whole
domain. This is the basic concept of the ”moving” procedure,
and we can finally obtain a global approximation. The concep-
tual explanation for the MLS is given in Fig. 3.

The stationary condition of Y (x) with respect to the coeffi-
cients a(x) leads to the following relation:

A(x)a(x) = B(x)û (18)

where the matrices A(x) and B(x) are given by

A(x) = PT WP =
N

∑
I=1

wI(x)p(xi)pT (xi) (19)
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B(x) = PT W = [w1(x)p(x1);w2(x)p(x2); : : : ;

wN(x)p(xN)] (20)

The global approximation uh(x) can then be expressed as

uh(x) =
N

∑
I=1

φI(x)ûI (21)

where the nodal shape functions are given by

ΦT (x) = pT (x)A�1(x)B(x) (22)

In the traditional Galerkin FEM, the ‘nodal shape functions’
have a value of unity at the respective node, and an approxima-
tion of the type of Eq. 21 would involve the directly the ‘nodal
value’ of the field variable. However, in the present MLS ap-
proximation, ûI are fictitious, and are not exactly equal to the
nodal values of the field variable (see Fig. 3). Inspite of this, it
is instructive to call φI(x) in Eq. 21 ‘a nodal shape function’.
The MLS interpolation is well defined only when the matrix
A is non-singular. A necessary condition for a well-defined
MLS interpolation is that at least m weight functions are non-
zero (i.e. N � m) for each sample point x 2 Ω. The partial
derivative of φI(x) can be obtained as follows:

φI
;k =

m

∑
j=1

[p j;k(A
�1B) jI + p j(A�1B

;k +A�1
;k B) jI] (23)

in which A�1
;k = (A�1)

;k represents the derivative of the inverse
of A with respect to x, which is given by

A�1
;k = �A�1A

;kA�1 (24)

and the index following a comma indicates a spatial deriva-
tive. Considering that φI(x) = 0 whenever wI(x) = 0, the sup-
port sizes for the nodal shape function and the weight function
have the same value. The nodal shape functions obtained by
the MLS interpolation with mth order basis can reproduce any
mth order polynomials g(x) exactly [Belytschko, Krongauz,
Organ, Fleming, and Krysl (1996)], i.e.,

N

∑
I=1

= φI(x)g(xI) = g(x) (25)

Eq. 25 indicates that the nodal shape function is complete up
to the order of the basis. In order to guarantee the convergence
of the weak formulation with successive increase in the num-
ber of nodes, the shape functions have to be complete. The
smoothness of the nodal shape function φI(x) is determined
by those of the basis and of the weight function. The choice
of the weight function is more or less arbitrary as long as the
weight function is positive and continuous.

We can obtain an explicit form for the nodal shape functions,
with a linear basis, in a two-dimensional problem, in order to

� 
 � � 	 �

�
�

� �

�
�
�

�
�
�

�

Figure 4 : The nodal shape function φI(x), from the MLS in-
terpolation, which is nonzero in ΩI

s, and which has a different
form in each small intersection, as divided by several circular
sub-domains.

better understand the characteristics of the nodal shape func-
tions. The nodal shape functions can be written as

φI(x;y) =
wI(x;y)
b(x;y)

[c0(x;y);c1(x;y);c2(x;y)]

8<
:

1
x
y

9=
; (26)

where the coefficients c0(x;y), c1(x;y), c2(x;y), and b(x;y) are
given in Atluri, Kim, and Cho (1999). In general, c0(x;y),
c1(x;y), c2(x;y), and b(x;y) are not of the single type of func-
tions, because the sub-domains related to the sub-domain ΩI

s
make complex intersections as shown in Fig. 4. For exam-
ple, the weight functions in the expressions for the coefficients
c0(x;y), c1(x;y), c2(x;y), and b(x;y) are different at x1 and x2

in Fig. 4. In other words, the nodal shape function φI(x con-
sists of a different form of a rational function in each small
intersection region, as indicated in Fig. 4.

Although the smoothness of φI(x) can be achieved if a suffi-
cient order of spline function is used as a weight function, the
shape function in the sub-domain ΩI

s consists of several types
of rational functions. It seems to be difficult to integrate these
kinds of complex functions in the sub-domain, by using a sim-
ple Gaussian quadrature rule, and this causes a difficulty in
the numerical integration of weak forms. As a result, an ac-
curate integration of the shape functions for the construction
of the stiffness matrix is not as trivial as for the finite element
method. Due to different characteristics of functions in differ-
ent sub-regions, we cannot expect accurate numerical integra-
tion even though many numbers of integration points are intro-
duced. Two typical integration methods in meshless methods
are illustrated in Fig 5. Although integration over sub-domain
ΩI

s (Fig. 5b) is more natural than the integration using a back-
ground cell (Fig. 5a), the difficulty of numerical integration
may not be avoided in a simple way.
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Figure 5 : Integration methods in meshless methods: (a) using
background cell and (b) integration over sub-domain ΩI

s for
node I.
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Figure 6 : Schematic representations for sub-domains with
randomly distributed nodes: (a) for the MLPG method with
circular sub-domains and (b) for the MLPG method with
polygonal sub-domains; in (b), the sub-domain for the sec-
ondary nodes is taken to be the same as that for the nearest
primary node in the present method (The solid circles are pri-
mary nodes; and the open circles are secondary nodes.

To surmount this difficulty, in the present version of the MLPG
approach, polygonal sub-domains are employed so as to lead
to a single type of the MLS shape function all over the inte-
gration domain. The detailed explanation on how to construct
the MLS shape functions, in the polygonal sub-domain ΩI

s, is
given in the following section.

4 Error control in the MLPG method

This section first introduces the concept of primary and sec-
ondary nodes, and describes the way to construct polygonal
sub-domains ΩI

s, and the corresponding weight functions, for
the present version of the MLPG method. Later, the advan-
tages of the present approach in the treatment of essential
boundary conditions, and non-convex boundaries, are pointed
out. Next, the simplified procedures for the numerical evalua-
tion of the stiffness matrix is described.

4.1 Polygonal sub-domains and weight functions for pri-
mary and secondary nodes

As explained in the previous section, the difficulty of numer-
ical integration of the weak form is due to the complexity of

the MLS shape functions in an integration domain. To evalu-
ate the stiffness matrix with accuracy, it is necessary to make
the shape functions simple in an integration domain. In our
approach, we introduce the concept of primary and secondary
nodes in the MLPG method, in order to prevent the crossing
of the boundaries of sub-domains in an integration domain,
such that the polygonal sub-domains defined by a mesh from
only the primary nodes also become the sub-domains for the
secondary nodes. As a result, no additional mesh is required
for the secondary nodes, which makes it possible to extend the
original MLPG concept to be a useful tool for error control
and adaptive calculation. The shape functions in a sub-domain
in the present version of the MLPG method may have a sim-
pler form than those in other meshless methods, because of
the alignment of the boundaries of sub-domains. Fig. 6 shows
two types of sub-domains in the MLPG method: circular sub-
domains and polygonal sub-domains that are used by both the
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(a) (b)

Figure 7 : Arbitrary secondary-node placement in the MLPG:
(a) primary nodes, and (b) primary and secondary nodes in the
domain. Primary nodes are solid circles, and secondary nodes
are open circles.

primary and the secondary nodes. Since the types of the shape
functions may change across the boundaries of sub-domains,
the first method shown in Fig. 6a may lead to great difficul-
ties in integrating the weak form accurately, for randomly dis-
tributed nodes, due to complex intersections of sub-domains.
However, the present method in Fig. 6b uses simple polygo-
nal intersections of sub-domains, in order to avoid this diffi-
culty. As a result, the shape functions in a polygonal intersec-
tion have a single type of a rational function, because of the
alignment of the boundaries of sub-domains. The advantage
of the second method, in Fig. 6b, is that the secondary nodes
can be placed at any arbitrary locations, where it is needed to
improve the accuracy of the solution, as shown in Fig. 7. This
second method, which is attractive for adaptive error-control
algorithm, is pursued in the present paper. Fig. 8 illustrates the
comparison between finite element mesh/background mesh
that is commonly used in other meshless methods such as
EFG, RKPM and h-p cloud methods; and a background mesh
of the primary nodes only as in the present method. It is impor-
tant to note that in the present MLPG method, the secondary
nodes do not involve an additional mesh. In addition, the sec-
ondary nodes can be added and/or moved without changing a
coarse background mesh constructed from the primary nodes.
Fig. 8a shows a complex and a distorted feature for randomly
distributed nodes in the FEM/EFG/RKPM/h-p cloud methods,
and it is to be noted that a new mesh is required to change
nodal information.

To meet the stated goal, it is important to develop simple
forms of the shape functions for the primary and the sec-
ondary nodes. The weight functions in the MLS approxima-
tion, which ultimately govern the shape functions (see Eqs.
19, 20, and 22), should be defined appropriately to generate
shape functions with simple forms. In the present approach,
the secondary nodes can be placed at arbitrary locations in the
domain Ω and on the global boundary Γ, in order to improve
the deformations in each region, respectively. First, the sec-
ondary nodes which may be placed randomly, in the domain

(a)
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(b)

Figure 8 : Comparison between the FEM mesh/background
mesh, and the MLPG: (a) the mesh from the usual Finite Ele-
ment Method as well as the background mesh in EFG, RKPM,
and h-p cloud method, when primary and secondary nodes are
used, and (b) the mesh from primary nodes in the MLPG ap-
proach, whereas the secondary nodes in the present method do
not involve an additional mesh.
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Figure 9 : A primary-node anchor for a secondary node is the
nearest primary node. I, J, K and L indicate the primary nodes,
and i, j, k and l indicate the set of secondary nodes.
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Figure 10 : The definition of sub-domains for the primary
node I and the secondary node i in the domain Ω. ri is the ra-
dius of support for spline function to construct weight function
for the secondary node i in the domain.
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Figure 11 : Weight and shape functions: (a) weight functions
and (b) shape functions for the primary node I and for the sec-
ondary node i, respectively in the domain. The weight func-
tion for the primary node is the finite element shape function,
and the weight function for the secondary node has a skewed
form which is obtained by multiplying the finite element shape
function centered at I, and the 4th order spline function cen-
tered at i.

Ω, take the sub-domains to be the supports of the nearest pri-
mary nodes, as shown in Fig. 6. The primary nodes on the
global boundary Γ are excluded from the set of candidate pri-
mary nodes that act as anchors for the secondary nodes in the
domain Ω, so that the essential boundary conditions can be im-
posed directly on the primary nodes on the global boundary Γ.
Fig. 9 indicates how to choose the primary nodes that would
be anchors for the secondary nodes in the domain, in a simple
way. Therefore, it is very easy to find the sub-domains for the
secondary nodes in the domain, with an initial coarse back-
ground mesh, constructed only from the primary nodes. We
denote by I the primary node and by i the set of the secondary
nodes, related to the primary node I, as shown in Fig. 10.

There are several methods to construct the weight functions on
polygonal sub-domains. In the present paper, we use the linear
finite element shape functions as weight functions in the MLS
approximation for primary nodes, i.e.,

wI(x) = NI(x) on ΩI
s (27)

where NI(x) is the linear finite element shape function for the
primary node I. Note that the weight function inside a cell
all over the sub-domain ΩI

s has only one type of a simple
form. We now discuss the construction of the weight func-
tions in the MLS approximation for the secondary nodes. The
weight functions for the secondary nodes should be zero at
the boundaries of polygonal sub-domains as defined for the
original primary nodes, which is the fundamental requirement
in the MLPG formulation. For this purpose, we choose the
weight functions in the MLS approximation, for the secondary
nodes, to be the product of the linear finite element shape func-
tion NI(x) centered at a primary node I as in Eq. 27, and the
4th order spline function wi(x) with a circular support centered

at the secondary node i, as indicated in Fig. 10. Within this cir-
cular support centered at the secondary node i, the maximum
value of the spline function is at the position of the secondary
node i, and the size of the circular support is set by the maxi-
mum distance from the secondary node i to the primary nodes
in the sub-domain ΩI

s. We take the weight function for the
secondary node i to be

wi(x) = NI(x)wi(x) on ΩI
s = Ωi

s (28)

with

wi(x;y) =

�
1�6( di

ri
)2 +8( di

ri
)3�3( di

ri
)4; 0 � di � ri

0; di > ri

(29)

where I and i are the primary and the secondary nodes in the
domain Ω, respectively, di = jx� xij is the distance from the
secondary node xi, and the radius ri is the size of the support
chosen in such a way that the circular support for wi(x) covers
the polygonal sub-domain ΩI

s = Ωi
s. Note that the values of

weight functions in Eq. 28 for the secondary nodes are zero
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Figure 12 : The definition of the sub-domains for the primary
node I and the secondary node i on the global boundary Γ.
ri is the radius of support for spline function to construct the
weight function for the secondary node i.
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(b)

Figure 13 : (a) weight functions and (b) shape functions for
secondary nodes i and j on the global boundary Γ.

at the boundary of the sub-domain ΩI
s = Ωi

s. The weight and
the shape functions for the primary and the secondary nodes
in the domain are plotted in Fig. 11. In these figures, the
weight function for the secondary node i has a skewed form,
depending on the location of xi. The construction of the shape
functions and derivatives for the secondary nodes is identical
to the procedure used for the primary nodes. The weight func-
tions for secondary nodes in the domain satisfy the following
conditions:

wi(x)> 0 on the sub-domain ΩI
s = Ωi

s,

wi(x) = 0 at the boundary of the sub-domain ΩI
s = Ωi

s,

wi(x) has a simple form of a continuous function inside a cell
all over the sub-domain ΩI

s = Ωi
s.

The deformations on the global boundary cannot be improved,
by adding secondary nodes only in the domain, because the
primary nodes on the global boundary are excluded as can-
didate primary nodes for the secondary nodes in the domain.
This limitation may spoil the quality of numerical solutions,
due to the limitation of only a linear deformation between the
primary nodes on the global boundary. However, improved
deformations on the global boundary are important, in order
to obtain the stresses or the strains correctly on the global
boundary. Also, the convergence of energy may not be at-
tained, without an improvement of the deformations on the
global boundary, even though the convergence of displace-
ments may be obtained using only the secondary nodes in the
domain. Hence, in order to improve the deformations on the
global boundary, some secondary nodes are placed also on
the boundary-segments connecting the primary nodes on the
global boundary. The sub-domains for the secondary nodes on
the global boundary are the cells connecting primary nodes on

the global boundary, as shown in Fig. 12. The weight func-
tions for the secondary nodes on the global boundary can be
constructed as

wi(x) = Nm(x)wi(x) in Ωi
s (30)

where wi(x) is the 4th order spline function in Eq. 29, where
ri is the maximum distance from the secondary node i to the
primary nodes in the sub-domain Ωi

s, and Nm(x) in the present
method is taken by

Nm(x) = Ñm(ξ;η) =
1
2
(1�ξ2)(1�η) (31)

In the above equation, the ξ and η are the coordinates defined
on the master domain, as in the finite element method. The
weight and the shape functions for the secondary nodes on the
global boundary are plotted in Fig. 13. In these figures, the
secondary nodes i and j on the global boundary between two
primary nodes have the same sub-domain Ωi

s and Ω j
s . Conse-

quently, the linear deformations on the global boundary can be
improved by adding the secondary node on the global bound-
ary.

To alleviate the difficulty in the numerical integration of the
weak form, it is important to preserve a single type of a contin-
uous function in an integration domain. Since the MLS shape
functions, which are the rational functions as in Eq. 26, are
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Figure 14 : Schematic representation of the shape functions
for the secondary nodes i and j, which are located between the
primary node I and J on the global boundary Γ.
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Figure 15 : Sub-domains for a domain with non-convex
boundaries (a) for other meshless methods with circular sub-
domains, and (b) for the present MLPG method.

expressed in terms of the weight functions and the basis in the
MLS approximation, the integrand in the weak form within an
integration domain consists of a continuous rational function
in the presently described formulation. Again, the emphasis is
placed on the fact that the shape functions for the primary and
the secondary nodes have a single form of a rational function
all over the integration domain, because there is no crossing
of the boundaries of the sub-domains in the domain for inte-
gration. Although the MLS shape functions in a sub-domain
become more complex as the number of the secondary nodes
increases, a single form of a rational function may be much
easier to integrate numerically, than the shape functions with
different types of functions as in other meshless methods.

In summary, the secondary nodes can be added at arbitrary
positions in the domain and on the global boundary, after con-
structing the initial polygonal sub-domains from the primary
nodes, and errors in numerical results can be controlled by
adding and moving the secondary nodes. Thus, to start with,
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Figure 16 : Numerical integration inside each integration cell
in the sub-domain ΩI

s = Ωi
s.

only a few primary nodes may be used, and later, a random
pattern of the secondary nodes may be introduced, in an adap-
tive fashion to control the error of the numerical solution.

4.2 Treatments of boundary conditions and non-convex
boundaries

One major difficulty in the meshless methods is considered
to be the imposition of the essential boundary conditions, be-
cause, in general, the approximation functions do not satisfy
the Kronecker-delta condition φI(xJ) = δIJ at the boundary.
Most meshless methods have used Lagrange multipliers or
penalty methods to impose the essential boundary conditions
[Zhu and Atluri (1998)]. In some cases, meshless interpo-
lations and FEM shape functions have been combined [Be-
lytschko, Organ, and Krongauz (1995)], leading to a complex
interface element in the regions of intersection of FEM and
meshless shape functions. However, in the present method
the Kronecker-delta condition is satisfied at the primary nodes
on the global boundary, because the primary nodes on the
global boundary are not candidates as anchors for the sub-
domains for the secondary nodes in the domain, and because
the weight functions, except those for the primary nodes on the
global boundary, are zero at this point. Therefore, the essen-
tial boundary conditions can be imposed exactly at the primary
nodes on the global boundary. On the contrary, the Kronecker-
delta condition may not be satisfied at the secondary nodes
on the global boundary, as a result of non-zero values for the
weight functions at the secondary nodes. Since the deforma-
tions on the global boundary depend only on the primary and
the secondary nodes on the boundary-segment between the pri-
mary nodes on the global boundary, the fictitious nodal values
for the secondary nodes on the global boundary can be evalu-
ated in an easy way. Fig. 14 illustrates two secondary nodes
on the boundary-segment between two primary nodes on the
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Figure 17 : Geometric description for numerical experiments: (a) a cantilever beam, (b) a plate with a hole, (c) concentrated
load on a semi-infinite plate, and (d) a center cracked plate in tension.

global boundary, and the following equation can be written as

2
664

φI(xI) φi(xI) φ j(xI) φJ(xI)
φI(xI) φi(xI) φ j(xI) φJ(xI)
φI(xI) φi(xI) φ j(xI) φJ(xI)
φI(xI) φi(xI) φ j(xI) φJ(xI)

3
775

8>><
>>:

ûI

ûi

û j

ûJ

9>>=
>>;

=

8>><
>>:

uI

ui

u j

uJ

9>>=
>>;
(32)

where û is the fictitious nodal displacement in MLS approx-
imation, and u is the prescribed displacement on the global
boundary. As explained before, the following conditions are
satisfied at the primary nodes:

ûI = uI and ûJ = uJ (33)

We can evaluate the fictitious nodal values ûi and û j at the
secondary nodes on the global boundary from Eq. 32, and
the essential boundary conditions can be imposed directly in
the computation. Consequently, we can impose the essential
boundary conditions exactly at the primary and the secondary
nodes on the global boundary.

The other meshless methods with circular sub-domains may
lead to a difficulty near boundaries when the domain is

not strictly convex [Organ, Fleming, Terry, and Belytschko
(1996)]. In Fig. 15a, the deformation at the node i on the upper
part of edge directly affects the deformations on the lower part,
which is invisible to an observer at the node i. Some special
treatments, as introduced by Organ, Fleming, Terry, and Be-
lytschko (1996) to solve the problems with non-convex bound-
aries, are required in other meshless methods. In the present
method, however, there is no this difficulty with a non-convex
boundary, because the sub-domains for the primary and the
secondary nodes are simple polygonal-local domains as shown
in Fig. 15b. Therefore, we can easily deal with problems with
non-convex boundaries using the present method.

4.3 Numerical integration of weak forms

To evaluate the stiffness matrix from the weak form, it is nec-
essary to use a numerical quadrature since analytical integra-
tion is all but impossible in general. The numerical integra-
tion of the stiffness matrix usually plays an important role
in the convergence of numerical solutions in meshless meth-
ods. Fig. 5 shows that the schematic features of two integra-
tion methods in meshless methods. The first method, using
a background mesh, has been used in most meshless meth-
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(a) (b)

(c) (d)

Figure 18 : Comparison of the MLPG and the exact solutions, for the problem of a cantilever beam. Displacements and
distribution of stress σ11 (a) without secondary nodes, (b) with 50 secondary nodes, (c) with 100 secondary nodes, and (d) with
200 secondary nodes in the domain.

ods including the EFG, RKPM, and hp-clouds. Dolbow and
Belytschko (1999) have already indicated that the integration
using the background mesh is not adequate, to accurately in-
tegrate the terms in the stiffness matrix, when irregularly dis-
tributed nodes are used. They presented a method to reduce er-
rors in numerical integration, by making the integration cell to
be aligned with the boundaries of sub-domains. As explained
before, the present method, however, leads to a simple type of
a rational function inside a cell in a sub-domain. Therefore,
a cell (a quadrilateral for example) in a sub-domain (ΩI

s = Ωi
s

for the MLPG method) is taken as an integration domain in
the present MLPG formulation, to obtain accurate numerical
integration for the stiffness matrix. The schematic of the inte-
gration method is presented in Fig. 16.

Gaussian quadrature is commonly employed to numerically
evaluate the integrals in the weak forms. The Gaussian quadra-
ture can exactly integrate the polynomials of order 2n�1 in a
spatial direction, where n is the number of integration points in
that spatial coordinate. Since inside an integration domain the

shape functions are rational functions in the present method,
the Gaussian quadrature may not be adequate to evaluate inte-
grals in the present method properly. However, the accuracy of
numerical integration may be controlled by the number of in-
tegration points, taking a proper level of polynomial as an ap-
proximation for these rational functions. In general, the more
secondary nodes are involved in the sub-domain, the more in-
tegration points are required. To find an efficient integration
rule for rational functions is still an open question, to improve
the performance of this method while using only a small num-
ber of integration points.

5 Numerical experiments

Several problems in two-dimensional linear elasticity are
solved to illustrate the effectiveness of the present method.
The numerical results of the MLPG method as applied to
problems in two-dimensional elasto-statics, specifically a can-
tilever beam, a plate with a hole (circular and elliptic holes),
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concentrated load on a semi-infinite plate, and a center cracked
plate in tension as shown in Fig. 17, are now discussed. The
Young modulus and the Poisson’s ratio are E = 1:0�1010 and
ν = 0:25, respectively. We use the displacement and energy
norms defined as

k u k= (
Z

Ω
uT udΩ)

1
2 (34)

k ε k= (
1
2

Z
Ω

εT DεdΩ)
1
2 (35)

The relative errors for k u k and k ε k are defined as

ru =
k unum �uexact k

k uexact k (36)

rε =
k εnum � εexact k

k εexact k (37)

The linear basis in the MLS approximation is used in the nu-
merical examples.

5.1 Cantilever beam

We first consider a cantilever beam problem shown in Fig. 17a.
The exact solution for this problem is given in Timoshenko and
Goodier (1970) as

u1 = � P
6EI

(y� D
2
)[3x(2L� x)+(2+ν)y(y�D)] (38)

u2 =
P

6EI
[x2(3L� x)+3ν(L� x)(y� D

2
)2 +

4+5ν
4

D2x] (39)

where

I =
D3

12

The stresses corresponding to the above are

σ11 =�P
I
(L� x)(y� D

2
) (40)

σ22 = 0 (41)

σ12 =�Py
2I

(y�D) (42)

We use regularly distributed primary nodes for a model with
D = 4:0 and L = 8:0 to examine the effects of the secondary
nodes. The essential and traction boundary conditions are ap-
plied at the left and right sides of the beam, respectively, and
P in Eqs. 38-42 is (�)1:0�108. The solution without the sec-
ondary nodes is exactly the same as that of the finite element
method, as shown in Fig. 18a. We distribute 50, 100, and
200 secondary nodes randomly in the domain through gener-
ating random numbers. To improve the deformations on the
global boundary, the secondary nodes are placed between the
primary nodes on the global boundary, as shown in Fig. 18.
We use 3� 3, 5� 5, and 8� 8 integration points in an inte-
gration domain for 50, 100, and 200 secondary nodes in the

Figure 19 : Convergence for the displacement and the en-
ergy norms in a cantilever beam problem, with irregularly dis-
tributed secondary nodes in the domain.

domain, respectively. It is required to increase the number of
integration points as the secondary nodes are added. Com-
parison between the MLPG and the exact solutions are given
in Fig. 18. In these results, the relative displacement error
changes from 9:26% to 0:38%, and the relative energy error
decreases from 31:37% to 10:74% by adding 200 secondary
nodes. In Fig. 19, the convergences in the relative displace-
ment and energy norms for the MLPG are presented with a
representative nodal density

p
Ns, where Ns is the number of

secondary nodes in the domain. The present method gives bet-
ter results than the solutions without the secondary nodes. Par-
ticularly, the relative displacement error decreases rapidly even
though the secondary nodes are added randomly.

5.2 Infinite plate with a hole

We consider an infinite plate with a circular hole of radius a
(b= a in Fig. 17b). The plate is subjected to a uniform tension,
σ0 = 1:0�109, in the x-direction, at infinity as shown in Fig.
17b. The exact solutions for stresses are

σ11 = σ0[1� a2

r2 (
3
2

cos2θ+ cos4θ)+
3a4

2r4 cos4θ] (43)

σ12 = σ0[�a2

r2 (
1
2

sin2θ+ sin4θ)+
3a4

2r4 sin4θ] (44)

σ22 = σ0[�a2

r2 (
1
2

cos2θ� cos4θ)� 3a4

2r4 cos4θ] (45)

where (r;θ) are the polar coordinates, and θ is measured from
the positive x-axis in a counterclockwise direction. The cor-
responding displacements, in the plane stress case, are given
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(a) (b)

(c) (d)

Figure 20 : Comparison of the MLPG and the exact solutions, for the problem of a plate with a circular hole. Displacements
and distribution of stress σ11 (a) without secondary nodes, (b) with 50 secondary nodes, (c) with 100 secondary nodes, and (d)
with 200 secondary nodes in the domain.

by

u1 =
1+ν

E
σ(

1
1+ν

r cosθ+
2

1+ν
a2

r
cosθ+

1
2

a2

r
cos3θ

�1
2

a4

r3 cos3θ) (46)

u2 =
1+ν

E
σ(� ν

1+ν
r sinθ� 1�ν

1+ν
a2

r
sinθ+

1
2

a2

r
sin3θ

�1
2

a4

r3 sin 3θ) (47)

Due to symmetry, only a part, 0 � r � 4, of the upper right

quadrant of the plate is modeled as shown in Fig. 17b. Sym-
metry conditions are imposed on the left and bottom edges, i.e.
u1 = 0, t2 = 0 is prescribed on the left edge and u2 = 0, t1 = 0
on the bottom edge, and the inner boundary at a = 1:0 is trac-
tion free. The traction boundary conditions, as given by the
exact solutions, are imposed on the outer boundary at r = 4:0.
Secondary nodes are distributed randomly in the domain, as
shown in Fig. 20. 4�4, 6�6, and 9�9 integration points in
an integration domain are used for models with 50, 100, and
200 secondary nodes in the domain, respectively. One sec-
ondary node, on each boundary-segment between the primary
nodes on the global boundary, is added to improve the defor-
mations on the global boundary. The comparison between the
MLPG and the exact solutions are shown in Fig. 20.
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Figure 21 : Convergence for the displacement and the energy
norms in the problem of a plate with a circular hole, with ir-
regularly distributed secondary nodes in the domain.

The relative displacement error decreases from 5:93% to
0:48%, and relative energy error decreases from 11:51% to
4:69% by adding 200 secondary nodes in the domain. The
convergence with the number of nodes is shown in Fig. 21
with a representative nodal density

p
Ns for the irregularly dis-

tributed secondary nodes in the domain.
Agreement between the MLPG and the exact solutions is ex-
cellent in this example. As a more severe case, we consider a
plate with an elliptic hole for aspect ratios of 4 : 1, and 8 : 1, re-
spectively. The stress concentration factors for these elliptical-
hole problems in an infinite plate under uniform traction are
9:0 and 17:0, respectively. The secondary nodes in the domain
and on the global boundary are added near the elliptical hole
where the major-axis is of the ellipse intersects the hole sur-
face. The models with randomly distributed (25, 50, 100 and
200) secondary nodes in the domain, use 4�4, 6�6, 9�9 and
11�11 integration points in an integration cell, respectively.

(a)

(b)
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(c)

(d)

(e)

Figure 22 : The MLPG solutions for the problem of a plate with an elliptical hole: (b=a = 4:0 and b=a = 8:0). Displacements
and distribution of stress σ11 (a) without secondary nodes, (b) with 25 secondary nodes, (c) with 50 secondary nodes, (d) with
100 secondary nodes, and (e) with 200 secondary nodes in the domain.
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Figure 23 : Convergence for the displacement and the energy
norms in the problem of a plate with an elliptical hole, with
irregularly distributed secondary nodes in the domain.

Note that the sub-domains not influenced by the secondary
nodes require only 2� 2 integration points because of sim-
ple shape functions in this region. Fig. 22 shows the stress
distributions by adding 25, 50, 100 and 200 secondary nodes.
The stress σ11 near the tip of the major-axis of the elliptical
hole is plotted in Fig. 23 with a representative nodal densityp

Ns. The results show that the stress concentration factors ap-
proach the exact values as the number of the secondary nodes
increases.

5.3 Concentrated load on a semi-infinite plate

Consider the concentrated load on an infinite plate as shown
in Fig. 17c. The plate is assumed to be of unit width so that
the concentrated load is equal to q. The exact solution for this
problem [Saada (1974)] is given by

σrr = �2q
π

cosθ
r

(48)

σθθ = σrθ = σzz = 0 (49)

err =� 2q
πE

cosθ
r

(50)

eθθ =
2νq
πE

cosθ
r

(51)

erθ = 0 (52)

The displacements are

ur =
2q
πE

cosθln
d
r
� (1�ν)q

πE
θ sinθ (53)

uθ =
q(1+ν)

πE
sinθ� 2q

πE
sinθln

d
r
� (1�ν)q

πE
θ cosθ (54)

where d is a distance from the point of the concentrated load
q. We use the right half model with 4:0� 4:0 size as shown

in Fig. 17c. The concentrated load q is 1:0� 109 in this ex-
ample. Since the displacements are singular at the point of
application of the concentrated load q, we use the model with
a small circular hole a = 0:5. The symmetric boundary condi-
tion is applied at the left side of the half model, and tractions
are applied at the other boundaries from the exact solution. In
numerical calculation, the distance d is set to be 4:0 to give
the fixed boundary condition at the center. Convergence stud-
ies are carried out using three different numbers of secondary
nodes, namely 50, 100, and 200. 4�4, 6�6, and 9�9 inte-
gration points are used in an integration domain for these three
models. The comparison between the MLPG and the exact so-
lutions is plotted in Fig. 24, and the convergence is shown in
Fig. 25. In this example, we obtain the similar trends as shown
in the problems of a cantilever beam and a plate with a hole.

5.4 Center cracked plate in tension

Next, we consider a center cracked plate in tension. Due to
symmetry, the right half as shown in Fig. 17d is modeled un-
der plane stress condition. The size of model is h = w = 4:0,
and the crack length is a = 2:0. The applied stress σ0 at the
top and the bottom is 5:0�108 in this example. The symmetric
condition is applied on the left side. Of primary importance in
a crack problem is the determination of the parameters which
characterize the singularity of the stress fields in the vicinity of
a crack tip. The mode I stress intensity factor KI, as a charac-
terizing parameter for the crack, is computed from J-integral
using domain integration [Nikishkov and Atluri (1987) and
Anderson (1991)]. The size of the J-integral domain is cho-
sen as 2b1 � 2b2 = 2:0� 2:0. The stress intensity factor KI

is evaluated by KI =
p

JE for plane stress, and the target so-
lution for this problem is KI=K0 = 1:325 where K0 = σ0

p
πa

[Tada, Paris, and Irwin (1977) and Wu and Carlsson (1991)].
In this numerical example, we use regularly distributed pri-
mary nodes as shown in Fig. 26, and secondary nodes are
added randomly near the crack tip. 4� 4, 6� 6 and 8� 8
integration points are used for models with 25, 50 and 100
secondary nodes in the domain, respectively. However, only
2�2 integration points are used in the sub-domains which are
not influenced by the secondary nodes. The stress σ22 at the
crack tip is higher as the number of the secondary nodes near
the crack tip increases. By adding secondary nodes on the
crack lines, the improved deformations near the crack tip are
obtained as shown in Fig. 27. The deformations of the crack
lines are very important to recover the stresses correctly near
the crack tip. In Fig. 28, the errors in the stress intensity fac-
tors evaluated from J-integral are plotted against the number
of the secondary nodes. The stress intensity factor approaches
the target solution as the number of secondary nodes in the
domain increase.
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(a) (b)

(c) (d)

Figure 24 : Comparison of the MLPG and the exact solutions for the problem of a concentrated load on a semi-infinite plate.
Displacements and distribution of stress σ22 (a) without secondary nodes, (b) with 50 secondary nodes, (c) with 100 secondary
nodes, and (d) with 200 secondary nodes in the domain.

6 Concluding remarks

A method, based on the meshless local Petrov-Galerkin
(MLPG) concept for solving boundary value problems has
been presented in this paper. The concept of primary and sec-
ondary nodes was introduced, and the weight functions for
primary and secondary nodes were defined to yield a single
type of a rational function all over the integration domain. The
approach presented in this paper alleviates a major difficulty
in the numerical integration to evaluate weak forms in other
meshless methods. Additional mesh for the secondary nodes
is not required to improve the accuracy of solution. The essen-
tial boundary conditions are easily taken care of as in FEM,

and the non-convex boundaries can be treated without a spe-
cial technique.

A clear advantage of the present method is that the secondary
nodes can be placed at any random locations, without the bur-
densome task of constructing a new mesh to enrich the so-
lution. The present MLPG method can control errors in nu-
merical results by adding the secondary nodes, using only
the sub-domains constructed from the primary nodes. There-
fore, the present method can be a useful tool for error con-
trol and adaptive calculation in the field of computational me-
chanics. The numerical experiments show that the present
method is very efficient for adaptive error control by placing
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Figure 25 : Convergence for the displacement and the energy
norms in the problem of a concentrated load on a semi-infinite
plate, with irregularly distributed secondary nodes in the do-
main.

secondary nodes arbitrarily in the domain and on the global
boundary. The present method can be easily implemented in
three-dimensional problems with the same advantages. Fur-
ther results based on the current approach will be presented in
a series of forthcoming papers.
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(a) (b)

(c) (d)

Figure 26 : The MLPG solutions for the problem of a center cracked plate. Displacements and distribution of stress σ22 (a)
without secondary nodes, (b) with 25 secondary nodes, (c) with 50 secondary nodes, and (d) with 100 secondary nodes in the
domain.
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primary node

secondary node in domain

secondary node on the crack line

crack tip

Figure 27 : Deformation near crack tip, including secondary
nodes on the crack line.

Figure 28 : Errors in the evaluation of stress intensity factor,
versus the number of secondary nodes in the domain for a cen-
ter cracked plate problem.


