
An Inverse Boundary Element Method for Determining the Hydraulic
Conductivity in Anisotropic Rocks

R. Mustata1, S. D. Harris2, L. Elliott1, D. Lesnic1, D. B. Ingham1

Abstract: An inverse boundary element method is devel-
oped to characterise the components of the hydraulic conduc-
tivity tensor K of anisotropic materials. Surface measure-
ments at exposed boundaries serve as additional input to a
Genetic Algorithm (GA) using a modified least squares func-
tional that minimises the difference between observed and
BEM-predicted boundary pressure and/or hydraulic flux mea-
surements under current hydraulic conductivity tensor compo-
nent estimates.
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1 Introduction

The production of gas and oil in many reservoirs is seriously
affected by their highly heterogeneous and/or anisotropic
structure. From the fluid flow point of view, it is well ac-
cepted that heterogeneity and anisotropy are two closely re-
lated properties. Inhomogeneous materials are usually thought
to appear homogeneous, but anisotropic, when considered at a
scale much larger than the largest scale of heterogeneity.

The origin of anisotropy in rocks was discussed by Lake
(1988) from the transport properties point of view. One
conclusion is that the directionality of the pore structure,
namely the preferred orientation of the microcracks or of non-
spherical grains, can only produce moderate hydraulic conduc-
tivity anisotropy (experimental evidence was given by Rice,
Fontugne, Latini, and Barduhn (1970)). Strong hydraulic
conductivity anisotropy is more likely to originate from fine-
scale heterogeneities in such materials as, for example, sand-
shale sequences, aeolian deposits and jointed or fractured rock
masses. As a consequence, it can be stated that anisotropy,
like heterogeneity, is scale dependent (see Dagan (1986)). The
scaling-up of the hydraulic conductivity from the centimetre-
scale, as in cores or well logs, to the scale of hundreds of
metres, such as grid blocks in large-scale numerical simula-
tions, is a problem which is often encountered by reservoir
engineers. Many techniques have been proposed to perform
this task, more commonly known as determining grid block
effective hydraulic conductivities. However, difficulties are
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often encountered, especially in the case of multiphase flow
(see Hewett and Behrens (1990)). The fundamental equation
describing fluid flow in porous media, namely Darcy’s Law, is
itself the result of such a scaling process, from pore to sample
scale. The difficulty that remains is to demonstrate that the co-
efficient of proportionality thus obtained, namely the hydraulic
conductivity, is a material property, i.e. it is independent of
the boundary conditions. Similarly, to be valid, the scaled-
up, or effective, hydraulic conductivities should not depend on
the boundary conditions. It is commonly believed that this re-
quirement is automatically satisfied if the spatial domain con-
sidered, i.e. the grid block, is much larger than the largest scale
of the heterogeneity contained in it, so that the material can
be considered globally homogeneous (see for example, Begg,
Carter, and Dranfield (1989)).

In this paper, the steady state flow of a single liquid phase
through a rectangular, two-dimensional piece of homoge-
neous, anisotropic material is analysed using a BEM approach.
This particular geometry has been chosen since it corresponds
to the configuration traditionally employed in laboratory mea-
surements. A GA based inverse technique is employed for the
identification of the components of the hydraulic conductivity
tensor using additional pressure and/or hydraulic flux values at
the exposed boundaries.

2 Mathematical Formulation

In this section we consider an anisotropic medium in an open
domain Ω � Dd , where d is the dimension of the space in
which the problem is posed, usually d 2 f1;2;3g, and we as-
sume that Ω is bounded by a surface Γ which may consist of
several segments, each being sufficiently smooth in the sense
of Liapunov (see for example Sternberg and Smith (1946)).
One way to deal with the anisotropy is to transform the gov-
erning differential equation into its canonical form by chang-
ing the spatial coordinates. However, after the transformation
the boundary conditions are often more complicated than the
original ones. Therefore, rather than using this approach we
derive the fundamental solution required in the solution proce-
dure for the differential operator in its original form.

If the influence of gravity is neglected, then Darcy’s law is
most frequently formulated as follows

Q =�
k
µ

∇p (1)
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where Q is the macroscopic flux rate, i.e. the volume of fluid
crossing a unit area per unit time, k is the scalar permeability,
µ is the fluid viscosity and p is the macroscopic fluid pressure.
Eq. 1 corresponds to one-dimensional flow in that Q and ∇p
are collinear and, consequently, only one space variable is re-
quired. Clearly Eq. 1 applies only to isotropic porous materials
since, by definition, k does not depend on the flow direction.
An important experimental result is that Eq. 1, the scalar (or
one-dimensional) form of Darcy’s law, has been observed to
hold in isotropic media provided that laminar flow conditions
prevail, i.e. low Reynolds numbers.

In the case of anisotropic materials, a generalised form of
Darcy’s law has been suggested in which the tensor form of
the permeability is represented as a positive definite symmet-
ric tensor K. The components of Q are then written as follows

Qi =�
d

∑
j=1

ki j

µ
∂p
∂x j

for i = 1;d (2)

where ki j represents the components of the tensor K. It should
be noted that in the rest of this paper we consider only the two-
dimensional case, i.e. d = 2, and therefore the components of
K in a given reference frame x1;x2 are indicated by k11;k12 =
k21;k22.

The governing equation for single-phase flow in a two-
dimensional anisotropic, homogeneous, porous medium can
be derived from Darcy’s law and the conservation of mass to
produce the following form

2

∑
i; j=1

ki j
∂2 p

∂xi∂x j
= µ Φs

∂p
∂t

for (x1;x2) 2Ω (3)

where t is the time and Φs is the effective fluid storage ca-
pacity, i.e. the volume of fluid which must be injected or
released from a unit volume of rock to cause a unit pressure
change. The physical properties of the rock are assumed to be
constant, and therefore the coefficients ki j are independent of
both space and time variables. Clearly, for the case in which
ki j = kδi j, where δi j is the Kronecker delta symbol, we obtain
the isotropic situation.

In the following sections we investigate the steady state case,
i.e. p is independent of time, and we discuss problems associ-
ated with the equation

2

∑
i; j=1

Ki j
∂2 p

∂xi∂x j
= 0 for (x1;x2) 2Ω (4)

which are distinct with respect to the imposition of the condi-
tions on the boundary ∂Ω = Γ =

SM
l=0 Γl , where Γl 6= /0 do not

intersect one another and have a smooth common boundary. In
the above formulation Ki j are the coefficients of the hydraulic
conductivity tensor defined as

Ki j =
γwki j

µ
; i; j = 1;2 (5)

where γw is the specific weight of the fluid.

2.1 Direct Problem

For direct, steady-state, elliptic problems, such as those gov-
erned by the steady state diffusion equation as given by Eq. 4,
the boundary conditions are usually linear and of the Robin
type, namely

cl p(x)+dl
∂p

∂ν+
(x) = fl(x) for x 2 Γl l = 0;M (6)

where

∂
∂ν+

=
2

∑
i; j=1

Ki j cos(ν+;xi)
∂

∂x j
; i; j = 1;2 (7)

cl and dl are prescribed constants, fl are known functions of
x for l = 0;M and cos(ν+;xi) are the direction cosines of the
positive normal ν+ to the surface Γ. In the boundary condi-
tions 6, the coefficients cl and dl are considered to be either
zero or unity, thus incorporating the boundary conditions of
both the Dirichlet and the Neumann type. In this direct formu-
lation, the boundary conditions are assumed to be known while
the distribution of the unknown function p within the domain
is sought. The solution of the direct, well-posed problem for
the steady state equation in an anisotropic media is obtained
by employing a direct boundary integral equation method in
which the fundamental Green’s function of the associated dif-
ferential operator to Eq. 4 and Green’s second formula are used
to reformulate the partial differential equation as an integral
equation.

3 Boundary Element Solution for the
Direct Problem

A classical boundary integral equation method, see for exam-
ple Symm and Pitfield (1974) or Brebbia, Telles, and Wrobel
(1984), is used in order to solve the direct, well-posed prob-
lem given by Eq. 4 and the boundary conditions 6. Since all
the numerical approximations take place only at the bound-
aries, the dimensionality of the problem is reduced by one
and a smaller system of equations is obtained in comparison
to those achieved through finite-difference and finite element
methods. Thus, there is a significant advantage in reducing
the governing partial differential equation to an integral equa-
tion since the numerical solution of the integral equation re-
quires less computational effort. The boundary integral ap-
proach is particularly suitable for irregular domains with com-
plicated boundary conditions, being widely accepted as a use-
ful method for both direct and inverse problems.

4 Model Validation

In order to illustrate the technique employed in this paper both
the direct and inverse problem are solved in the plane square
domain Ω = [0;1]� [0;1], corresponding to the case M = 3 in
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Eq. 6. Further, we consider the differential operator L given
by

Lp(x1;x2) =
∂2 p

∂x2
1

+
∂2 p

∂x1x2
+

∂2 p

∂x2
2

(8)

which defines the diffusion equation, namely Eq. 4, in an
anisotropic porous medium when the hydraulic conductivity
tensor K is chosen to have the components K11 = K22 = 1:0
and K12 = K21 = 0:5. The analytical pressure distribution to
be retrieved is given by

p(x1;x2) = x2
1�4x1x2 + x2

2 (9)

The most significant quantity to characterise the anisotropy of
the medium is the determinant of the hydraulic conductivity
matrix, i.e. det(K) = K11K22 �K2

12. The smaller the value
of det(K), the more asymmetrical are the pressure field and
the hydraulic flux vectors. Since the criterion det(K) > 0 de-
termines the type of differential equation, parabolic for tran-
sient problems and elliptic for steady problems, the smaller
the value of det(K), the more difficult are the numerical cal-
culations. Thus, in order to maintain reasonable accuracy, the
determinant of the hydraulic conductivity matrix must not be
too small, see Chang, Kang, and Chen (1973).

4.1 Direct Problem

In the direct formulation for the test example 9, a boundary
element method using 40, 80 and 160 boundary elements is
employed in order to provide simultaneously the unspecified
boundary pressures and hydraulic fluxes. Once these quan-
tities have been obtained accurately, the pressure distribution
inside the sample can be determined by simple numerical inte-
gration using the integral form associated with the governing
partial differential equation. Various types of boundary con-
dition formulations of the direct problem can be employed to
illustrate the method and to investigate its accuracy with re-
spect to increasing the number of boundary elements.

Once the values of the hydraulic flux and pressure on the
boundaries have been obtained with reasonable accuracy, the
boundary element method can be used explicitly to determine
the pressure distribution inside the domain. If we consider the
numerical solution obtained using 40, 80 and 160 boundary
elements at the single point (x1;x2) = (0:5;0:5) then we find
that the exact solution is approximated with an error which is
less than 0:16%,0:01% and 0:003%, respectively, and similar
results are obtained at any arbitrary point in the solution do-
main.

4.2 The Inverse Problem Formulation

The inverse analysis requires the identification of the compo-
nents of the hydraulic conductivity tensor only from measure-
ments of the pressure and/or hydraulic flux on the boundary
of the rock sample. Internal measurements within the rock

sample are to be avoided if the sample is not to be damaged.
Therefore, we must retrieve the three unknowns, namely K11,
K12 and K22, from the same number of independent additional
measurements of the available boundary information, namely
the pressure or hydraulic flux, which is the minimum neces-
sary condition for identifiability.

4.2.1 Sensitivity Coefficients and Ratios

Prior to performing the inverse analysis, it is useful to calculate
the sensitivity coefficients as a function of time. Sensitivity
coefficients provide indicators of the suitability of the design
of the experiment and, in general, they are desired to be un-
correlated. For this situation, i.e. the steady state case, these
coefficients take the form of the boundary pressure and/or hy-
draulic flux response to small changes in the coefficients of
the hydraulic conductivity tensor. We can use the sensitivity
coefficients to determine the optimal data measurements to be
imposed or recorded in order to reduce the ill posedness of the
inverse formulated problem. The normalised sensitivity coef-
ficients, as a function of space, are defined according to the
formula

Sens(T ; εi) = εi
∂T
∂εi

; for i = 1;3 (10)

where T can be either the pressure or hydraulic flux measured
along the boundaries and εi, for i = 1;3, denote K11, K12 and
K22, respectively. A much enhanced characterisation of the
degree of uncorrelation of the sensitivity coefficients can be
viewed by calculating their ratios. We approximate the partial
derivatives ∂T

∂εi
by using forward finite differences and calculate

the sensitivity ratios R(T ; εi;ε j), which is defined as the ratio
of the sensitivity coefficients Sens(T ; εi) and Sens(T ; ε j).

We consider a modified least squares functional, LS, defined
according to

LS =

"
α+

l

∑
i=1

NTi

∑
j=1

1
αT i

j

h�
T i

j

�calc
�
�
T i

j

�orig
i2
#�1

(11)

where l is the total number of pressure or hydraulic flux mea-
surements, the superscripts (calc) and (orig) denote the BEM
numerically predicted and the simulated or measured data val-
ues, respectively, and we record NTi data measurements T i

j , for

i= 1; l, where T i
j can denote a pressure or hydraulic flux value.

Furthermore, for each j = 1;NTi, the normalising factor αT i
j

is

chosen as a representative value of the measurement T i
j to en-

sure a valid comparison between quantities of different orders
of magnitude. The constant α = 10�8 was chosen to be small
enough so that significant errors in the sums of the squared
differences are always sufficiently larger than α.

4.2.2 GA Formulation for the Inverse Problem

An improved GA based optimisation technique is employed to
search in an a priori specified range for each of the parameters
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K11, K12 and K22 and the fitness function is given by the LS
functional shown in Eq. 11. The GA process for the identifica-
tion of the elements of the hydraulic conductivity tensor begins
by randomly constructing an initial population of N chromo-
somes, each of which characterises estimates to the solution
of the problem through their separate genes. The genes repre-
sent encodings of the unknown material properties over some
specified ranges. We employ k-Tournament Selection, with as-
sociated probability pT , and the fitness evaluation function 11
which measures the accuracy of the predicted pressure and/or
hydraulic flux values against some known (simulated or exper-
imental) measurements. Two-Point Crossover, with associated
probability pc, and mutation, with associated probability pm,
are used to derive child chromosomes and form a pool of off-
spring of size M. The ne fittest individuals from the parent
population are retained for the next generation. These steps
are repeated either for a specified number of generations or
until a match to the imposed data is achieved to within a de-
sired tolerance.

4.3 Numerical Results and Discussion

The bounds of the chosen domain D = [0:75;1:5] �
[0:25;0:74]� [0:75;1:5] in which the search for the unknown
elements of the hydraulic conductivity tensor is undertaken en-
sure the ellipticity of the governing partial differential equation
for any triplet (K11;K12;K22)2D (i.e. K11K22 > K2

12) and also
include the values of the coefficients of the hydraulic conduc-
tivity tensor to be retrieved. There are only very general guide-
lines as to how to choose the values of the GA parameters de-
fined in Section 4.2.2. The typical values N = 50, M = 60,
pm = 0:02, pc = 0:65, tournament pool size k = 2, pT = 0:8
and ne = 2, which are maintained throughout this study, have
been chosen based upon experimentation on a related problem
as considered in Mustata, Harris, Elliott, Ingham, and Lesnic
(1999).

The estimates of K11, K12 and K22 recovered are accurate
to within 0:01% for the case of specifying additional exact
boundary measurements and to within 0:1% for the case of
added noise. However, it is unclear whether such success
can be replicated when a parameter study of a larger three-
dimensional K11, K12 and K22 space is undertaken. In general,
the parameter space may contain regions in which the ellip-
ticity of the governing partial differential equation is not pre-
served and methods would need to be developed to overcome
this. Further, if it is not possible, then it will be difficult to re-
late the regions of failure to the understanding of the parameter
values. Hence, despite the present success, from now on the
representation of the hydraulic conductivity tensor is replaced
by its diagonal form when related to axes along its principal
directions. Hence K11, K12 and K22 will be expressed in terms
of the principal values of the stress tensor, namely K1 and K2,
with the direction of K1 making an angle θ with the x1-axis
and also K1 > K2 > 0.

5 Problem Description

In conventional laboratory measurements, rock samples are
cylindrical in shape and therefore, in two-dimensions, they
can be represented as rectangles or, for simplicity, squares. A
steady state flow is forced through the sample by applying con-
stant pressures p0 and p0� δp0 on opposite faces. Transient
or periodic boundary conditions can also be employed but they
are not considered in this paper. The sides of the samples are
jacketed with impermeable material. The boundary and ini-
tial conditions corresponding to the 2D hydraulic conductivity
measurements are as follows

pjx1=0 = p0 8t > 0 (12)

pjx1=L = p0�δp0 8t > 0 (13)

∂p
∂ν+

����
x2=0

=
∂p

∂ν+

����
x2=L

= 0 8t > 0 (14)

p(x1;x2)j[0;L]�[0;L]= pi
0 t = 0 (15)

where L is the sample length and width, pi
0 is the initial pore

pressure inside the sample and δp0 is the constant pressure dif-
ference suddenly applied across the sample at t = 0 and main-
tained thereafter.

The governing equation is the equation of single phase flow in
a two dimensional anisotropic, homogeneous, porous medium
as given by Eq. 3.

6 The Steady State Situation

In the steady state situation, i.e. t �!∞, the governing partial
differential equation given by Eq. 3 takes the form

2

∑
i; j=1

Ki j
∂2 p

∂xi∂x j
= 0 for (x1;x2) 2 [0;L]� [0;L] (16)

subject to the boundary conditions 12 – 14

6.1 Non-dimensional Equations

Before performing the numerical calculations, the governing
equation given by Eq. 16 and the boundary conditions 12–14
are non-dimensionalised according to

x1 =
x1

L
; x2 =

x2

L
; p =

p� p0+δp0

δp0
; Ki j =

Ki j

K�
(17)

where K� is a typical value of the hydraulic conductivity, and
hence take the following form

2

∑
i; j=1

Ki j
∂2p

∂xi∂x j
= 0 (18)

pjx1=0 = 1 (19)

pjx1=1 = 0 (20)

∂p
∂ν+

����
x2=0

=
∂p

∂ν+

����
x2=1

= 0 (21)
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where the bars have been dropped for simplicity.

6.2 Direct Analysis

In the direct problem formulation, provided that values for the
elements of the hydraulic conductivity tensor, namely K11, K12

and K22, are chosen so as to preserve the ellipticity of the dif-
ferential operator, i.e. det(K) = K11K22�K2

12 > 0, a bound-
ary element method is employed in order to provide simulta-
neously the unspecified boundary pressure and hydraulic flux
values. The relationship between the principal values of the
hydraulic conductivity tensor and the elements of the hydraulic
conductivity tensor relative to x1 and x2 axes are as follows

K11 = K1 cos2 θ+K2 sin2 θ; (22)

K12 = K21 = (K1�K2)cosθ sinθ; and (23)

K22 = K2 cos2 θ+K1 sin2 θ: (24)

Note that in the reference frame x1;x2;x3, where x3 is assumed
to correspond to the direction of the principal hydraulic con-
ductivity K3, the flow equations do not depend on x3 and the
problem can be considered to be two-dimensional.

A

A’

θ

K

Front View Side View of Cross-section AA’

3

2

1

K

K

Figure 1 : An illustration of the anisotropic material with the
hydraulic conductivity ratio K2=K1 = 0:2. The x1-axis of the
sample is inclined at the angle θ to the direction of the maxi-
mum principal hydraulic conductivity K1.

As mentioned earlier, rather than providing the elements of
the hydraulic conductivity tensor we provide the magnitude of
the principal hydraulic conductivities, which are initially fixed
to the ratio K2=K1 = 0:2, together with various values for the
angle θ that the x1-axis of the sample makes with the direc-
tion of the maximum principal value K1 as shown in Fig. 1.
The non-dimensional principal hydraulic conductivity values
are chosen to be, for simplicity, K2 = 1 and K1 = 5.

Pressure and hydraulic flow distributions along the boundaries
at which they were not specified have been compared for vari-
ous numbers of boundary elements ranging from 40 to 160. No
significant differences in the results obtained were observed
except in the vicinity of the corners. However, such values

(a) (b)

No Flow

No Flow

No Flow

No Flow

Figure 2 : Pressure contours in the sample with the hydraulic
conductivity ratio K2=K1 = 0:2 and the orientation of the prin-
cipal direction such that (a) θ = 0Æ and (b) θ = 60Æ. The con-
tours indicate pressure values p = 1(0:05)0 from the upstream
to the downstream face of the sample.

will not be used in the inversion technique which will be un-
dertaken later in this paper.

Examples of the steady state simulated pressure fields inside
the sample are presented in Fig. 2 and we can observe that the
pressure gradient is constant inside the sample in (a), which
is equivalent to a one-dimensional flow through the rock sam-
ple, whereas in the second case, namely (b), the pressure field
is strongly distorted due to the presence of the impermeable
jacket. The latter conclusion remains valid for other angles
within the range θ 2 [0Æ;90Æ] except those close to the limits
of the above mentioned interval when the flow becomes almost
one-dimensional.

In general, the flow patterns inside the sample for a given ori-
entation θ are also distorted and examples of these are shown
in Fig. 3.

The orientation of the maximum principal hydraulic conduc-
tivity value varies from being aligned with the sample x1-axis,
as in Fig. 3 (a), to being along the diagonal from the top left
hand corner of the sample to the bottom right hand corner, as in
Fig. 3 (c), and this causes the direction of the flow to respond
in a similar manner. Hence as the angle θ increases from 0Æ to
60Æ, the flow direction in the upper left hand corner and in the
lower right hand corner change from being horizontal to fol-
low the principal direction related to the maximum principal
value of the hydraulic conductivity tensor. However, the no
flow conditions on the boundaries x2 = 0 and x2 = 1 prevent
this type of flow from continuing into the corners of the sample
where the flow is strongly influenced by the boundaries.

6.3 Inverse Formulation

A number of methods have been proposed to measure the
full hydraulic conductivity tensor in rocks or soils. Fontugne
(1969) performed two flow measurements simultaneously on
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(a)

(d)(c)

(b)

Velocity vector fieldVelocity vector field

Velocity vector field Velocity vector field

Figure 3 : Flow patterns in the sample with the hydraulic con-
ductivity ratio K2=K1 = 0:2 and the direction of the maximum
principal value such that (a) θ = 0Æ, (b) θ = 15Æ, (c) θ = 45Æ,
and (d) θ = 60Æ.

a prepared soil, with the fluid outlets aligned with the assumed
principal directions, and then determined the ratio of the prin-
cipal hydraulic conductivities. The amplitudes of the princi-
pal hydraulic conductivities were measured separately. Rose
(1970) designed an experimental procedure to force the stream
lines to be straight lines parallel to the sample axis. However,
this method involves the re-shaping, by trial and error, of the
sample, making it difficult to implement in practice. All of
these methods assume that the sample axis can be oriented par-
allel or perpendicular to one of the principal directions, which
is not as serious a restriction as it might appear since, in many
cases, at least one of the principal directions can be guessed
from the bedding planes preferred orientation of the micro-
cracks and the like. The commonly used concept of horizontal
and vertical hydraulic conductivities implicitly assumes that
the principal hydraulic conductivity directions in-situ are like-
wise, but this is not always true. However, samples can be
taken in directions parallel and perpendicular to the bedding
planes when visible, rather than parallel and perpendicular to
the axis of the core as it is usually done.

If the principal directions cannot be estimated, a different
method becomes necessary. The best solution would be to
measure the full hydraulic conductivity tensor in one single
sample by imposing periodic boundary conditions as con-
sidered by Quintard and Whitaker (1987), Saez, Otero, and

Rusinek (1989), Mei and Auriault (1989), and Durlofsky and
Chung (1987). Whilst this can be achieved, it is rather difficult
to implement in practice. Alternatively, it may be possible to
perform a suite of independent flow measurements, each one
with a different set of Neumann and Dirichlet boundary condi-
tions. As this is perfectly possible in laboratory measurements
this method may yield enough information to allow one to in-
fer the full hydraulic conductivity tensor. A similar idea was
applied by White and Horne (1987), but in another context.
Bernabe (1992) sketched a possible procedure involving six
steady state flux measurements ( two longitudinal, and the rest
diagonal) and inferred the components of the hydraulic con-
ductivity tensor with an accuracy that varied from 10% for the
largest tensor component to 30% for the smallest.

The inverse analysis requires the identification of the values of
the principal hydraulic conductivities K1 and K2 and the an-
gle between the direction of the maximum principal value of
the hydraulic conductivity tensor and the horizontal direction
of the sample, namely θ, only from local measurements of the
pressure and/or average hydraulic flux on the boundary of the
rock sample. Therefore, in practice, possible reliable measure-
ments involve pressure readings on the bottom and top face of
the sample and flux readings at the downstream or upstream
faces of the rock sample, since in the steady state case the av-
erage fluxes on the downstream and upstream faces of the sam-
ple are the same. Hence, we consider a modified least square
functional, LS, defined in a similar manner as shown in Eq. 11,
which depends upon the pressure and/or average hydraulic flux
values, rather than the pressure and local flux values as before.

The GA based optimisation technique described in Sec-
tion 4.2.2, together with the values for the evolution param-
eters given in Section 4.3, is employed to search in an a priori
specified range for each of the parameters K1, K2 and θ, where
the fitness function is given by Eq. 11 with the above men-
tioned modifications.

7 Numerical Results and Discussion for the Steady State
Situation

The ranges for the unknown parameters defining the domain
of search for the GA optimisation are given by (K1;K2;θ) 2
D = [1;10]� [0:25;1:75]� [0Æ;90Æ]. The range for the angle
is dictated by the fact that for 90Æ < θ � 180Æ the problem
is equivalent to using an angle of 180Æ � θ and interchang-
ing the roles of K1 and K2. All the numerical simulations are
performed using a boundary element method with 80 bound-
ary elements, as this number proved to be sufficiently large to
render accurate simulations of the boundary data necessary in
the inversion process, see Section 4. Prior to performing the
inversion for the values of K1, K2 and θ, it is useful to per-
form a sensitivity analysis of the effect of small changes in the
parameters on the boundary simulated pressure and/or aver-
age hydraulic flux. The normalised sensitivity coefficients as
a function of space, are defined according to Eq. 10, where T
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Figure 4 : Sensitivity coefficients and sensitivity ratios with respect to pressure on the bottom face of the rock sample for the
cases (a) θ = 10Æ, and (b) θ = 60Æ.

can be either the pressure or average hydraulic flux measured
along the boundaries and εi, for i = 1;3, denote K1, K2 and θ,
respectively as described in Section 4.2.1.

In Fig. 7 the sensitivity coefficients, as well as their ratios, for
the pressure measured along the bottom face of the sample are
plotted for various angles θ. In the case of the sensitivity co-
efficients, the solid and dotted lines represent the sensitivity
coefficients with respect to K1 and K2, respectively, and the
dashed line represents the sensitivity coefficient with respect
to the angle θ. In the case of the sensitivity ratios, the dashed,
dotted and solid lines represent the ratio of the sensitivity co-
efficient for K1, to the sensitivity coefficient for K2, the ratio of
the sensitivity coefficient for K2, to the sensitivity coefficient
for θ and the ratio of the sensitivity coefficient for θ, to the
sensitivity coefficient for K1, respectively. It can be seen that
the smaller the value of the angle θ the smaller is the sensitiv-
ity of the pressure with respect to the angle. This means that
measurements of the pressure alone do not provide sufficient
information to fully retrieve the unknown values of the prin-
cipal hydraulic conductivities K1 and K2 and the angle θ, but
just the ratio of K1 and K2 and the angle θ. However, diffi-
culties can be encountered in retrieving even these parameters
when the angle is close to the limits of the interval [0Æ;90Æ]
due to the low sensitivity of the pressure for such angles. This
can also be argued from the mathematical formulation of the
model since on dividing the governing equation and boundary

conditions by one of the elements of the hydraulic conductiv-
ity tensor we obtain an equivalent problem that is dependent
upon only two parameters, namely the ratio of the components
of the hydraulic conductivity tensor, or, in our case, the ratio
of its principal values and the angle θ. This is contrary to the
situation in Section 4 where the test example involved a non
zero flux on the boundaries x2 = 0 and x2 = 1 which avoided
the non-uniqueness of the problem as regards the ratio of the
principal hydraulic conductivity values.

We attempt to use the average value of the hydraulic flux on
the downstream face of the sample rather than the pointwise
values of the flux based upon practical considerations, such a
quantity being easier to measure. The sensitivity of the av-
erage flux on the downstream face of the sample was found
to have a similar behaviour to the sensitivity of the pressure
with respect to the angle, namely the smaller the value of the
angle θ the smaller is the sensitivity of the average hydraulic
flux with respect to any of the three unknowns K1, K2 or θ. In
addition, for any angle the sensitivity coefficients for K1 and
K2 are correlated, whereas the other two remaining pairings of
sensitivity coefficients are uncorrelated.

Due to the above non-uniqueness of the inversion process
when using only pressure measurements, and the fact that av-
erage flux at a given angle θ provides only a single value for
the inversion process, it is proposed to investigate the situation
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Figure 5 : Example of different configurations obtained by cutting samples at (a) θ0, (b) θ0 +α, and (c) θ0 +α+β.

where additional flux measurements can be made available by
taking different values of θ. If θ0 denotes the unknown angle
between the direction of the maximum principal value of the
hydraulic conductivity tensor and the x1-axis of the sample,
then we consider the orientations θ0 +α and θ0 +β, where α
and β are known values. Hence it is proposed for the follow-
ing analysis that samples are to be cut from the rock specimen
and from such experiments additional sets of pressure read-
ings and average flux measurements will be available whilst
the unknown parameters to be determined, namely K1, K2 and
θ0, remain the same.

7.1 Average Flux Measurements Only

When using only average flux measurements we consider three
configurations, i.e. the x1-axis of the sample is cut at the un-
known angle θ0 from the direction of the principal value K1

of the hydraulic conductivity tensor and the other two config-
urations are obtained by cutting samples under the angles α
and α+ β, with α < β, from the original angle θ0, as shown
in Fig. 7.1. This is equivalent to rotating the x1-axis of the
sample along which the imposed pressure difference is ap-
plied from the original angle θ0 by the angles α and α + β
in an anti-clockwise direction, respectively. The angles α and
β are considered to be known quantities, whereas θ0 is sought
along with the principal hydraulic conductivities of the sample,
namely K1 and K2. Any fewer configurations, i.e. less number
of cuts, will not provide sufficient information as in the steady
state the average fluxes at both ends of the sample are identical
and hence only one piece of information is provided from each
configuration.

After considering different magnitudes of rotation in the range
[15Æ;60Æ] for various original angles θ0 we chose the values
α = β = 45Æ to perform the inversion. In the first instance, the
restricted range R = [2;7]� [0:25;1:75]� [0Æ;20Æ] was con-
sidered in order to retrieve the values (K1;K2;θ) = (5;1;10Æ).
The characteristic results obtained were accurate to within
0:01% for the values of the principal hydraulic conductivi-
ties and 1:5% for the angle θ0 with a typical solution from
the GA inversion technique having the form (K1;K2;θ) =
(5:0059;1:0095;10:127Æ). However, when enlarging the do-

main to the aforementioned domain D the algorithm failed to
render a very accurate estimation of the unknowns with typical
values having the form (K1;K2;θ) = (4:9326;1:0433;8:798Æ).

Based on the observed behaviour that the GA reaches values
close to the optimal ones after a fairly small number of itera-
tions we can employ an automatic technique of ‘shrinking’ the
range based on successive runs of the GA in order to contin-
uously improve the accuracy of the estimates of the required
parameter values. Taking the last n fittest individuals in the
previous run of the GA and calculating their mean, minimum
and maximum values, a new range is constructed with this
mean at its centre value. The new range is 1=4 of the size
of the original range but is additionally self contained in the
previous range. In this way we obtain a descending array of
ranges in which the GA does its search and, providing the bi-
nary representation of the solution stays the same, the accuracy
will increase as shown in Tab. 1 and Tab. 2. This process was
tested for values of n ranging from 10 to 30 but no significant
improvements have been observed in the retrieved values for
the unknown parameters.

Table 1 : Results of the GA recovery of the principal hydraulic
conductivities and the angle θ0 when employing the reduction
of the ranges technique.

Run1 Run2 Run3
K1 5.1437 4.9411 5.0008
K2 1.0550 0.9948 0.9999
θ0 12.669Æ 8.883Æ 10.008Æ

Typical results of the recovery of the unknown principal hy-
draulic conductivities and the angle are presented after two
successive reductions of the range. It can be seen that the
results gain in accuracy at every reduction of the range and
by this technique we can obtain results which are virtually as
accurate as we desire. Thus, by combining the GA optimi-
sation scheme with the reduction of the range technique we
can obtain accurate results when using just average fluxes in
three configurations. However, there are some drawbacks to
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Table 2 : Corresponding reduced ranges for consecutive runs
of the GA.

Ranges1 Ranges2 Ranges3
[1:0;10:0] [3:98;6:23] [4:66;5:22]
[0:25;1:75] [0:86;1:24] [0:95;1:04]
[0:0Æ;90:0Æ] [1:56Æ;24:06Æ] [6:07Æ;11:70Æ]

this technique and these are mainly from a practical point of
view, namely it may be physically unrealistic to provide three
samples with identical properties for different configurations.

7.2 Pressure and Average Flux. Two steps

In this section we return to a single configuration, i.e. one
cut, and the information that we use for inversion is given by
the boundary pressure measurements on the bottom face of
the sample and the average hydraulic flux value on the down-
stream face of the sample. We aim to use minimal information
in order to retrieve the principal hydraulic conductivities K1

and K2 and the angle that the x1-axis of the sample makes with
the direction of the maximum principal hydraulic conductivity
value, namely θ0. This will come in the form of two pressure
readings combined with the average flux. As discussed in the
sensitivity analysis performed at the beginning of the Section
7, pressure readings alone will not provide sufficient informa-
tion to fully retrieve K1, K2 and θ0 since only the ratio K1=K2

and θ0 can be retrieved. Also the closer the angle is to the lim-
its of the range [0Æ;90Æ], the less is the pressure response to
small changes in the angle and therefore it is highly improb-
able that the value of the angle can be retrieved accurately.
However, when using only pressure readings in the inver-
sion we can employ the same sort of ‘shrinking’ technique for
the ranges, as discussed earlier, in order to obtain accurate re-
sults for both the ratio of the principal hydraulic conductivities
K1=K2 and the angle θ0 no matter at what angle the sample is
cut. Having found the ratio K1=K2 and the angle θ0 accurately
we have several options to fully retrieve all the unknowns:

(i) We can cut the sample such that the x1-axis is along the
direction corresponding to the maximum principal value
of the hydraulic conductivity, namely θ0 = 0Æ, and then
the problem is one-dimesional only. We can then apply
Darcy’s law and fully determine the remaining pair of un-
knowns, namely the principal hydraulic conductivities K1

and K2, since the ratio K1=K2 is known.

(ii) Alternatively, in the same configuration we can fix the
value of the angle to be the one retrieved in the first step
and then continue the inversion by using as additional in-
formation the average hydraulic flux value on the down-
stream face of the sample.

It is this latter approach that is illustrated in the following.
Three pressure measurements, chosen according to the sen-
sitivity analysis as the positions in which the pressure is most
sensitive to changes in the parameters, will provide the infor-
mation used in the inversion in the first step. Tab. 3 shows

Table 3 : Results of the GA recovery of the ratio of the princi-
pal permeabilities and the angle θ0 when employing the reduc-
tion of the ranges technique in the case of using three pressure
measurements

Run1 Run2 Run3 Run4
Ratio 5.64 5.19 5.05 5.00

θ0 9.06Æ 9.70Æ 9.91Æ 9.99Æ

typical results of the GA optimisation scheme combined with
the reduction of the range and we can see that at each step both
the value of the ratio of the principal hydraulic conductivities
and the angle θ0 are heading towards their exact values. Then
on fixing the value of the angle at θ0 = 9:99Æ and adding into
the inversion process as supplementary information the aver-
age hydraulic flux value on the downstream face of the sample,
we obtain accurate estimates for the principal hydraulic con-
ductivities, namely (K1;K2) = (5:0029;0:9902).

8 Conclusions

The present research has established that by combining a BEM
method for the direct approach with an inversion technique
based upon Genetic Algorithm evolution principles we ob-
tain a feasible technique for identifying the unknown hydraulic
conductivity tensor K of anisotropic materials, although a suc-
cessful retrieval of these parameters depends both on the de-
pendent variable measured and the configuration at which their
values are recorded. A successful retrieval of the elements of
the hydraulic conductivity tensor when using additional av-
erage flux measurements alone is subject to the use of three
different configurations, but this approach has practical draw-
backs. When considering a single configuration, the inversion
process has to be performed in two steps and both pressure
values and average flux values are required to fully retrieve the
unknown hydraulic rock properties.
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