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Abstract: The paper discusses further applications of
the hyper-singular boundary integral equation to obtain the
Green’s function solution to general geometry fracture me-
chanics problems, such as curved multifracture crack simula-
tion, static and transient dynamic in 2-D, 3-D and plate bend-
ing problems. This numerical Green’s function (NGF) is im-
plemented into alternative boundary element computer pro-
grams, as the fundamental solution, to enhance the scope of
alternative applications of the NGF procedure.

The results to some typical linear fracture mechanics problems
are presented.
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1 Introduction

It is widely known that the appropriate numerical modelling of
linear elastic fracture mechanics problems strongly depends on
the stress field accuracy in the vicinity of the crack tip. Usu-
ally this is achieved by a good mesh refinement associated to
the usage of special tip elements when the numerical computa-
tion is performed. With regard to the BEM, however, another
difficulty arises; the crack surfaces geometrically coincide in
the numerical model causing a degeneration of the boundary
integral equation. This problem is usually avoided by:

� Modeling the crack as a narrow elliptic cavity;

� Considering symmetry, whenever possible;

� Applying the sub-region technique (Blandford, Ingraffea,
and Liggett, 1981)

� Employing the mixed or dual formulation (Cruse, 1975;
Portela, Aliabadi, and Rooke, 1992; Guimarães and
Telles, 1994);

� Using the associated Green’s function (Snyder and Cruse,
1975).

The last three procedures above are the most important and
widely used techniques in BEM to solve LEFM problems. The
difference between these three approaches is illustrated as fol-
lows. The integral equations necessary to solve crack prob-
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Figure 1 : Sub-region Formulation Model
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Figure 2 : Mixed or Dual Formulation Model

lems by the subregion technique, Figure 1, are (superscript *
represents fundamental solution, e.g. Kelvin):
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Figure 3 : Fundamental Green’s Function Model.

where ξ is the source point and x, the field point. Problem
displacements are denoted by u j and tractions by p j.

The equations (classical and hyper-singular) used to solve the
same kind of problem by the mixed or dual formulation, shown
in Figure 2, are:

Ci j(ξ)u j(ξ) =Z
ΓE+Γ++Γ�

u�i j(ξ;x) p j(x) dΓ(x)

��
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where ξ+ 2 Γ+ and ξ� 2 Γ�. The starred capital letter ker-
nels result from the application of the traction operator to the
standard fundamental solution kernels.

The above integral description of the problem avoids the in-
terface modelling scheme providing a smaller system of equa-
tions if compared to the sub-region technique.

An important alternative in treating fracture mechanics prob-
lems by the BEM is the implementation of a Green’s function,
that automatically includes the crack existence, as a fundamen-
tal solution (Snyder and Cruse, 1975). Crack modelling with

the associated Green’s function is depicted in Figure 3. In this
case, only the classic formulation is necessary to represent the
model (the superscript G stands for the Green’s function fun-
damental solution):
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The advantage of this formulation is the elimination of the
crack surface unknown variable integration. With this ap-
proach typical difficulties in modelling LEFM problems by
BEM are elegantly avoided.

The drawback of this approach is the restricted availability of
Green’s functions for general geometry or alternative prob-
lem definitions other than straight or circular arc 2-D static
applications. As an alternative, the numerical computation of
the associated Green’s function of the fundamental problem
(unit load applied in a multi-fractured infinite medium) can be
achieved through the application of the traction formulation
to compute the desired relative displacements (opening and
sliding) of the crack surfaces (Telles, Castor, and Guimarães,
1995). This numerical Green’s function (NGF) procedure has
been proposed by the present authors in the recent past (Telles,
Castor, and Guimarães, 1995; Barra and Telles, 1999; Silveira,
Guimarães, and Telles, 1998; Castor and Telles, 1999). In 2-
D, it has been observed (Telles, Castor, and Guimarães, 1994),
that the NGF BEM procedure can be as accurate (in engineer-
ing terms) and faster than the analytical Green’s function coun-
terpart (Snyder and Cruse, 1975) in general applications. For
3-D, elastodynamics and plate bending, however, one does not
have analytical Green’s functions to compare efficiency, but
the 2-D static case results clearly demostrated that the proce-
dure is competitive for practical problems.

The NGF procedure allows for the solution of the LEFM prob-
lems in two steps; after the numerical fundamental solution is
obtained by solving the multi-fractured infinite medium prob-
lem, the BEM can be applied to solve the problem over the
external boundary only (eqn(6)), leading to a smaller sys-
tem of equations. Another feature of the strategy is the ab-
sence of standard boundary element crack discretization, espe-
cially useful when most of the cracks are small and of simple
shape. The NGF approach is basically as easy to implement
as the mixed (or dual) method, since both require computation
of equivalent hyper-singular boundary integral equations, and
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permits the addition of inclusions and other material defects
into the fundamental solution.

A generalization of the NGF technique is introduced here,
where 2-D curved, elastodynamic, plate bending and 3-D ap-
plications are discussed, including examples.

2 Numerical Fundamental Green’s Function

As discussed in the first elastostatic applications (Telles, Cas-
tor, and Guimarães, 1995) , the fundamental Green’s function
can be written in terms of a superposition of a full-space fun-
damental solution plus a complementary part which provides
satisfaction of the traction free requirement over the crack sur-
faces. This Green’s function can be represented by

uG
i j(ξ;x) = u�i j(ξ;x)+uc

i j(ξ;x) (7)

pG
i j(ξ;x) = p�i j(ξ;x)+ pc

i j(ξ;x) (8)

where uG
i j(ξ;x) and pG

i j(ξ;x) are the fundamental displacement
and traction, in j direction at the field point x due to a unit
point load (with frequency ω, if dynamic) applied at the source
point ξ in the i direction. The superscript � stands for the full
space standard fundamental solution (static or dynamic) and c
indicates the complementary components of the fundamental
problem.

Since u�i j(ξ;x) and p�i j(ξ;x) are known (Brebbia, Telles, and
Wrobel, 1984) , the complementary displacements and trac-
tions, uc

i j(ξ;x) and pc
i j(ξ;x), are the unknowns of the prob-

lem. This solution can be written in terms of boundary integral
equations as shown bellow (Telles, Castor, and Guimarães,
1995):

uc
i j(ξ;x) =

Z
ΓI

p�jk(x;ζ)cik(ξ;ζ)dΓ(ζ) (9)

pc
i j(ξ;x) =

Z
ΓI

P�jk(x;ζ)cik(ξ;ζ)dΓ(ζ) (10)

where cik(ξ;ζ) = uc
ik(ξ;ζS)�uc

ik(ξ;ζI) is the crack opening
displacements of the Green’s function in which S and I stand
for ”superior” and ”inferior” surfaces of the crack (ΓF = ΓS +
ΓI). The sign of the integrals depends on the chosen surface
of integration; in this case ΓI has been adopted. The integral
equation (10) is originated from the hyper-singular or traction
formulation.

If the crack opening displacements are known, both equa-
tions (9) and (10) produce the complementary displacements
and tractions at an internal point x(x 2= ΓI), due to a unit
point load at ξ. Hence, since the natural boundary condi-
tion of the complementary problem is prescribed and given by
pc

i j(ξ;ζ) = �p�i j(ξ;ζ) over ΓI , the limit of equation (10), as

x ! ΓI , produces a hyper-singular boundary integral equation
for the desired fundamental relative crack displacements. This

limiting procedure yields as a final result

=
Z

ΓI
P�jk(ζ;ζ) cik(ξ;ζ) dΓ(ζ) =�p�i j(ξ;ζ) (11)

where, the symbol =
Z

indicates Hadamard’s finite part inte-

gral.

The integral equation (11) for cik(ξ;ζ) can be solved by any
appropriate suitable method and once this fundamental open-
ing displacements are known equations (9) and (10) are used to
obtain the complementary part of the fundamental numerical
Green’s function of eqns (7) and (8). Hence, the final displace-
ment integral equation (6) is now rewritten with the present
notation:

Ci j(ξ)u j(ξ) =Z
ΓE

uG
i j(ξ;x) p j(x)dΓ(x)

��

Z
ΓE

pG
i j(ξ;x) u j(x)dΓ(x)

+
Z

ΓI
ci j(ξ;x) pS

j(x)dΓ(x) ξ 2 ΓE (12)

where the last integral represents the crack loading contribu-
tion to the external boundary displacements, i. e. crack pres-
sure, if it exists, taking into account that pI

j(x) =�pS
j(x).

The real crack opening displacement of the problem can be
obtained by a post-processing procedure, using the standard
traction (hyper-singular) integral equation and employing the
standard full space fundamental solution:

=
Z

ΓI
P�i j(ξ;x)c j(x)dΓ(x) =

�

Z
ΓE

U�
i j(ξ;x) p j(x) dΓ(x) � pS

i (ξ) ξ 2 ΓE (13)

where c j(x) is the actual crack opening displacements.

3 Crack Opening Displacements Computation

This section presents the selected strategy adopted to com-
pute the fundamental crack opening displacements of equation
(11), i. e. , cik(ξ;ζ). In order to simplify the ideas and without
loss of generality for 3-D and 2-D curved crack geometries,
the particular case of a horizontal crack centred at the origin of
the coordinate system will be discussed. Here, the components
P�12(ζ;ζ) and P�21(ζ;ζ) of the full space hyper-singular solution
are null, decoupling the system of equations into longitudinal
and transversal crack opening displacement integrals:

=
Z a

�a
P�11(ζ;ζ) ci1(ξ;ζ) dΓ(ζ) =�p�i1(ξ;ζ) (14)

=
Z a

�a
P�22(ζ;ζ) ci2(ξ;ζ) dΓ(ζ) =�p�i2(ξ;ζ) (15)
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where 2a is the crack size.

Notice that for static or dynamic applications, the singularities
in the vicinity of ζ are of the same order. Equations (14) and
(15) can be solved by a standard weighted residual method, us-
ing the point collocation technique, to produce (manipulating
only equation (14); the procedure for equation (15) is analo-
gous):

=
Z a

�a
P�11(ζm;ζ)ci1(ξ;ζ)dΓ(ζ) =�p�i1(ξ;ζm);

m = 1;2; : : :M (16)

Allowing for the occurrence of incorrections which can be sep-
arately rectified, the standard Gauss quadrature procedure can
be employed in equation (16), in the following fashion:

jJj
N

∑
n=1

�
P�11(ζm;ζn)ci1(ξ;ζn)Wn

�
�Ei1 = �p�i1(ξ;ζm);

m = 1;2; : : :M (17)

where jJj = a is the Jacobian of the transformation to the in-
trinsic quadrature interval; ζn the corresponding point at the
Gauss station n, Wn the associated weighting factor at this sta-
tion and N the total number of integration points. The term Ei1

is introduced to correct the result of the numerical integral so
that the singularity associated differences between finite part
and standard numerical integration are counterbalanced.

It is important to note that there is no need to interpolate for-
mally ci1(ξ;ζn) but simply compute its values at the Gauss
points, later required for the regular integrals of equations (9)
and (10).

In order to define Ei1, ci1 can be expanded in Taylor’s series
about the point ζm to extract the singular terms of the inte-
grand:

cik(ξ;ζ) = cik(ξ;ζm)+
∂cik(ξ;ζm)

∂Γ(ζ)
[Γ(ζ)�Γ(ζm)]+

1
2

∂2cik(ξ;ζm)

∂Γ(ζ)2 [Γ(ζ)�Γ(ζm)]
2 + ::: (18)

Equation (18) can be substituted in the integral of equation
(16) to obtain the following:

=
Z a

�a
P�11(ζm;ζ)ci1(ξ;ζ)dΓ(ζ) =

=
Z a

�a
P�11(ζm;ζ)ci1(ξ;ζm)dΓ(ζ)+

�

Z a

�a
P�11(ζm;ζ)

(
∂ci1(ξ;ζm)

∂Γ(ζ)
[Γ(ζ)�Γ(ζm)]

)
dΓ(ζ)+

Z a

�a
P�11(ζm;ζ)

(
1
2

∂2ci1(ξ;ζm)

∂Γ(ζ)2

[Γ(ζ)�Γ(ζm)]
2 + :::

o
dΓ(ζ) (19)

The first two integrals on the right hand side of equation (19)
have O(r�2) and O(r�1) integrands that generate a finite part
and a Cauchy principal value integral, respectively. The last
integral is regular and can be computed with a good numerical
approximation by a Gauss integration technique. This last reg-
ular integral can be further simplified if one notice that from
eqn (18):

1
2

∂2cik(ξ;ζm)

∂Γ(ζ)2 [Γ(ζ)�Γ(ζm)]
2 + :::=

cik(ξ;ζ)� cik(ξ;ζm)�
∂cik(ξ;ζm)

∂Γ(ζ)
[Γ(ζ)�Γ(ζm)] (20)

Equation (20) provides simple means of defining the regular
integrand of eqn(19). The other two singular integrals on the
right of eqn (19) are to be computed using singular integration
procedures, producing the final numerical system of equations
(Telles, Castor, and Guimarães, 1995):

jJj
N

∑
n=1

n
P�11(ζm;ζn)

h
ci1(ξ;ζn)� ci1(ξ;ζm)

�
∂ci1(ξ;ζm)

∂Γ(ζ)
[Γ(ζn)�Γ(ζm)]

#
Wn

)
+

=
Z a

�a
P�11(ζm;ζ) ci1(ξ;ζm) dΓ(ζ)+

�
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P�11(ζm;ζ)

(
∂ci1(ξ;ζm)

∂Γ(ζ)
[Γ(ζ)�Γ(ζm)]

)
dΓ(ζ) =

� p�i1(ξ;ζm) ; m = 1;2; : : :M (21)

Then, by comparing eqns (17) and (21), the correction term is
defined as (Telles, Castor, and Guimarães, 1995) :

Ei1(ξ;ζm) = ci1(ξ;ζm)e
(1)
11 +

∂ci1(ξ;ζm)

∂Γ(ζ)
e(2)11 (22)

where

e(1)11 =
N

∑
n=1

P�11(ζm;ζn) JnWn� =
Z a

�a
P�11(ζm;ζ) dΓ(ζ) (23)

e
(2)
11 =

N

∑
n=1

P�11(ζm;ζn) [Γ(ζn)�Γ(ζm)] JnWn�

�

Z a

�a
P�11(ζm;ζ) [Γ(ζ)�Γ(ζm)] dΓ(ζ) (24)

The correct finite part integrals, and principal values, of the
singular terms can be calculated either analytically or us-
ing any existing appropriate numerical scheme. Furthermore,
since the collocation points are taken to be the same as the
Gauss integration ones (i.e., M = N), the crack opening deriva-
tives at ζm are needed. This is easily obtained by the adoption
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of Lagragean polynomial interpolations for cik(ξ;ζm) as ex-
plained elsewhere (Telles, Castor, and Guimarães, 1995).

The final equations, introducing also the results starting from
equation (15), can be written in matrix form as

S1 ci1(ξ) = pi1(ξ)
S2 ci2(ξ) = pi2(ξ)

�
! S ci(ξ) = pi(ξ) (25)

Matrices S1 and S2 are equal in 2-D static applications and
different for dynamic applications. The decoupling of the
equations system (25) into longitudinal and transversal crack
”opening” displacements do not occur for the case of curved
cracks but the approach is still the same.

It should be emphasized that matrix S is only a function of
crack geometry. It remains the same for any position of the
unit source point load. Hence, the system has to be solved just
once, and subjected to back substitutions in a Gauss solution
routine for other source points ξ. Therefore, the system matrix
is independent of the external boundary shape and discretiza-
tion. These facts make the implementation quite cost effective
and competitive even in the case of simple crack geometries
where a closed form Green’s function may be available. Mul-
tiple cracks can be considered by letting the integrals over ΓI ,
in the above expressions, be a sum of integrals over all crack
boundaries:

R
ΓI(: : :) = ∑J

j=1

R
ΓI

j
(: : :).

4 Special Implementation Features

4.1 2-D Curved Cracks

When the approach is implemented to curved cracks, the pro-
cedure described to produce the equation (21) is the same. The
difficulty is in the evaluation of the correcting term containing
the ”analytic” finite part and principal values integrals, since
there is no closed form integration formulae to apply. A reg-
ularization of the integral over the curved crack may be used
as follows (Silveira, Guimarães, and Telles, 1998) ; consider
the integration of the same singular integrand over a straight
boundary γ(ζ0

) tangent to the curved boundary Γ(ζ) at the
source point, ζm. Allowing for changes of integration vari-
ables the following identity is valid:

=
Z

Γ
P�jk(ζm;ζ)dΓ(ζ) =

Z 1

�1

"
P�jk(ζm;ζ)

∂Γ(ζ)
∂η

�P�jk(ζm;ζ
0

)
∂γ(ζ0

)

∂η

#
| {z }

regular

dη+

=
Z

γ
P�jk(ζm;ζ

0

) dγ(ζ
0

) (26)

The change of integration variables of the integrals over Γ and
γ produce an equal free term for both transformations that can-
cel each other when the integrands are subtracted. Therefore,

only the integral over γ, whose analytical result is easily ob-
tained (Telles, Castor, and Guimarães, 1995), is a finite part
integral in eqn (26).

4.2 General 3-D

The difference is essentially the double integration associated
with the crack surface representation which is more elaborate
for singular integral computations.

The 3-D counterpart of eqn (26) reduces the order of the
singular integrand, but does not produce a regular integral.
Hence, polar coordinates and/or additional standard numerical
schemes (Castor and Telles, 1999) are still recommended.

For quadrilateral crack surface geometry representation, the
quadrangular surface element can be divided into triangular
sub-elements, which are numerically integrated using polar co-
ordinates, centred at the singular point. Hence, eqn(17) can be
rewritten in the following form:

∑
∆
jGj∆

(
∑
θ

∑
ρ
jJjθρ

�
P�jk(ζm;ζθρ)

cik(ξ;ζθρ)ρWθWρ
�
�Ei j(ξ;ζm)∑

�
=

�p�i j(ξ;ζm) ; m = 1;2; : : :M (27)

where the first summation is taken over the above mentioned
triangular sub-elements, θ and ρ are, respectively, the angular
and radial integration variables, jJjθρ and jGj∆ are the Jacobian
introduced by the mapping and subdivision of ΓI at the inte-
gration point ζθρ and, Wθ and Wρ are the associated weighting
factors. The Ei j term of eqn (27) is introduced, as before, by
the regularization technique, it is now based on a 2-D expan-
sion of cik into a Taylor series about the singular point.

4.3 Dynamic Applications

In elastodynamic applications (Barra and Telles, 1999), in-
cluding time harmonic and transient analysis (through inverse
numerical transform), the dynamic fundamental solution for 2-
D problems (frequency domain) is given in terms of Bessel’s
function, approximated by polynomial and logarithmic expres-
sions.

The imaginary components of this solution is regular in the
frequency domain. The real part of the dynamic fundamental
solution when r ! 0 is:

Re [P�11] =
k0

r2 + kLRe1 ln(r)+Re
h
PReg

11

i
(28)

Re [P�22] =
k0

r2 + kLRe2 ln(r)+Re
h

PReg
22

i
(29)

where

k0 =
G

2π(1�ν)
(30)
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kLRe1 =�
Gω2

4π

�
c4

P + c4
S

c4
Pc2

S

�
(31)

kLRe1 =�
Gω2

4π

�
3c4

P�4c2
Pc2

S +3c4
S

c4
Pc2

S

�
(32)

in which G is the shear modulus, cP and cS are compression
and shear wave velocities, ω the loading frequency and ν Pois-
son’s ratio. The PReg

11 and PReg
22 are the regular components of

P�11 and P�22.

If, instead of frequency domain, the Laplace transform domain
is adopted, the singularities of the real part of the fundamental
solution are still the same. In addition, the imaginary part of
the fundamental solution has a logarithmic singularity in the
vicinity of ζm which is treated in the same fashion as the pre-
vious ones:

Im [P�11] = kLIm1 ln(r)+ Im
h
PReg

11

i
(33)

Im [P�22] = kLIm2 ln(r)+ Im
h
PReg

22

i
(34)

Although the singularity terms differ in each approach, the
general treatment is the same for both domains. The com-
putation of the correcting term of eqn (17) follows the same
pattern, including the logarithmic terms of the real and imagi-
nary parts.

4.4 Plate Bending Applications

In plate bending applications, so far Reissner’s plate theory has
been implemented. Since the fundamental kernels present sin-
gularities of the same order as the 2-D application, the only dif-
ference is the number of degrees of freedom which increases
to three (one displacement and two rotations) per collocation
point (de Figueiredo, 1999).

For Reissner’s plate theory, it is customary to represent the
stress intensity factors (SIF) associated to the actual moments
and shear force. These factors are related to the stress inten-
sity factors calculated at � h

2 (h is the plate thickness) from the
mid surface. For instance, the moment intensity factor ”K1” is
expressed as a function of ”KI” stress intensity factor as

K1 = KI
h2

6
(35)

5 Examples

In the following examples, continuous elements have been em-
ployed throughout the external boundary discretization except
for the border crack 3-D in which discontinuity is allowed
along the intersection with the crack.

Figure 4 : Parabolic Shape Crack Embedded in an Infinite
Remotely Loaded Plate.

5.1 Curved Crack

This example consists of a parabolic shaped crack, depicted in
Figure 4, and defined by the expression bellow.

y =
α(a2� x2)

a
(36)

The Crack is embedded within a square specimen with remote
unit stresses applied in X and Y directions. The numerical
model has eight linear elements over the external boundary.

The SIFs were computed from stresses at a point located at
r = 0:004a ahead of the crack tip B. The results are shown in
Table 1 in comparison to the numerical results given in (Chen,
Gross, and Huang, 1991), for a = 2 and α = 0:2.

Table 1 : Numeric SIF for Crack Problem of Figure 4

SIF Reference* NGF Difference%
KI 2.3768 2.3928 0.67
KII -0.4570 -0.4572 0.06

* Chen, Gross, and Huang (1991)

5.2 Infinite Plate in Bending

In this plate bending example Reissner’s theory has been ap-
plied. The infinite plate was subjected to the bending moments
indicated in Figure 5 and Poisson’s ratio was 0:3. In this case
only matrix S is used to obtain directly the crack opening dis-
placements at the 32 collocation Gauss points. The ones clos-
est to the crack tips have been used to compute the bending
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M

2a

Figure 5 : Bending Moment Applied to Crack Embedded in
Infinite Plate

intensity factors. As seen in Table 2, the results compare well
with those produced by (Joseph and Erdogan, 1989).

Table 2 : NGF Bending Moment Stress Intensity Factor for
Problem of Figure5

a
h

K1
M
p

a
K1

M
p

a
* Error%

2.0 0.6832 0.6997 2.36
4.0 0.6630 0.6701 1.06

10.0 0.6567 0.6481 1.33
20.0 0.6656 0.6460 3.03
50.0 0.6559 0.6400 2.48

* Joseph and Erdogan (1989)

Figure 6 : Plane Elliptical Crack in an Infinite Solid Medium

5.3 Plane Elliptical Crack in a Solid

The problem of a plane elliptical crack, in an infinite medium
(Figure 6), under uniform tractions in Z and X directions, can
be solved directly with the integral equation (11) (i.e. sys-
tem of equations (25)). Here, the independent term is equal
to the applied internal pressure and there is no need for outer
boundary discretization. The geometry of the elliptical crack

has been approximated by a quartic Lagrangean element and
the crack opening displacements were calculated at 64 Gauss
station positions, corresponding to 8 integration points in each
direction. The SIF values have been computed at the second
row of Gauss points closest to the crack front. The results are

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

θ

K
I /

 K
0

Analytical - a/b=1

Analytical - a/b=2

NGF - a/b=1

NGF - a/b=2

Figure 7 : KI SIF of a Loaded Elliptical Crack Embedded

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 80.00 90.00

θ

K
II 
/ K

0

Analylical - a/b=1

Analylical - a/b=2

NGF - a/b=1

NGF - a/b=2

Figure 8 : KII SIF of a Loaded Elliptical Crack Embedded

presented in Figures 7 to 9 for the three SIF computations. The
analytical results for mode I are due to (Kassir and Sih, 1967)
and for modes II and III are due to (Kassir and Sih, 1966).

5.4 Plane Quarter-circular Border Crack

The problem of a plane quarter-circular crack in a square bar
under uniaxial tensile stress, acting in the direction of Z axis,
has been discretized by a mesh of 103 quadratic boundary ele-
ments in its symmetrical part. The geometry and boundary dis-
cretization of the problem are shown in Figure 10. The mode
I SIFs have been computed by a least square procedure, us-
ing the crack opening displacements weighted by the distance
from the crack front. They are presented in Figure 11. An in-
terpolation was introduced in the graphics from θ = 42o to the
corresponding least square result at 45o. The reference results
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are due to (Tracey, 1973) and have an accuracy of about 2% (
normalized by the SIF of a circular crack of radius a in an in-
finite medium subject to a remote stress field of intensity σ in
the normal direction to the plane of the crack, K0 = 2σ

p
a=π).

5.5 Crack in an Infinite Medium Subjected to a Pressure
Wave

This example consists of a time harmonic plane pressure wave,
acting in the normal direction, upon a flat crack in an infinite
medium, (ν = 0:25, plane strain). This problem was previ-
ously solved by (Mal, 1970) for plane strains and a wide va-
riety of frequencies. His results permit the comparison pre-
sented in Figure (12) where the present NGF solutions are
also indicated. The NGF solutions have been computed with
only 12 Gauss points for the complete crack. The SIF val-
ues were computed using the crack openings and the weighted
least square procedure adopted in the previous example.

6 Conclusions

The paper discusses the application of the hyper-singular
boundary integral equation to obtain the Green’s function
solution to general geometry fracture mechanics problems,
such as curved multifracture crack simulation, static and har-
monic (extended to transient dynamic through inverse numeri-
cal transforms), in 2-D, 3-D and plate bending. The implemen-
tation presents the same integration difficulties of the mixed
(or dual) formulation but leads to smaller system of equations.

The accuracy of the solutions illustrates the numerical perfor-
mance of the approach and its versatility for different applica-
tions.
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