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Abstract: This paper presents an application of a direct
Trefftz method with domain decomposition to the two-
dimensional elasticity problem. Trefftz functions are substi-
tuted into Betti’s reciprocity theorem to derive the boundary
integral equations for each subdomain. The values of displace-
ments and tractions on subdomain interfaces are tailored by
continuity and equilibrium conditions, respectively. Since Tr-
efftz functions are regular, much less requirements are put on
numerical integration than in the traditional boundary integral
method. Then, the method can be utilized to analyse also very
narrow domains. Linear elements are used for modelling of
the boundary geometry and approximation of boundary quan-
tities. Numerical results for a rectangular plate with varying
aspect ratio and cantilever beam are presented.

keyword: plynomial Trefftz functions, direct formulation,
linear approximation, boundary integral equation

1 Introduction

The effort to predict more effectively the response of the com-
plex problems of continuum mechanics motivates the authors
to seek for formulations in which the governing equations in-
side the approximated domain are identically satisfied. Such
analytically derived functions are called Trefftz functions [Tr-
efftz (1926)] which can be found in the form of polynomials,
Legendre, harmonic, Bessel, Hankel, singular Kupradze func-
tions, etc. [Zielinski (1995)].

The main characteristic of the Trefftz method is the use of trial
functions that satisfy the governing differential equations in a
domain. The method can be classified into the indirect and
the direct formulations [Jin, Cheung and Zienkiewicz (1990);
Kita, Kamiya and Iao (1999)]. In the indirect formulation
the trial function is given as a superposition of Trefftz func-
tions. Then, the unknown parameters in the trial function are
determined so that boundary conditions have to be satisfied.
In the direct formulation the Trefftz functions are considered
as a weighting (test) function in Betti’s reciprocity theorem to
derive boundary integral equations. Boundary values are ap-
proximated by standard polynomials within elements on dis-
cretized boundary. In this approach, unknown values have
a physical interpretation in contrast to the indirect approach,
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where unknowns are fictitious parameters. That is the main
reason, why in this paper a direct formulation is used inspite
of the more frequently occurred indirect formulation in the lit-
erature [Leitao (1998); Zielinski and Herrera (1987); Herrera
(1995)]. If the number of Trefftz functions used as test func-
tions is high the final system of algebraic equations can be ill-
posed. To overcome this difficulty the whole domain is subdi-
vided into smaller subregions. For the same purpose the spe-
cial Trefftz finite element formulations are frequently used by
many researchers [Jirousek and Leon (1977); Jirousek (1978);
Jirousek (1987); Freitas and Ji (1996); Freitas (1998); Jirousek
and Zielinski (1993); Kompis and Bury (1999)]. On interfaces
of subregions displacement continuity and equilibrium of trac-
tions have to be satisfied. Adding such restriction conditions
at nodal points to the discretized integral equations, we create
a complete set of algebraic equations for the unknown values
at nodal points.

Boundary integral formulations combined with Trefftz func-
tions as test functions can be used for the computation of
boundary unknowns. An integral representation of displace-
ments at internal points is not available in such a formula-
tion. If such quantities are required, the integral representation
with the fundamental (singular) solution has to be used [Balas,
Sladek and Sladek (1989)].

Numerical tests were carried out on a rectangular plate with
varying side aspect ratio and a cantilever beam.

2 Boundary integral equations

For linear isotropic problems of elasticity, the governing equa-
tions are force equilibrium equations expressed in displace-
ments, the Lame-Navier equations in domain�

λ+µ
�

u j; ji+µui; j j = Xi ; (1)

where Xi is a body force vector. Recall that in two-dimensional
problems under plane stress conditions special care should be
paid to the association of the coefficients with the material pa-
rameters. In general,

λ =
2µν

1�2ν
; ν =

( ν
1+ν

; plane stress

ν; otherwise
;

where ν is Poisson’s ratio and µ is the shear modulus associ-
ated with the Young modulus as E = 2µ(1+µ).
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An equivalent to the Lame-Navier equation is the force equi-
librium in terms of stresses

σi j; j�Xi = 0 : (2)

Let Γu and Γt denote parts of the boundary Γ (Γ = Γu [Γt)
with prescribed displacements and tractions, respectively.

Traction vector ti is defined as a scalar product of stress tensor
σi j and outward normal vector n j. The weak formulation of
eq. (2) can be expressed in weighted residual form

Z
Ω

W1i(σi j; j�Xi)dΩ+
Z

Γu

W2i(ui�ui)dΓ

�

Z
Γt

W1i(ti� t i)dΓ = 0 ; (3)

where prescribed quantities are denoted by overbar and ui, ti
are trial functions. Weight functions are chosen in the follow-
ing form

W1i = u�

i ; W2i = t�i ; (4)

where u�

i and t�i are the displacements and tractions corre-
sponding to the weighting field.

Applying the Gauss-Green formula to the domain integral in
eq. (3), we have

Z
Ω

u�

i (σi j; j�Xi)dΩ =
Z

Γ
u�

i ti dΓ�
Z

Γ
t�i ui dΓ

+
Z

Γ
σ�

i j; jui dΩ�
Z

Ω
u�

i Xi dΩ : (5)

Substituting eq. (5) into (3), with taking into account the pre-
scribed boundary conditions, one obtains
Z

Γ
u�

i ti dΓ�
Z

Γ
t�i ui dΓ+

Z
Ω

σ�

i j; jui dΩ =
Z

Ω
Xiu

�

i dΩ : (6)

If the weighting field is selected as a Trefftz function the ho-
mogeneous governing equation is satisfied

σ�

i j; j = 0 (7)

in Ω0, where Ω�Ω0.

Finally, one obtains the boundary integral equation
Z

Γ
u�

i ti dΓ�
Z

Γ
t�i ui dΓ =

Z
Ω

Xiu
�

i dΩ : (8)

The boundary integral equation (8) relates the boundary dis-
placements and traction vectors. Then, the unprescribed quan-
tities can be computed from that equation. In contrast to the
conventional boundary integral equations the free term is miss-
ing here. The governing equation for the fundamental solution
contains the Dirac delta function which causes a singular be-
haviour of the fundamental solution. Here, Trefftz functions
are nonsingular and all the integrals exist in a regular sense.

It makes the numerical integrations much easier in the Tre-
fftz boundary integral equation formulation than in the conven-
tional formulation based on singular boundary integral equa-
tions. On the other hand, the numerical stability is more ques-
tionable in the former case because of a higher condition num-
ber of the discretized BIE.

The boundary integral equation (8) can be used only for the
computation of unknown boundary quantities. If we are in-
terested in displacement and stress values in the interior of
the body, the Somigliana identity and integral representation
for stresses, respectively, has to be utilized for the evalu-
ation. Fundamental solutions corresponding to the Lame-
Navier governing equation (1), with the Dirac delta function
distribution of body forces, are denoted here as Ui j(x� y).
Then, the governing equations can be written as�

λ+µ
�

Ujm; ji(x� y)+µUim; j j(x� y) = δimδ(x� y) ; (9)

with the fundamental solutions in two dimensions being given
as

Ui j(r) =
1

8πµ(1�ν)
�
(4ν�3) lnrδi j + r

;ir; j
	
;

Ti j(x;y) =�
1

4πµ(1�ν)r

�
[(1�2ν)δi j +2r

;ir; j]
∂r
∂n
�

(1�2ν)(r
;in j� r

; jni)
	
: (10)

The Somigliana identity has the form [Balas, Sladek and
Sladek (1989)

ui(y) =
Z

Γ
t j(x)Ui j(x� y)dΓx �

Z
Γ

u j(x)Ti j(x;y)dΓx

+
Z

Ω
Xj(x)Ui j(x� y)dΩx : (11)

If an interior point y is lying very close to the boundary, the
second integral on the r.h.s. of eq. (11) is nearly singular. The
accurate evaluation of such integral requires special attention.
It is well known that the integral representation (11) can be
regularized ( see e.g. [Balas, Sladek and Sladek (1989)] ) as

ui(y) = ui(ζ)+
Z

Γ
t j(x)Ui j(x� y)dΓx�

Z
Γ
[u j(x)�u j(ζ)]�

Ti j(x;y)dΓx +
Z

Ω
Xj(x)Ui j(x� y)dΩx ; (12)

where ζ 2 Γ can be selected as the nearest boundary point to
y 2Ω.

Similarly, one can derive a regularized integral representation
for stresses [Balas, Sladek and Sladek (1989)]. Note that in the
integral representation (12) the strong singularity of the kernel
Ti j (as y approaches ζ2 Γ) is smoothed by the vanishing factor
u j(x)� u j(ζ) in the numerical integration. A more advanced
cancellation of divergent terms is discussed elsewhere [Sladek
and Sladek (1998)].
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The Trefftz formulation of the boundary integral equations
supplemented with integral representations based on singular
fundamental solutions can be utilized for the numerical analy-
sis of the whole domain.

3 Trefftz functions for 2-d elasticity problems

The Trefftz function is a homogeneous solution of the partial
differential equation (1). We try to find the Trefftz function in
a polynomial form. Then, for displacements one can write

u�

1 =
s

∑
n=0

s

∑
m=0

anmxn
1xm

2

u�

2 =
s

∑
n=0

s

∑
m=0

bnmxn
1xm

2 (13)

where 2s is the order of polynomial. Substituting polynomi-
als (13) into the governing equation (1) (Xi = 0), one obtains
a system of algebraic equations for the computation of the un-
known parameters anm and bnm. For such purposes symbolic
computations by MATHEMATICA software has been utilized.
Explicit expressions of some of the Trefftz functions are given
in Appendix.

4 Numerical implementation

In the direct BIE Trefftz formulation the boundary is dis-
cretized by conforming elements. Boundary quantities are ap-
proximated within the elements:

gi(x) =
n

∑
a=1

Na(ξ)gaq
i ; (14)

where gaq
i is the nodal value of a physical quantity gi 2 fui; tig

on element q at the node with local number a. The value n
denotes the number of nodes on a element. For a linear ap-
proximation, n = 2 and the shape functions Na(ξ) have the
following form

N1(ξ) = 0:5(1�ξ) ;
N2(ξ) = 0:5(1+ξ) ξ 2<�1;1 > : (15)

For the evaluation of the domain integral in eq. (8) we can use
an analytical method if the domain and body force distribu-
tion are simple. Otherwise a numerical method has to be used.
Standard isoparametric elements are very convenient [Balas,
Sladek and Sladek (1989)]. Making use of the approxima-
tion formula (14) in the BIE (8), we obtain a system of alge-
braic equations for nodal displacements uaq

i and tractions taq
i ,

respectively,

Nq

∑
q=1

2

∑
a=1

Z
Γq

h
u�(b)

i (ξ)taq
i � t�(b)i (ξ)uaq

i

i
Na(ξ)Jqdξ =

Ne

∑
a=1

Z
Γe

u�(b)
i (ξ1;ξ2)N

a(ξ1;ξ2)X
ae
i Je dξ1dξ2 (16)

for b = 1;2; : : :, where Nq and Ne is the number of boundary
and domain elements, respectively. The symbol Jq denotes
the Jacobian for transformation of Cartesian coordinates into
isoparametric ones. A matrix form of eq. (16) is given by

Tu�Ut = F ; (17)

where the definition of the matrices directly follows from eq.
(16). The number of rows in eq. (17) is equal to the num-
ber of the Trefftz functions. Since the maximum number of
the columns is twice the number of the boundary nodes, the
number of the Trefftz functions must be equal to or larger than
twice the number of the nodes. In this paper we have selected
such a number of Trefftz functions that we obtained a square
matrix.

Kita, Kamiya and Iio (1999) have analysed the conditioning
of matrices in the Trefftz boundary integral equation method
for potential problems. They considered a narrow cut of thick-
walled cylinder with a high aspect ratio of the arc length over
the difference of radii. From numerical results it follows that
the condition number is dependent on the number of the func-
tions rather than on the aspect ratio. Provided that the num-
ber of Trefftz functions is restricted, the accuracy is reason-
able even if the objects with long and narrow profiles are anal-
ysed. Therefore, for solving the large-scaled problems accu-
rately, the domain decomposition is required. For simplicity
we will consider a domain divided into two subdomains. The
subdomains are refered to as Ω1 and Ω2, respectively, with
boundaries Γ1 Γ2 and Γl (interface). Then, eq. (17) on the
subdomains Ωα can be written as

Tαuα�Uαtα = Fα (18)

for α = 1;2. where the superscript is related to the subdomain.

On the interface boundary both the displacements and traction
vector are unknown. The system of integral equations (18) is
not sufficient to get a unique solution. Therefore, they have
to be supplemented by additional equations which satisfy dis-
placement continuity and force equilibrium on the interface:

u1
i (x) = u2

i (x) ;

t1
i (x) = �t2

i (x) ; (19)

for x 2 Γl . Then, the integral equations (18), supplemented
with the tailored conditions (19), give a complete system for a
large-scaled boundary value problem.

5 Numerical examples

Two numerical examples will be presented here to show the
accuracy of the Trefftz method in comparison with the con-
ventional boundary integral equation method.
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Figure 1 : A rectangular plate with varying aspect ratio a=h
under a uniaxial uniform load σ22 = 1

5.1 Example 1. Effect of the aspect ratio in a rectangular
domain

A drawback of the conventional boundary element method
is that it is not convenient for analysis of domains with
high aspect ratios and a special regularization approach is re-
quired [Sladek and Sladek (1998); Sladek, Sladek and Tanaka
(1993)]. When the distance between the elements on close
boundary faces is smaller than the size of elements, the ac-
curacy fails due to an inaccurate evaluation of nearly singu-
lar integrals if conventional BEM formulation and/or standard
numerical quadratures are employed. To investigate the de-
pendence of the accuracy on the aspect ratio in the presented
Trefftz method, we have analysed a rectangular domain with a
varying aspect ratio (Fig. 1). The plate is subjected to a uni-
form load in x2 direction. The following material constants are
considered: Young modulus E = 1 and Poisson ratio ν = 0:3.

Due to two axial symmetries only one quarter of the plate is
modelled. The analysed domain is discretized by 8 linear el-
ements. The height of the plate is kept constant and the plate
width is varying from a=h = 1 to a=h = 0:001. Numerical re-
sults are given in Tab. 1. One can observe essentially higher
stability of numerical computations by the presented method
than by the conventional BEM formulation combined with
using regular Gauss quadrature for numerical integration. A
quadratic approximation in the BEM is used on 4 elements (8
nodes). When increasing the number of elements in the BEM,
the accuracy of the results is expected to be higher.

x
2

x
1

D

L

L/3 L/3

A B C

P

Figure 2 : Cantilever beam with a parabolic shear end load

5.2 Example 2. Cantilever beam

The behaviour of the present Trefftz BIE is also studied in the
cantilever problem (Fig. 2) for which the following exact so-
lution is given by Timoshenko and Goodier (1970). The dis-
placements in the beam are

u1 =�
P(1�ν2)

6EI

�
x2�

D
2

��
3x1(2L� x1)+

2�ν
1�ν

x2(x2�D)

�
u2 =

P(1�ν2)

6EI

�
x2

1(3L� x1)+
3ν

1�ν
(L� x1)(x2�D=2)2+

4+ν
4�4ν

D2x1

�
; (20)

where I = D3=12

E =

8<:
E plane strain

(1+2ν)E
(1+ν)2 plane stress

The stresses corresponding to eq. (20) are

σ11 =�
P
I
(L� x1)(x2�D=2) ;

σ22 = 0 ;

σ12 =�
Px2

2I
(x2�D) : (21)

In the numerical analysis the following geometry and material
parameters were considered: L = 3, D = 1, E = 1, ν = 0:3,
P = 1. The beam domain is divided into three subdomains
of the same size with 12 linear elements on each subdomain
boundary.

Numerical results obtained by the present Trefftz BIE method
are compared with the analytical solutions at three points A,
B, C (Fig. 2). The displacements at these points are given in
Tab. 2.

A quite good agreement of results can be observed. A relative
error for the maximum bending stresses σ11 at the clamped
side is less than 1% (exact value: σ11 = 18 and the numerical
value σ11 = 18:16).
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Table 1 : Numerical results for a rectangular plate under a uniform tension
Trefftz method BEM Exact

a=h σA
22 uB

2 Err. σ % Err. u % σA
22 uB

2 Err. σ % Err. u % σA
22 uB

2

1. 1. 0.91 0. 0. 0.9993 0.9108 0.07 0.088 1. 0.91
0.5 0.9992 0.9097 0.08 0.033 0.9995 0.9104 0.05 0.044 1. 0.91
0.1 0.9989 0.9091 0.11 0.099 1.114 0.8695 11.4 4.45 1. 0.91
0.05 0.9956 0.9099 0.44 0.011 0.583 0.817 41.7 10.22 1. 0.91
0.01 1.05 0.9241 5.0 1.549 1.526 0.6372 52.6 29.97 1. 0.91
0.005 1.019 0.948 1.9 4.175 2.079 0.865 107.9 4.94 1. 0.91
0.001 1.52 0.769 52.0 15.49 2.484 9.587 148.4 953.5 1. 0.91

Table 2 : Displacements at the cantilever beam

uA
1 uA

2 uB
1 uB

2 uC
1 uC

2

Analytical solution 10.50 14.25 16.80 43.95 18.90 82.05
Trefftz BIE 10.61 13.98 17.03 44.22 19.21 82.41
Error [%] 1.047 1.894 1.369 0.614 1.640 0.438

6 Conclusions

The present Trefftz BIE method is a promissing computational
alternative to more popular finite element or boundary element
methods. A multi-domain Trefftz BIE formulation is keeping
the simplicity of the FEM and the boundary character of the
BEM. The number of subdomains in the presented method can
be much less than in the conventional FEM due to higher mod-
elling accuracy. As compared with the conventional BEM for-
mulation, the treatment of singularities is avoided. Therefore,
the numerical integration is much easier. Without any special
effort the method is also convenient to analyse very narrow
objects due to the regular integrals in the formulation.

A drawback of the Trefftz BIE formulation is the necessity
to use a multi-domain approach because of the decrease of
the condition number of the discretized BIE with increasing
number of Trefftz functions. Consequently, this leads to an
increase of the number of unknowns on the subdomain inter-
faces also in physically homogeneous problems. Of course,
in the case of piecewise nonhomogeneous problems this effect
disappears because of the necessity of domain subdivision in
such problems.
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Appendix A:

In this Appendix, we collect the explicit expressions for sev-

eral Trefftz functions u�(n)
i and t�(n)i in terms of polynomials

with respect to cartesian coordinates of a field point in a global
coordinate system. First of all, let us introduce two parameters
e and eν
e =

(
E plane stress
E

1�ν2 plane strain
(22)

eν =

(
ν plane stress
ν

1�ν
plane strain (23)

which allow to write the Trefftz functions in a compact form
for both the plane stress and plane strain problems. Recall that
the Hooke law takes the form

σi j =
e

1+eν
�

εi j +
eν

1�eνδi jεkk

�
; εi j =

1
2
(ui; j+u j;i) :

The tractions t�(n)i , corresponding to the Trefftz displacements

u�(n)
i , can be obtained by contraction of stresses σ�(n)

i j by the
normal vector n j as

t�i (n) = σ�(n)
i j n j (24)

Trefftz functions:

u�(1)
1 = 1; (25)

u
�(1)
2 = 0; (26)

t�(1)1 = 0; (27)

t
�(1)
2 = 0 (28)

u�(2)
1 = x1; (29)

u�(2)
2 = 0; (30)

t�(2)1 =
e

1�eν2 n1; (31)

t�(2)2 =
eeν

1�eν2 n2; (32)

u�(3)
1 = x2=2; (33)

u�(3)
2 = x1=2; (34)

t�(3)1 =
e

2(1+eν)n2; (35)

t
�(3)
2 =

e
2(1+eν)n1; (36)

u�(4)
1 = 0; (37)

u�(4)
2 = 1; (38)

t
�(4)
1 = 0; (39)

t�(4)2 = 0; (40)

u
�(5)
1 = 0; (41)

u�(5)
2 = x2; (42)

t
�(5)
1 =

eeν
1�eν2 n1; (43)

t
�(5)
2 =

e
1�eν2 n2; (44)

u�(6) = �x2=2; (45)

u�(6)
2 = x1=2; (46)

t�(6)1 = 0; (47)

t�(6)2 = 0; (48)

u�(7) = x1x2; (49)

u�(7)
2 = �(1+eν)x2

2=4; (50)

σ�(7)
11 =

e(2+eν)
2(1+eν)x2; (51)

σ�(7)
12 =

e
2(1+eν)x1; (52)

σ�(7)
22 = �

e
2(1+eν)x2; (53)

u
�(8)
1 =

1eν�1

�
2x2

2 +eνx2
2� x2

2

�
; (54)

u�(8)
2 = 0; (55)

σ�(8)
11 =

2e
1�eν2 x1; (56)

σ�(8)
12 = �

2e
1�eν2 x2; (57)

σ�(8)
22 =

2eeν
1�eν2 x1; (58)

u�(9)
1 =

1+eν
2(eν�1)

x2
2; (59)
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u�(9)
2 = x1x2; (60)

σ�(9)
11 =

eeν
1�eν2 x1; (61)

σ�(9)
12 =

eeν
1�eν2 x2; (62)

σ�(9)
22 =�

eeν
1�eν2 x2; (63)

u�(10)
1 = 0; (64)

u�(10)
2 =

�
2x2

1 +eνx2
2� x2

2

�
=2; (65)

σ�(10)
11 = �

eeν
1+eνx2; (66)

σ�(10)
12 =
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Other higher order Trefftz functions can be obtained analo-
gously.


