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Abstract: In rotating radial ball bearings supported on elas-
tic casings with the bearing outer ring lightly fitted into the
housing, the force due to the ball elastic contact is indeed a ro-
tating load rolling over the housing. For accurate estimation of
the dynamic deformations of the casing annulus (hole), which
in turn affect the bearing tolerances and hence the magnitudes
of the generated forces, effect of the load rotation (motion)
should be considered. Considering the integral casing and the
outer ring to be a plate, an isoparametric plane stress finite-
element (FE) based analytical procedure is presented for the
dynamic analysis of the housing as affected by the load vec-
tor rotation. The Hertz equation for elastic contact is used
to model the nonlinear elastic coupling between the external
moving load and the vibrations of the housing. The equations
of motion are obtained using Lagrange’s equations and decou-
pled using the normal coordinates representation and solved
using a special numerical integration scheme. The computa-
tions are carried out using the FE program ’DAMRO 1’ and
the results are discussed using time domain, motions in the
state plane, Poincare’ return map, and FFT. The results show
that the overall amplitudes of the deformation vector around
the annulus circumference and hence amplitudes of the dy-
namic load vary between maximum in the direction of the cas-
ing rigid support and minimum in the orthogonal direction.
These regular variations can initiate/accelerate fatigue in the
elastic components of the system. The vibrations measured at
the casing outer surface show that the dominant peak in the
horizontal direction and the one in the vertical direction do not
coincide. And this recommends using one vibration measur-
ing probe in the horizontal direction and another probe in the
vertical direction, to capture all the important vibrations.

keyword: Machinery casing, in-plane moving load, nonlin-
ear interaction, plate finite-elements.

1 Introduction

Flat plates are widely used in practice, ranging from, for exam-
ple, a single plate supporting a shaft bearing to a collection of
plates constitute a gear box casing, etc. The applied loads on
the elastic member can be pure in-plane, or lateral, or a com-
bination of both. and they can be stationary or moving. As
a result, the plate will vibrate in its plane or laterally, or both.
The study of flat plates under lateral moving loads had received
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much work using, for example, integral transformations meth-
ods [Fryba (1972)] and approximate techniques such as finite-
elements method (FEM) [ Taheri and Ting (1988)]. To the
author’s knowledge, the first study of a flat plate subject to
an in-plane moving load was presented by El-Saeidy (1999)
where the external moving force was of constant magnitude
(for more information on the recent works on structures under
moving loads, see for example, the reviewed papers in [El-
Saeidy (2000)]. And the published studies are limited to in-
plane stationary concentrated/distributed forces, to primarily
determine the plate buckling loads and/or the related vibra-
tions. For example, see Leissa and Ayoup (1988), Laura and
Gutherrez (1998), and Yang (1986). Taha and Crookail (1977)
used an existing FE program (using triangular plate elements)
to compute the in-plane deformations of a cantilever thin plate
with a central hole subject to in-plane stationary (non-rotating)
radial forces due to contact between a roller bearing rollers and
the ring. The bearing outer ring was modeled as an integral
part of the plate (casing) and the authors recommended consid-
ering effect of the external forces rotation on the elastic hous-
ing deformations. Also, plate finite-elements were used, using
existing FE programs, to model machine casings, see, for ex-
ample, Choy, Ruan, Tu, Zakrajsek, Townsend (1992) where
the supporting bearing linear springs and dampers were con-
nected to the housing wall at fixed locations. In these papers
(except the experimental part in [Taha and Crookail (1977)],
the analyses are purely analytical. Such mathematical mod-
els are useful, in the disgn stage, where access to experimen-
tal work is costly/impossible, to provide the designer with, at
least, guide lines.

In mechanical systems incorporating radial ball bearings, the
ball force due to contact with the bearing rings is indeed a
rotating load vector rolling over support, see, for example,
Sankaravelu, Noah, and Burger (1994) and El-Saeidy (1998)
where the housing with the outer ring fitted in it was treated
rigid (except the Hertizian local elastic contacts). For elastic
housings, effect of rotation of the ball force on the casing an-
nulus (hole) surface dynamic deformations under the moving
ball which in turn affect bearing tolearances and magnitude of
the generated (reaction) forces should be considered. The con-
tribution of the current paper is to present a FE based analysis
procedure for the dynamic simulation of a machinery 2D elas-
tic casing with a central hole subject to an in-plane rotating
(moving) deflection dependent load. Although applications
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Figure 1 : FE discretization of the cantilevered plate

to rotating machinery incorporating radial ball bearings sup-
ported on elastic housings have been a guiding consideration,
the analysis may have other similar applications.

2 Analytical Model

Figure 1 shows the FE discretization of a cantilevered plate
rigidly fixed along the X axis with a central hole subject to an
in-plane rotating deflection dependent load vector F . Here, the
internal nodes (number 2, 4, 6, and 8, see Fig. 2) of each plate
element are not shown. XY Z is a global coordinate system
where the Z axis (not shown) points out of the paper. In Fig.
2, which describes the details of a typical plate finite-element
under the action of the external moving (rotating) load vec-
tor F , the axes XY are fixed in space and parallel to the XY
axes with the origin at the geometrical center of the housing
annulus in the undeformed state. In Fig. 2, F is shown within
the spatial domain of the kth finite-element. The radial posi-
tion of the load vector measured from the horizontal direction
(point O j on the X axis) is given by θ j = Ωct (rad). Where
Ωc is the angular speed (rad/s) of the rotating load vector and
t is the global time in seconds measured from the point O j

on the global boundary (the annulus cirumference). The plate
element has 8 nodes with 2 degrees of freedom (DOF) each.
Recall that the desired accuracy of the solution and idealiza-
tion of the curved boundary (the hole surface in our case) can
be achieved by using fewer number of 8-node isoparametric
elements compared to an increased number of 6-node triangu-
lar elements with curved sides or vice versa. This is provided
the number of DOF per node in each choice is the same. Thus,
the selection of the 8-node Co element is justified.

Let de
k and he

k denote, respectively, the global vector of the
undeformed state position and the global vector of the elastic

deformation of a generic point within the spatial domain of the
kth element, such that

de
k =

�
x y

�T
; he

k =
�

u v
�T (1)

where the superscript e denotes the element and the subscript
k stands for its number. x and y are the global positions along
the X and Y , respectively. u and v are the global elastic dis-
placements along the X and Y , respectively. Let ze

k stands for
the element 16�1 nodal point global coordinate vector and qe

k
refers to the kth element global displacement field vector, such
that

ze
k =

�
x j y j

�T
;qe

k =
�

u j v j
�T

; j = 1;2; ::;8 (2)

The element global coordinate vector, de
k , and the elastic defor-

mation vector, he
k, are related, respectively, to the vector of the

element nodal points coordinates and the vector of the element
nodal points variables, such that

de
k = Nze

k;h
e
k = Nqe

k;N =

�
Nj 0
0 Nj

�
; j = 1;2; ::;8 (3)

N is the 2�16 overall matrix of the element Co shape functions
whose enteries are2
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r and s are the element serendipity coordinates. Expressed in
the XY Z system, the plate element kinetic and potential ener-
gies are 1

2(q̇
e
k)

T Me
kq̇e

k and 1
2 (q

e
k)

T Ke
k qe

k, respectively where the
element stiffness and consistent mass matrices Ke

k and Me
k are�

Ke
k

Me
k

�
=

Z 1

�1

Z 1

�1

�
te
k(B

e
k)

T De
kBe

k
te
kρe

k(N)
T N

�
det(Je

k )drds (5)

ρe
k, te

k , De
k, and Be

k are the material mass density, the plate thick-
ness, the matrix of the linearly elastic isotropic material con-
stants for plane stress, and the global strain displacement ma-
trix, respectively. det(Je

k ) is the determinant of the element
2�2 jacobian matrix, Je

k .

2.1 Plate Finite Element Load Vector due to In-Plane De-
flection Dependent Moving Load

Some of the mathematical background in this section have
been presented previously by El-Saeidy (1999) and since that
work is still under publication consideration, the pertaining
analyses presented there will be recalled concisely in the cur-
rent article for the sake of completeness. Figure 2 depicts
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Figure 2 : A global boundary plate finite-element subject to
an in-plane moving (rotating) load

a typical plate finite-element (number k) sharing the global
boundary (the hole circumference) under the action of an in-
plane moving load vector. Where a is an element physical
coordinate with its origin at node number 7 and is measured
along the global boundary. Also, let us introduce another phys-
ical coordinate, a, that runs along the annulus circumference
with its origin at the element midspan point along the global
boundary (node number 6). The element physical length along
the global boundary is 2`e

k such that a = +`e
k at node number 5

and a = -`e
k at node number 7.

The load vector F is taken to be composed of two contributions
and its amplitude, F , is given by

F = Fo+F(t) (6)

where Fo = Fote
k (Fo is a force per unit plate thickness) is a

constant force and F(t) is the deflection (time) dependent com-
ponent which we model as

F(t) = K(j δr j)
3=2 (7)

Here, j : j is the absolute value and δr is the relative approach in
the radial direction at the instantenous position of the rotating
load F , such that

δr = ud cosθ j + vd sinθ j (8)

ud and vd are the X and Y components, respectively, of the
elastic deformation vector of the point under the moving load
(see Eq. 22). Equation 7 is based on the Hertzian contact be-
tween the ball bearing rotating elements and rings in the case
of tight (zero) clearance (for example see, the bearing model
[El-Saeidy (1998)]), with no oscillations of the bearing innner
ring. In practice a situation like this can arise when the bearing
inner ring is lightly fitted on a rigid and well balanced (i.e., no

mass imbalance excitation) rotating shaft such that the jour-
nal lateral motions (if exist) are of negligible amplitudes. K
(N/mm3=2) is a constant which can be computed using the ball
bearing analysis [Harris (1984)]. Furthermore, in a ball bear-
ing assembly, the component Fo can arise from a preload or
an interference fit in the housing, which in turn creates tight
clearance. However, any other model(s) at the reader’s dis-
posal can be used. The reason for subjecting the elastic casing
to only one moving force is to isolate the nonlinear interaction
between the force and the elastic member from effects of other
similar rotating forces. The extension of the analyses to the
case of a train of moving loads is straightforward. The global
dynamic load vector, F , has two components along the X and
Y axes, Fx and Fy, respectively.

F =
�

Fx Fy
�T

= F
�

cosΩt sinΩt
�T (9)

The instantenous global position of the moving load along the
global boundary is determined by the global distance S = Vt ,
measured from the instant F starts rotation at the point O j. V
= ΩcR is the circumferential speed of the moving load where
R is the radius of the annulus and t is the global time coordi-
nate with its origin at O j. While the vector F is within the kth
element global boundary, its position relative to node number
7 is measured by the local distance se

k = Vt where t is a local
(an element) time coordinate measured from the instant the
moving load reaches node number 7. This local measure and
the global measure S are related, such that se

k = S�2(k�1)`e
k

where k is the element number. It should be noted, however,
that both S and se

k are measured along the same global bound-
ary. Expressed in the XYZ frame, the element global external
load vector due to the moving load vector is given by Fe

k , such
that

Fe
k =

�
Fδ(a�Vt) if 2(k�1)`e

k < S < 2k`e
k

02 otherwise
(10)

Here, 02 is a 2 � 1 null vector. δ(a�Vt) is the dimensional
Dirac delta function with both a and Vt as defined earlier.
Since the units of this delta function are those of 1=a, the vec-
tor Fe

k may be interpreted as a load per unit length (see Eq.
11). To rewrite δ(a�Vt) in terms of the coordinates r and s,
let us introduce a new nondimensional coordinate, g = a=`e

k,
(called hereafter the element global boundary natural coordi-
nate). The coordinate g (not shown), whose origin is at node
number 6, changes its value in a linear fashion from -1 at node
number 7 to +1 at node number 5 along the global boundary.

From Fig. 2, the relation between the kth element two phys-
ical coordinates a and a is a = a+ `e

k. Thus, δ(a�Vt) =
δ(a+ `e

k �Vt) which upon using the coordinate g and uti-
lizing properties of the generalized delta function, we get
δ(a�Vt) = (1=`e

k)δ(g� (�1+V t=`e
k)). δ(:) is the nondimen-

sional delta function. The term (�1+Vt=`e
k) assumes a value

of �1 when the load arrives at node 7 and a value of +1 when
the load departs at node number 5. Thus, this time dependent,
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and linearly varying, term measures the change in the coordi-
nate g as the load progresses (rotates). Substitute Vt = se

k into
the right hand side of the last expression for δ(a-Vt) and then
into Eq. 10, we get

Fe
k =

(
F
`e

k
δ(g� se

k
`e

k
+1) if 2(k�1)`e

k < S < 2k`e
k

02 otherwise
(11)

Recall from Eq. 3 that he
k = Nqe

k, the virtual change in the
displacement field he

k, δhe
k, is

δhe
k =

�
δu δv

�T
= Nδqe

k (12)

δqe
k is the virtual change in the vector field qe

k. The virtual
work of the vector Fe

k is given by δWe
k .

δWe
k =

Z `e
k

�`e
k

(δhe
k)

T Fe
k da (13)

In this global boundary line integral, da (not shown) is the dif-
ferential (infinitesimal) arc length on the global boundary. da
may be computed using the global components of the infinites-
imal chord length approxmating it, dx and dy, in the X and Y
directions, respectively, and the Pathagorean theorem. To this
end, da=

p
(dx)2 +(dy)2 where x and y are the global coordi-

nates of a general point on the element global boundary. From
Eqs. 1 and 2 into 3, then

�
x y

�T = N
�

x j y j
�T . Recall

that N = N(r; s) and use the chain rule of differentiations, the
total differentials dx and dy are

�
dx
dy

�
=

Nen

∑
j=1

"
∂Nj
∂r x j

∂Nj
∂s x j

∂Nj
∂r y j

∂Nj
∂s y j

#�
dr
ds

�
(14)

Nen is the element number of nodes. Since on the global
boundary s=+1 and r is a spatial variable, we have ds = 0.
Use the da’s expression and Eq. 14, then

da = Re
k(r;1)dr (15)

Re
k(r;1) =

q
(∑Nen

j=1
∂Nj(r;1)

∂r x j)2+(∑Nen
j=1

∂Nj (r;1)
∂r y j)2

In Eq. 15, the partial derivatives of the element shape matrix
enteries are computed along the global boundary where s=+1
and r changes its value in a linear fashion as explained above.
The elements Nj in Eq. 4, show that only the components N5,
N6, and N7 will contribute to the right hand side of Re

k(r;1)’s
equation. And this not only saves CPU time but also serves as
an essential pivot in deriving Eq. 21 as follows.

Use Eq. 12, (δhe
k)

T = (δqe
k)

T (N)T . Recall that N = N(r; s)
should be replaced by N(r;1) and substitute from Eq. 15 into
Eq. 13 and since δqe

k constitutes a set of only time dependent
variables, we get

δWe
k = (δqe

k)
T
Z 1

�1
(N(r;1))T Fe

k Re
k(r;1)dr (16)

Substitute from Eq. 11 into 16 and adjust the vector dimen-
sions, then in a compact form, we have

δWe
k = (δqe

k)
T Qe

k (17)

Qe
k is the element global generalized load vector associated

with the global generalized deformation vector qe
k, such that

Qe
k =

� R 1
�1 Z1(r)dr if 2(k�1)`e

k < S < 2k`e
k

016 otherwise
(18)

Z1(r) = Re
k(r;1)(N(r;1))

T F
`e

k
δ(g+1�

se
k

`e
k
)

where 016 is a 16�1 null vector. The integral in Eq. 18 in its
current form is not amenable to evaluation because the delta
function is expressed in terms of the coordinate g while the
integration is with respect to r. However, this hurdle can be
removed as follows. As it has been pointed out previously,
the element nodal points number 1, 2, 3, 4 and 8 are free from
any direct influence of the external applied load vector and this
makes the coordinate r only affects the external forces applied
to the nodal points 5, 6, and 7. That is, the applied forces at
the element global boundary nodes are not explicit functions
of any external forces that may exist at any of the other 5 nodal
points and effect of r on the element external forces is limited
to the linear variation in its value between the nodes number
7 and 5 on the global boundary. The same effect of the linear
variation in value, along the global boundary, is a requirement
for the coordinate g, as well, as can be viewed from the above
presentation. In other words, both the r and g coordinates are
equivalent in their effects on the computation of the element
load vector. Therefore, in the above integral, g can be replaced
by r and the reverse is not allowed. To this end, Eq. 18 can be
rewritten as

Qe
k =

� R 1
�1 Z2(r)dr if 2(k�1)`e

k < S < 2k`e
k

016 otherwise
(19)

where the time dependent function Z2(r) is the same as Z1(r)
(Eq. 18) except that g is replaced by r. Now, utilizing the
properties of the Dirac delta function, Eq. 19 becomes

Qe
k =

(
He

k (s
e
k)

F
`e

k
if 2(k�1)`e

k < S < 2k`e
k

016 otherwise
(20)

He
k (s

e
k) = Re

k(
se
k
`e

k
�1;1)(N(

se
k

`e
k
�1;1))T

Thus, the element global generalized load vector, Qe
k, associ-

ated with the generalized vector qe
k can be evaluated at any

instantenous position along the element global boundary by
evaluating the matrix function He

k (s
e
k) at the corresponding in-

stantenous and nondimensional position (�1+ se
k=`

e
k). And

then multiplying it by the global load vector F divided by the
element half length along global boundary, `e

k. However, if the
nodal point number 6 is located at the midspan point of the
element global boundary, which is the assumption in our case,
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the function Re
k(�1+ se

k=`
e
k;1) will always be equal to `e

k. To
this end, Qe

k is given by

Qe
k =

(
(N(

se
k

`e
k
�1;1))TF if 2(k�1)`e

k < S < 2k`e
k

016 otherwise
(21)

However, in this case, Eq. 20 can be used to check success
of the computer implementation of the formulation. That is,
a successful digital implementation should always yield the
instantenous value of the function Re

k(�1+ se
k=`

e
k;1) equal to

`e
k while the load vector is traveling along the global boundary

of the kth element.

Let
�

ud vd
�T denotes the global displacement vector of the

point under the moving load. This deformation field vector can
be obtained by specializing he

k of Eq. 3 to the rolling point on
the element global boundary, such that�

ud
vd

�
= N(�1+

se
k

`e
k
;1)qe

k (22)

where ud and vd are the global elastic motions along the X and
Y axes, respectively. Similarily, if

�
xd yd

�T
denotes the

global coordinate vector of the point under the moving load,
then the vector de

k of Eq. 3 gives�
xd
yd

�
= N(�1+

se
k

`e
k
;1)ze

k (23)

If the element nodal points and its serendepity coordinates, r
and s, are arranged in such a manner that on the global bound-
ary the coordinate r has a constant value and s changes its
value in a linear fashion, the ensuing changes in the right hand
side of Eq. 19 can easily be identified. Although present-
ing the final equations necessary for producing the reported
results, namely, Eqs. 21 to 23 and Eqs. 1 to 9 may be suffi-
cient for some readers. For others with interest in extending
the work, for example, to a casing under a 3D load vector, etc,
the analyses between Eqs. 9 and 21 may be of interest.

2.2 Equations of Motion and Solution Scheme

Use the element energy expressions and apply Lagrange’s
equations, the element equations of motion are Me

kq̈e
k+Ke

k qe
k =

Qe
k. Let the system overall global mass and stiffness matri-

ces be M, and K, respectively, and Q be the time dependent
overall global load vector, each obtained by assembling the
corresponding contribution from the indivudal elements using
the one-dimensional (1D) array scheme for banded/sparse ma-
trices [El-Saeidy (1993)]. Let q denotes the system overall
global displacement field, the global system of equations of
motion is Mq̈+Kq = Q. Premultiplying by (ΦN)

T and us-
ing the transformations [q q̇ q̈]T = ΦN[η η̇ η̈]T where η is the
modal displacement vector and ΦN is the normalized (with re-
spect to M) modal matrix obtained by solving the eigenvalue
problem, we get η̈+ω2η = F. F = (ΦN)

T Q is the load vector

Figure 3 : Orbit (xd+αud) vs (yd +αvd ) for Ωc = 0, 25, 100
rad/s, α = 10000; xd vs yd , F = Fo = 500 N, Nrv = 1 [El-Saeidy
(1999)]

expressed in the normal coordinates representation and ω2 is
the spectral matrix. The scheme used to solve this uncoupled
system is presented in the Appendix. Using this scheme, the
program ’DAMRO 1’ has been used successfully in the anal-
ysis of rotating/nonrotating structures acted upon by moving
loads. See, for example, [El-Saeidy (2000)] where the finite-
element results are in exact agreement with the reported re-
sults which were obtained using exact solution and a Laplace
transformation technique as well as the Runge-Kutta numeri-
cal integrator. In the current work, we used ∆t = 2�10�6 s.

3 Results and Discussion

The input data are: Fo=500 N, K = 107 N/mm3=2, H=W=240
mm, Ee=200 GPa, ρe = 750 kg/m3, νe = 0.3, Ωc= 350 rad/s ( fc

= 55.6818 Hz), Nrv = 300 = number of load revolutions (cy-
cles). In the FE discretization (Fig. 1), the element midspan
nodal points (number 2,4,6,8) are masked. The eigenvalue
problem is solved using different number of elements and sam-
ples of the results are tabulated in Tab. 1 where f is the natural
frequency with the subscript denotes its number and the su-
perscripit denotes the number of elements used in each mesh.
For accurate mapping of the casing curved global boundary
(annulus surface), we used the 64 elements discretization. Ta-
ble 2 tabulates the first sixteen natural tones used in the modal
analysis.

Before we present results, we reproduce one plot from [El-
Saeidy (1999)] showing the dynamic deformations of the
housing annulus under a moving load with constant magnitude
(F = Fo = 500 N) for wc (Ωc in the formulation) = 0, 25, 100
rad/s. Here, in Fig. 3, xd and yd are the X and Y global posi-
tions of the moving point around the circumference, computed
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(a)

(b)

(c)

Figure 4 : (a) Nondimensional load orbit Fx/Fo vs Fy/Fo, Fo =
500 N, (b) FFT of Fx/Fo, (c) FFT of Fy/Fo

Table 1 : Samples of 3 meshes eigenvalues, Hz

( f
32
1 , f

48
1 , f

64
1 ) = (71.595, 71.525, 71.242)

( f
32
2 , f

48
2 , f

64
2 ) = (183.954, 183.803, 182.858)

( f
32
3 , f

48
3 , f

64
3 ) = (210.620,210.469, 210.097)

( f
32
12, f

48
12, f

64
12) = (603.498, 602.532, 601.397)

Table 2 : Natural frequencies used in analysis, Hz

( f 1, f 2) = (71.242, 182.858)

( f 3, f 4) = (210.097, 290.553)

( f 5, f 6) = (301.367, 361.885)

( f 7, f 8) = (451.762, 472.995)

( f 9, f 10) = (555.931, 572.175)

( f 11, f 12) = (594.796, 601.397)

( f 13, f 14) = (670.564, 685.403)

( f 15, f 16) = (751.222, 775.623)

using Eq. 23, and ud and vd are their counterparts global defor-
mations, calculated using Eq. 22. The surface [xd ;yd], which
corresponds to the global boundary configuration for Ωc = 0
(before the external excitation is applied) is a circle of radius
R = 32 mm and this demonstrates success of the formulation
computer implementation. Both ud and vd are multiplied by
a factor α=104 and then superimposed on the corresponding
instantenous positions xd and yd , respectively, and plotted as
(xd +αud) vs (yd +αvd). Recall that the load starts and termi-
nates rotation at point C, we remark that the deformable sur-
face, [(xd +αud); (yd +αvd)], does not close onto itself with
the minimum deviation at the closing point (point C) corre-
sponds to the plot for Ωc = 25 rad/s. As the speed of rotation
increases, the deformation amplitude decreases and the sur-
face becomes more smoother. This is because at lower speeds,
the elastic motions have enough time to build up. The defor-
mation amplitudes are always positive (contraction) with the
region of the highest overall amplitudes stacked in the neigh-
berhoods of θ j = 0, 180o. The elliptical shape and the deforma-
tion pattern of the annulus surface (see plot for Ωc = 25 rad/s)
qualitatively resemble the experimental/FE results of Taha and
Crookail (1977). Recall that the results of Taha and Crookail
are for a plate which is made from epoxy resin material (to al-
low convenient deformations to be obtained with quite small
loads) and the casing was loaded by a radial force acting on a
nonrotating rigid shaft which in turn is supported on the bear-
ing rollers.

Now, we present results of the digital simulation for Nrv = 300.
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Figure 4a, shows the generated components of the dynamic
load vector in a nondimensional polar format where we see
that the load trajectory does not close onto itself (observe the
start point C). The orbit indicates that the force Fx is of overall
higher amplitudes compared to the component Fy. This is be-
cause the housing is more flexible in the horizontal direction
compared to the vertical direction due to the rigid support be-
ing along the X axis (see also Fig. 5a, to be discussed soon
where we observe there that the elastic deformations of the an-
nulus surface are of minimum amplitudes when the rotating
load vector is in the vicinity of the vertical axis) in addition to
the fact that at the start of the load rotation Fx is of maximum
amplitude whereas the force Fy which starts with zero ampli-
tude requires more time to reach its first peak. And this agrees
with the physical intution. For brevity, we did not include the
time domains for Fx and Fy, however, their spectra are shown in
Figs. 4b and 4c, respectively. Prior to the FFT computations,
the time record is zero meaned and windowed using Hanning’s
window. The spectrum for Fx is of higher overall energy con-
tent compared to its counterpart for Fy. In the X direction, the
dominant tone f3 = 55.6707 Hz is contributed by the forcing
frequency, fc, and in the Y direction f2 is due to fc as well. In
Fig. 4b, the other marked vibrations are ( f1, f2, f4, f5, f6, f7)
= (12.786, 43.392, 67.949, 111.461, 167.129, 179.407) Hz and
their sources are (∆ f , fc - ∆ f , fc + ∆ f , 2 fc, 3 fc, f 6 - f 2) where
∆ f = 4 fc - f 3 = 12.630 Hz. As we see these tones show modu-
lation of the external excitation frequency through the natural
tones or vice versa. In the Y direction, the other marked peaks
are ( f1, f3, f4) = ( fc - ∆ f , 3 fc, f 6 - f 2).

Figure 5a depicts the global deformations of the housing hole,
in a polar format under the moving load. The time domain of
the compound wave (xd +αud) and the pure deformation wave
ud are shown in Figs. 5b and 5c, respectively, and for brevity
the domains for the corresponding waves in the Y direction are
not presented. As we see from the state plane and Figs. 5b
and 5c, ud has a maximum amplitude of about 1.8 µm com-
pared to a maximum amplitude of about 0.72 µm for vd . The
largest amplitudes of the elastic deformation are staked in the
horizontal direction region and the smallest ones are confined
to the zone in the vicinity of the vertical axis. These patterns in
the annulus circumferential dynamic deformations contribute
to the trends in the generated dynamic fores as we have just
seen in Fig. 4a. Practically, this means that the regular vari-
ations in these deformations and hence the ensuing variations
in the generated nonlinear forces can create/accelerate fatigue
in the elastic components of the assembly.

When the time domain in Fig. 5b and its counterpart in the Y
direction (not shown) are sampled once per forcing frequency
period and projected onto the plane (xd+αud , yd+αvd ), the re-
sulting Poincare’ first return maps obtained using the variables
(xd+αud ) and (yd+αvd ) are given in Figs. 5d. and 5e, respec-
tively. In both directions, the map occupies an elliptical area
with the ellipse major axes runs along the identity map (45 deg

(a)

(b)

(c)

Figure 5 : (a) Orbit (xd + αud) vs (yd + αvd), (b) (xd + αud)
vs time, (c) ud vs time, (d) map (xd + αud)n vs (xd + αud)n+1,
(e) map (yd + αvd )n vs (yd + αvd )n+1, (f) FFT of ud, (g) FFT
of vd , α = 10000
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(d)

(e)

(f)

(g)

Figure 5 : (continued)

line). Each of the two maps is not one to one (i,e., the variable
amplitude at the end of the current cycle can not be obtained
from the variable amplitude at the end of the previous cycle).
This may be an indication of a higher dimensional dynamical
system. The points of the X direction map tend to fill up the
area of the ellipse uniformly compared to an island-like pat-
tern in the Y direction map. We may observe that the system’s
dynamical behavior in one of the two orthogonal directions
can not be inferred completely from the system’s behavior in
the other direction. Moreover, we recall that [Ehrich (1991)]
reported a beating signal (forced vibration) and its Poincare’
return map which occupies an elongated ellipse with its major
axis on the 45 deg line.

The spectra of the elastic deformations ud and vd are illustrated
in Figs. 5f and 5g, respectively. In each of the two plots, the

largest vibration is attributed to fc. In Fig. 5f, the other marked
peaks f1, f2, f4 to f12, respectively, are contributed by ∆ f , fc-
∆ f , fc+∆ f , 2 fc, 2 fc+∆ f , 3 fc, f 6- f 2, f 3, 4 fc + ∆ f , f 4, and
6 fc + ∆ f , respectively. In Fig. 5g, the vibrations f1, f2, f3,
f4, f5, f6, f8, and f9 coincide with the tones f1, f3, f5, f6,
f7, f8, f10, and f12, respectively, of Fig. 5f. Moreover, in
Fig. 5g, f7, f10, f11, f12, f14, f15, f16 are attributed to 4 fc, f 6,
f 8, f 10, f 15- fc, f 15, and f 15+ fc, respectively. As we see the
participation of the system’s natural frequencies is obvious. It
is interesting to note that in the FFT for the velocity u̇d (not
shown) the dominant vibration is at fc and in the FFT for v̇d
(also not shown) the largest tone is at f 15.

Before we conclude the paper, we present the spectrum for
the horizontal velocity U̇A measured at point A on the casing
outer surface (Fig. 1) in Fig. 6a and the FFT for the vertical
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(a) (b)

Figure 6 : (a) FFT of the casing velocity at point A, U̇A, (b) FFT of the casing velocity at point B, V̇B

velocity V̇B measured at point B in Fig. 6b (no time domains
are included). In the horizontal directions, the marked tones
f1 to f21 are contributed by fc - ∆ f , fc, fc + ∆ f , 2 fc, 3 fc, f 6-
f 2, f 2, 4 fc, 4 fc + ∆ f , 5 fc, f 4, f 5, f 6, f 7, f 8, f 9, f 10, f 11,
f 14, f 15, f 16. In the vertical direction, however, the vibrations
f1 to f10 and f12, respectively, correspond to the spikes f2,
f3, f5, f6, f8, f11, f12, f13, f15, f16, and f20, respectively, in
Fig. 6a. As we see, the system’s natural frequencies appear
markedly in the spectrum measured at the casing outer surface.
Moreover, the largest vibration in the X direction, f2, and the
largest tone in the Y direction, f4, do not coincide. And this
recommends using one vibration measuring probe in each of
the two orthogonal directions, respectively, to avoid missing
catastrophic failure enducing vibrations.

4 Conclusions

A procedure, using an isoparametric FE formulation, is pre-
sented for the vibration analysis of machinery 2D elastic cas-
ing with central hole subject to an in-plane moving (rotating)
deflection dependent load. The Hertizian contact theory per-
taining to contact between the ball bearing balls and rings is
used to model the nonlinear elastic coupling between the ex-
ternal moving load and the housing vibrations. The equations
of motions are obtained using Lagrange’s equations and de-
coupled using the normal coordinates representation and then
solved using a special numerical integration scheme. The anal-
yses are implemented in the FE program ’DAMRO 1’ and used
to study elastic deformations of the annulus surface under the
moving load. The results are discussed using time domain,
motions in the state plane, Poincare’ return map, and FFT. The
results in time domain show that the overall amplitudes of the
deformation vector around the casing hole circumference and

hence amplitudes of the dynamic load vary between maximum
along the X direction (direction of the casing rigid support,
Fig. 1) and minimum in the orthogonal direction. These cyclic
variations can initiate/accelerate fatigue in the elastic compo-
nents of the system. The spectra of the velocities measured at
the outer surface of the housing (U̇A, V̇B) are dominated by the
system’s natural frequencies. Moreover, the spectra of these
velocities recommend us to use one vibration measuring probe
in the horizontal direction and another probe in the vertical di-
rection, to capture all the important vibrations. The application
of the presented analyses to a complete dynamical system such
as, for example, a ball bearing elastic support configuration is
straightforward.
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Appendix A: The numerical integration scheme

ηs(t j+∆t) =

�
ηs(t j)�

Fs(t j)

(ωs)2

�
cos (ωs∆t)

+
η̇s(t j)

ωs
sin(ωs∆t)+

Fs(t j)

(ωs)2 ;

η̇s(t j+∆t) =

�
Fs(t j)

ωs
�ωsηs(t j)

�
sin(ωs∆t)

+ η̇s(t j)cos (ωs∆t);

η̈s(t j+∆t) = Fs(t j)� (ωs)
2ηs(t j +∆t);

s = 1;2;3; ::;N f : (24)

ωs and N f are the circular natural frequency and the number of
retained modes, respectively. The ηs and η̇s expressions have
been presented in [Adams (1980)] without derivation. In their
derivation [El-Saeidy (1998)], the force Fs(t j) is assumed to
be constant during time interval t j � t � t j+1 (i.e. time step
has to be small).


