
An Integer Programming Method for CPM Time-Cost Analysis

A. P. Chassiakos, C. I. Samaras, D. D. Theodorakopoulos1

Abstract: Time and cost to complete a project is an impor-
tant tradeoff problem in project planning and control. Existing
methods have not provided an accepted solution in terms of
both accuracy and efficiency. In an attempt to improve the so-
lution process, a method is presented for developing optimal
project time-cost curves based on CPM analysis. Using ac-
tivity succession information, project paths are developed and
duration is calculated. Following that, duration is reduced in
an optimal way employing integer programming. Two alter-
native formulations are proposed which lead to corresponding
algorithms, a progressive duration reduction and a direct re-
duction to the desired level. The first approach leads to sub-
optimal results but requires less computational effort than the
second which, though, finds the optimal solution. The method
has been successfully tested on a number of cases and results
are presented to illustrate its application and demonstrate its
merits.

keyword: critical path method (CPM), integer program-
ming, project planning, time-cost tradeoff

1 Introduction

In project planning, a tradeoff problem between project du-
ration and cost is encountered. In particular, project cost de-
pends, among other factors, on the required (or desired) time
to complete the project. Considering that an activity can gen-
erally be completed in a number of alternative ways, each of
which is associated with particular duration and cost values,
the objective is to select the appropriate execution option so
that the project is completed by a desired deadline and in an
optimal way, i.e., with the minimum cost. The analysis is re-
peated for any feasible project length and an optimal time-cost
curve is developed for the project which can also be used for
optimizing project duration.

The time-cost tradeoff problem has extensively been studied
since 1960s and has been recognized as a particularly diffi-
cult combinatorial problem. Several solution schemes have
been proposed, none of which was wholly satisfactory. They
include linear, integer, or dynamic programming and other
(heuristic) methods. Some of these methods provide exact
solutions but with considerable computational effort. Other
methods use simplified formulations to reduce resource needs
but provide approximate solutions. A third category includes

1 Department of Civil Engineering, University of Patras, GR-26500 Patras,
Greece.

methods for project network decomposition to reduce time re-
quirements.

The problem was initially modeled as either a linear or an in-
teger programming one depending on whether a continuous
tradeoff between activity duration and cost exists or only cer-
tain combinations are possible. Linear programming formu-
lations have been proposed by Fulkerson (1961) and Perera
(1980) assuming a continuous time-cost function which, how-
ever, may not be applicable to real life projects. Mixed-integer
linear models have been developed to reflect the case where
only a finite number of time-cost combinations are available
[Shtub, Bard, and Globerson (1994)]. A number of researchers
[e.g., Meyer and Shaffer (1965), Crowston (1970)] have pro-
posed similar models with the primary focus on simplifying
the problem by alternative formulations for the precedence
constraints. Liu, Burns, and Feng (1995) used a combination
of linear and integer programming to establish the lower bound
of a project time-cost relationship. In general, application of
mathematical programming techniques is computationally in-
efficient in large projects as they require solving a linear (inte-
ger) programming problem with numerous variables and con-
straints. On the other hand, simplified methods, although less
complex, do not always reach the optimal solution.

Dynamic programming formulations have provided another
modeling approach. More specifically, Robinson (1975) has
presented a conceptual framework (but not an algorithm) based
on dynamic programming for problem solution. Hindelang
and Muth (1979) and, later, De, Dunne, Ghosh, and Wells
(1995) proposed dynamic programming algorithms for the
discrete time-cost case. Dynamic programming methods are
computationally more efficient than linear or integer program-
ming methods and, thus, more suitable for large projects.
However, these methods may not obtain the optimal solution
in certain cases. The need for an expert analyzer to set up
an application in practice is an additional limitation of these
methods.

Besides mathematical programming techniques, a number of
methods or algorithms are reported in the literature. Feng,
Liu, and Burns (1997) proposed using genetic algorithms to
address time-cost optimization. The application of this algo-
rithm showed that at least 95% of the optimal solutions were
found. Siemens (1971) and Goyal (1975) proposed simple,
heuristic methods to solve the problem. These methods are
useful only for small networks and cannot guarantee finding
the optimal solution. In addition, they require increased ef-

10 Copyright c 2000 Tech Science Press CMES, vol.1, no.4, pp.9-18, 2000

fort to set up a large scale problem and computational time to
solve it as they need to examine all project activities and paths.
In a different direction, Panagiotakopoulos (1977) focuses pri-
marily on problem simplification. In particular, a method was
developed to decompose, where possible, a project network
into non-overlapping segments and construct a time-cost func-
tion for each segment. Following network decomposition, sub-
problems can be solved employing any of the existing tech-
niques. A similar problem reduction approach has been used
in De, Dunne, Ghosh, and Wells (1995).

In summary, the main shortcomings of methods used for
project time-cost analysis are that they result in large problems
which require excessive effort to solve, formulations are com-
plex and time-consuming to apply, and application is prone to
errors. In addition, some methods make certain assumptions
on activity time-cost form which limit their applicability.

This paper presents a method for developing optimal project
time-cost curves. The proposed method results, in many cases,
in smaller problem size compared to that of existing methods
reducing, thus, resource requirements. In addition, the method
leads to an elementary problem formulation which allows easy
application. According to this method, the project is initially
represented in terms of its paths and activities. Following that,
integer programming is employed to determine the best com-
bination of activity durations which results in a desired project
length. Starting from the normal duration, the aim is to re-
duce this value by a certain amount with the lowest cost in-
crease. Two alternative formulations are proposed leading to
corresponding algorithms. The first is based on a progressive
duration reduction which gives an approximate solution but
has increased computational efficiency. The second attempts
a single-step optimization, obtains the exact solution but re-
quires increased effort. An example to illustrate the algorithm
application is presented, the results are discussed, and the effi-
ciency is compared to that of a previous method.

2 Problem description

Project planning and control has been based on project net-
work representation and critical path method (CPM) analysis.
For a given project, a network is drawn to depict the logical
sequence of operations (activities). Any sequence of activities
connecting the start and end points of the project determines a
path. The sum of the estimated length of time required to carry
out each activity in a path determines path duration. Among all
paths, the one (or more) with the largest duration is known as
the critical path and its duration determines the project length.

The duration considered for each activity corresponds to the
value associated with the minimum cost. However, this (nor-
mal) duration often leads to unacceptable project lengths in
view of external time constraints for project completion. In
such cases, shortening project length is considered. In general,
project acceleration (alternatively known as project crashing)

Duration

Cost

dNdC

CN

CC

C

M

N

dM

CM

Figure 1 : A typical activity time - cost relationship

is achieved by reducing the duration of appropriate activities
through the use of additional resources, overtime work, shift
allowance, or by selecting different technologies to perform
an activity. This is accomplished at the expense of an extra
crashing cost. The objective of the analysis is then to obtain
the desirable project duration at the lowest cost increase, i.e.,
to decide which activities to expedite and by what amount to-
wards this objective. The analysis is generally extended to
any possible project length leading to the development of a
time-cost tradeoff curve which can also be used for optimizing
project duration. In small projects crashing can be done man-
ually, however, in projects with a large number of activities,
computer algorithms may be the only alternative to problem
solution.

An important factor in the analysis is the form of the time-cost
relationship which is assumed for project activities. This factor
considerably affects the problem formulation and the extend to
which a method can realistically be applied. An activity gen-
erally presents a number of alternative time-cost combinations
corresponding to various options to carry out the work. The
time required to complete an activity under normal working
conditions is known as the normal duration and corresponds to
the minimum activity cost. Activity execution in a shorter than
the normal time typically results in increased cost. The mini-
mum feasible duration of an activity is known as the crash time
and the corresponding cost as the crash cost.

Activity time-cost relationships may take a variety of forms.
The most common relationship is a convex one which appears
when operating limitations prevent an increasing resource ap-
plication from showing a proportional return. Another type is a
linear relationship where cost increases linearly as duration de-
creases. A relationship presenting a step-like cost increase at a
specific duration may appear if shortening the activity duration
below this point requires an incremental resource charge.

A time-cost curve may be continuous or discrete. A continu-
ous relationship represents an activity that can be completed at

An integer programming method for CPM time-cost analysis 11

any time-cost combination along the curve. Continuous curves
are usually approximated by piece-wise linear functions to es-
tablish cost slopes and simplify calculations. A discrete time-
cost relationship is more appropriate than a continuous one to
model actual engineering projects. An activity can be com-
pleted at distinct values of duration and each one is associated
with a cost value (Figure 1). Point N represents normal exe-
cution, C execution in the shortest possible duration and M an
intermediate time alternative. Feasible durations for an activ-
ity are not necessarily uniformly distributed within the range
between normal and crash time (e.g., dN�dM 6= dM�dC). Ac-
tivities which can be executed only in a specific way present a
single time-cost operating point and do not have an effect on
project crashing.

Many existing approaches assume a convex time-cost curve
and has based development on this requirement. Although
usually realistic, the assumption does not always hold. In the
present analysis, any decreasing time-cost function is applica-
ble. Outliers of such a function i.e., points with higher cost at
higher duration than others can be eliminated in advance ei-
ther manually or employing a simple algorithm as in Liu et.al.
(1995).

3 The proposed method

The proposed method is based on developing a matrix with all
project paths. To facilitate development, an appropriate tabular
representation of the project network is employed. Based on
the logical sequence in which activities are executed, a triangu-
lar matrix is formed where activities (rows) and their succes-
sors (columns) are inputted in a zero-one format. In particular,
denoting activity number by j and activity code by A(j), the
matrix values are given as:

s(j1; j2) =

8<
:

1 if activity A(j2) is a successor of
A(j1), j2 > j1, j1 = 0;1;2; : : : ;n

0 otherwise
(1)

where n is the number of activities. Activities are numbered in
such a way that, if j > k, A(j) cannot precede A(k). An initial
zero-duration, zero-cost (dummy) activity A(0) and a similar
terminal activity A(n+1) are introduced to assist the develop-
ment process. The number of activities that follow activity j is
denoted by w(j) and equals the sum of values in the j-th row
of the matrix, i.e.,

w(j) =
n+1

∑
k=1

s(j;k); j = 0;1;2; : : : ;n: (2)

Based on activity successor information, the project matrix is
developed. Each row corresponds to a path while each col-
umn represents an activity. Unit values are assigned to the
appropriate matrix cell if an activity belongs to a specific path;
zeros otherwise. The project matrix is developed in steps. Ini-
tially, a number of matrix rows (paths) equal to w(0) are gen-
erated. Each row has a unit value in the cell corresponding to

an activity that follows A(0). Activity A(1) is considered next.
From the row that includes activity A(1), a number of w(1)
paths (rows) are generated, one for each immediate successor
of A(1), and unit values are inserted in the appropriate cells.
For activity A(j), in general, all paths (matrix rows) that lead
to this activity are considered. In each path, a number of w(j)
new paths are generated and successor activities are indicated
with ones. The process finishes with the last project activity
A(n) which has no successor but the dummy activity A(n+1).
After developing the project matrix, dummy activities are not
further needed and the corresponding columns are eliminated
from the matrix.

The duration of each path is calculated as the sum of durations
of the activities included in the path, i.e., the duration D(i) of
path i is given by

D(i) =
n

∑
j=1

p(i; j)d(j); i= 1;2; : : : ;np; (3)

where d(j) is the duration of activity j, p(i; j) is the (i; j)-th
element of the project matrix (equals 1 if activity j belongs
to path i; 0 otherwise), n is the number of project activities,
and np is the number of paths. The array of project dura-
tions is attached to the matrix for easy reference. The project
matrix is sorted in descending order of path duration and is
augmented with information regarding activity durations and
crashing costs. The longest path (or paths) of the network rep-
resents the critical path and its length determines the project
duration. Since paths have been sorted, the project length is
determined by D(1).

The second part of the method constitutes the optimization
process. More specifically, starting from the normal project
length, the objective is to expedite the project in an optimal
way. Two alternative formulations are used leading to cor-
responding algorithms (both algorithms include a module for
project matrix development as described previously). Algo-
rithm #1 employs a repetitive process to progressively shorten
the project length by one time unit at each stage. In this re-
spect, only critical paths need to be considered for the opti-
mization. Further, to reduce project length by one time unit,
it is sufficient that one critical activity in each path is crashed
by at least the same amount. Among all alternative combina-
tions of critical activities, the one resulting in the lowest total
crashing cost is sought.

An integer programming (IP) formulation is employed to find
the optimal crashing alternative. A zero-one variable x(j) is
defined for each activity to indicate whether this activity will
be selected for crashing or not. The integer program is written
as

minimize
n

∑
j=1

c(j)x(j) (4)

12 Copyright c 2000 Tech Science Press CMES, vol.1, no.4, pp.9-18, 2000

subject to

n

∑
j=1

p(i; j)x(j)� 1; i= 1;2; : : : ;ncp (5)

and

x(j) = 0 or 1; (6)

where c(j) is the required additional cost for reducing the du-
ration of activity j to its next feasible value (referred below
as crashing cost) and ncp is the number of critical paths. The
objective function (4) represents the cumulative crashing cost
over all activities while the set of constraints (5) ensure that
at least one activity in every critical path is selected for crash-
ing. Activities that cannot be crashed may be assigned a high
value of cost so that they will not be selected by the model.
An alternative and computationally more efficient procedure
is to exclude from the analysis activities that are or become
non-compressible in the process. In this case, although some
additional complexity is introduced to the algorithm, the com-
putational time savings may be considerable.

At the end of each phase, the project length has been reduced
by at least one time unit. The project matrix is then updated,
the duration of paths which include crashed activities is ac-
cordingly decreased, new critical paths are identified, activity
and path durations are calculated and updated activity crash-
ing costs are inserted. The process is then repeated by running
the updated IP model to find the appropriate combination of
activities to expedite in the next phase.

An advantage of the progressive duration reduction approach
is that analysis is confined to critical paths reducing, there-
fore, the computational effort. However, this method imposes
a restriction on activity selection as crashing decision at a par-
ticular stage is dependent on decisions at previous stages. In
other words, accuracy limitations may result from the inherent
assumption that the least total crashing cost for the N-stage
process will be obtained by adding together the least crashing
costs in each of the N stages. Such assumption does not always
hold and, as a result, an optimal solution is not guaranteed.
Such inefficiency can be removed if crashing is performed di-
rectly from the normal to the target project duration.

The alternative formulation that is proposed here under Al-
gorithm #2 requires examining all project paths with longer
duration than the desired one (leading, thus, to an increased
problem size compared to Algorithm #1). A zero-one variable
y(j;k) is defined for each activity to indicate whether activity j
will be crashed by k time steps in order to achieve the desirable
project duration. The integer program is written as:

minimize
n

∑
j=1

K(j)

∑
k=1

c(j;k)y(j;k) (7)

subject to

n

∑
j=1

K(j)

∑
k=1

p(i; j)∆d(j;k)y(j;k)� D(i)�Dd ;

i = 1;2; : : : ;ncp; (8)
K(j)

∑
k=1

y(j;k)� 1; j = 1;2; : : : ;n; (9)

and

y(i;k) = 0 or 1 (10)

where K(j) is the number of crashing steps for activity j,
c(j;k) is the cost for crashing activity j for the first k steps,
∆d(j;k) is the duration reduction if activity j is crashed by the
first k steps, D(i) is the duration of path i, Dd is the desired (tar-
get) project duration, and ncp is the number of “critical” paths,
i.e., those with D(i) > Dd . The objective function (7) repre-
sents the total crashing cost. The set of constraints (8) ensure
that each path is adequately reduced in length to conform to
the desired project duration. Finally, the set of constraints (9)
prevent activity crashing phases from being double-counted.
To find the optimal crashing strategy at various project dura-
tions, the IP model attains the same form except that additional
constraints (8) may be required according to “critical” paths
and the constants in the right-hand side of constraints (8) are
modified in accordance with each particular duration.

Before proceeding to algorithm application, some issues con-
cerning the expected performance of the algorithms are dis-
cussed. The problem size is an important factor when evalu-
ating algorithm efficiency. De. et.al. (1995) have found that
the computational complexity of an exact solution approach
would be exponential in the worst-case (i.e., the solution time
would grow as an exponential function of the problem size).
In fact, any solution to this problem presents rapidly increased
resource requirements with the problem size and the proposed
algorithm cannot escape of such rule. Assessing the size for
the proposed formulation indicates that the number of zero-
one variables included in the first model is at most equal to the
number of project activities while the number of constraints
equals the number of critical paths. The second model requires
an increased number of zero-one variables which equals the
number of possible crashing steps of all activities. The number
of constraints is at most equal to the number of paths plus the
number of activities that have three or more alternative time-
cost options (i.e., more than one crashing step). As shown in
Section 4, the proposed method is more efficient than previous
methods in certain cases. This improvement mainly appears
in small or moderate size project networks but efficiency is re-
duced in larger networks. The limitation results from the need
to enumerate all network paths.

Another concern in project time-cost analysis is that methods
are often complex, require significant time and effort to set up

An integer programming method for CPM time-cost analysis 13

Table 1 : Activity duration and cost data for example project: (a) raw data, (b) summary data
(a) raw data

Activity Normal duration Normal cost Duration Cost Duration Cost
A 6 68.0 5 78.0
B 7 65.0 6 71.0 5 75.0
C 10 72.0 8 77.0 6 83.0
D 3 80.0
E 9 102.0 7 114.0
F 6 54.0 5 62.0
G 8 85.0 7 92.0 6 101.0
H 5 40.0 4 48.0
I 4 56.0 3 69.0

(b) summary data
(Reduced duration, crashing cost)

A B C D E F G H I
(1, 10.0) (1, 6.0) (2, 5.0) (2, 12.0) (1, 8.0) (1, 7.0) (1, 8.0) (1, 13.0)

(1, 4.0) (2, 6.0) (1, 9.0)

a problem and are prone to errors. With the proposed method,
matrix development is done automatically based on the pri-
mary project data. Project representation through the project
matrix allows setting up the integer program easily as indi-
cated in the application example in the following section. Fur-
ther, the project matrix provides a simple and intuitive view of
the project which, unlike previous methods, facilitates prob-
lem solution by hand computations in small networks. The
simplicity of representation may also have an effect on future
developments, in particular project decomposition to subpro-
jects to increase efficiency or extension to other types of activ-
ity relationships, e.g., start-to-start.

4 An application example

The optimization algorithms have been applied to a number of
test cases. Results of a preliminary evaluation indicate that the
second approach leads to the best solution. The step-by-step
duration reduction method usually finds the optimal solution.
There are cases, however, that not all points on the time-cost
curve are optimal. Such an example has been structured and
presented below to illustrate the algorithm application.

The activity-on-node project network for the application ex-
ample is depicted in Figure 2. In this representation, activ-
ities correspond to nodes while arrows indicate precedence
relationships. Activity codes and durations are shown in the
boxes. Alternative time-cost options for each activity are pre-
sented in Table 1a. Durations are assumed to be given in weeks
and costs in some appropriate unit. The project consists of
nine activities, eight of which can be crashed. In particular,
activities B, C, and G present three alternative time-cost com-
binations, A, E, F, H, and I two alternatives while D can be

Start,0 A,6

B,7

C,10

D,3

E,9

F,6

G,8

H,5

I,4

Finish,0

Figure 2 : Activity-on-node network for example project

executed in a specific way. Crashing is done at one-week in-
tervals except for activities C and E that duration is reduced
by two week intervals. Because a comparative type of analy-
sis is performed, activity cost for normal duration is irrelevant.
The useful data for the analysis are extracted and summarized
in Table 1b. Time-cost functions are convex for any activity
except B which presents a non-convex decreasing form.

Table 2 presents the activity successor matrix. The process for
generating the project matrix is illustrated in Table 3 (some
intermediate steps are not presented). Project paths, activity
and path durations for normal activity execution, and activity
crashing costs are presented in Table 4. Non-compressible ac-
tivity D has been assigned a crashing cost of 100.0 and appears
last in the project matrix. Paths have been sorted in decreas-
ing order of their length. The normal project duration is 28
weeks as determined by the critical path A-C-G-I. To reduce
the project length to 27 weeks, the critical path should be short-
ened. The IP model is written as (non-compressible activity D

14 Copyright c 2000 Tech Science Press CMES, vol.1, no.4, pp.9-18, 2000

Table 2 : Activity successor matrix
Start A B C D E F G H I Finish

Start 1
A 1 1 1
B 1 1
C 1 1
D 1
E 1
F 1 1
G 1
H 1
I 1

Finish

Table 3 : Illustration of project matrix development process
Path No # Path n Activity! A B C D E F G H I

1 Start - A 1
1 Start - A - B 1 1
2 Start - A - C 1 1
3 Start - A - D 1 1
1 Start - A - B - E 1 1 1
2 Start - A - B- F 1 1 1
3 Start - A - C 1 1
4 Start - A - D 1 1
1 Start - A - B - E 1 1 1
2 Start - A - B- F 1 1 1
3 Start - A - C - F 1 1 1
4 Start - A - C - G 1 1 1
5 Start - A - D 1 1
1 Start-A-B-E-H-Finish 1 1 1 1
2 Start-A-B-F-H-Finish 1 1 1 1
3 Start-A-B-F-I-Finish 1 1 1 1
4 Start-A-C-F-H-Finish 1 1 1 1
5 Start-A-C-F-I-Finish 1 1 1 1
6 Start-A-C-G-I-Finish 1 1 1 1
7 Start-A-D-G-I-Finish 1 1 1 1

is not included in the model):

minimize

10xA+6xB +5xC +12xE +8xF +7xG+8xH +13xI (11)

subject to

xA + xC + xG+ xI � 1 (12)

xA;xB;xC;xE;xF ;xG;xH ;xI = 0;1: (13)

The solution (which can be derived by a commercial LP/IP
computer program as, for instance, LINDO) is:

xC = 1; xA = xB = xE = xF = xG = xH = xI = 0: (14)

The result indicates that activity C should be crashed to a du-
ration of eight weeks at a cost of 5.0 units.

The project matrix is updated with new durations and costs as
illustrated in Table 5 which corresponds to a 27-week project
duration. Critical and non-critical paths that contain activity
C have been shortened by two weeks. Path durations have
been recalculated indicating that another path (A-B-E-H) has
become critical. The cost for further crashing activity C from
8 to 6 weeks is 6.0 units. Solving the new IP problem indicates
that activity B should be selected for crashing leading to a 26-
week project duration. The updated project matrix is shown in
Table 6. Following the same procedure, the project matrix for
a 21-week duration is developed (Table 7). The project cannot
be crashed any further since there is no feasible solution to the
corresponding IP problem (i.e., no activity in path A-B-E-H
can be shortened). Thus, the 21-week duration represents the
minimum project length.

An integer programming method for CPM time-cost analysis 15

Table 4 : Project matrix for normal activity duration
Activity j A B C E F G H I D Path

Duration d(j) 6 7 10 9 6 8 5 4 3 duration
Crashing cost c(j) 10.0 6.0 5.0 12.0 8.0 7.0 8.0 13.0 100.0 d(i)

A-C-G-I 1 1 1 1 28
P A-B-E-H 1 1 1 1 27
a A-C-F-H 1 1 1 1 27
t A-C-F-I 1 1 1 1 26
h A-B-F-H 1 1 1 1 24
s A-B-F-I 1 1 1 1 23

A-D-G-I 1 1 1 1 21
Cumulative cost 5.0

Table 5 : Project matrix after the first crashing phase
Activity j A B C E F G H I D Path

Duration d(j) 6 7 8 9 6 8 5 4 3 duration
Crashing cost c(j) 10.0 6.0 6.0 12.0 8.0 7.0 8.0 13.0 100.0 d(i)

A-B-E-H 1 1 1 1 27
P A-C-G-I 1 1 1 1 26
a A-C-F-H 1 1 1 1 25
t A-C-F-I 1 1 1 1 24
h A-B-F-H 1 1 1 1 24
s A-B-F-I 1 1 1 1 23

A-D-G-I 1 1 1 1 21
Cumulative cost 6.0 5.0

Table 6 : Project matrix after the second crashing phase
Activity j A B C E F G H I D Path

Duration d(j) 6 6 8 9 6 8 5 4 3 duration
Crashing cost c(j) 10.0 4.0 6.0 12.0 8.0 7.0 8.0 13.0 100.0 d(i)

A-B-E-H 1 1 1 1 26
P A-C-G-I 1 1 1 1 26
a A-C-F-H 1 1 1 1 25
t A-C-F-I 1 1 1 1 24
h A-B-F-H 1 1 1 1 23
s A-B-F-I 1 1 1 1 22

A-D-G-I 1 1 1 1 21
Cumulative cost 10.0 11.0

Table 7 : Project matrix for minimum project duration
Activity j F I A B C D E G H Path

Duration d(j) 6 4 5 5 6 3 7 6 4 duration
Crashing cost c(j) 8.0 13.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 d(i)

A-C-G-I 1 1 1 1 21
P A-B-E-H 1 1 1 1 21
a A-C-F-H 1 1 1 1 21
t A-C-F-I 1 1 1 1 21
h A-B-F-H 1 1 1 1 20
s A-B-F-I 1 1 1 1 20

A-D-G-I 1 1 1 1 18
Cumulative cost 10.0 10.0 11.0 12.0 16.0 8.0

16 Copyright c 2000 Tech Science Press CMES, vol.1, no.4, pp.9-18, 2000

Table 8 : Optimal crashing strategy: (a) approximate method, (b) exact method
(a) approximate method

Project duration A B1 B2 C1 C2 E F G1 G2 H I Cumulative cost
27 � 5.0
26 � � 11.0
25 � � � � 21.0
24 � � � � � 31.0
23 � � � � � � 39.0
22 � � � � � � � � 58.0
21 � � � � � � � � � 67.0

(b) exact method
Project duration A B1 B2 C1 C2 E F G1 G2 H I Cumulative cost

27 � 5.0
26 � � 11.0
25 � � � � 21.0
24 � � � � 29.0
23 � � � � � 39.0
22 � � � � � � � 50.0
21 � � � � � � � � � 67.0

0

10

20

30

40

50

60

70

20 21 22 23 24 25 26 27 28 29 30

Approximate method Exact method

Crashing cost

Duration

Figure 3 : Crashing cost as a function of project duration

Referring to the alternative direct reduction approach, the
project matrix for normal execution is reconsidered (Table
4). For all target durations, the integer program presents a
common structure except that as the desired project duration
reduces, additional path constraints are inserted and the con-
stants in the right-hand side of path constraints successively
increase. The integer program is presented here for the
indicative case of 23-week target duration. In the following
relationships, yB1 refers to the first crashing step of activity B
while yB12 to both steps together (similar notation applies to
other activities). The problem is written as:

minimize

10yA1+6yB1+10yB12+5yC1 +11yC12 +12yE1+8yF1

+7yG1 +16yG12+8yH1 +13yI1 (15)

subject to

yA1+2yC1 +4yC12 + yG1 +2yG12 + yI1 � 5 (16)

yA1+ yB1+2yB12 +2yE1+ yH1 � 4 (17)

yA1+2yC1 +4yC12 + yF1+ yH1 � 4 (18)

yA1+2yC1 +4yC12 + yF1+ yI1 � 3 (19)

yA1+ yB1+2yB12 + yF1+ yH1 � 1 (20)

yB1+ yB12 � 1 (21)

yC1 + yC12 � 1 (22)

yG1+ yG12 � 1 (23)

yA1; yB1; yB12; yC1 ; yC12 ; yE1; yF1;

yG1; yG12; yH1 ; yI1 = 0;1: (24)

The solution to this problem is obtained as:

yA1 = yB1 = yC12 = yE1 = 1; (25)

yB12 = yC1 = yF1 = yG1 = yG12 = yH1 = yI1 = 0; (26)

at a total cost of 39.0 units.

Table 8 summarizes the output of the alternative formulations
within the range of feasible durations. In terms of notation,
B1 and B2 refer to the first and second crash of activity B
respectively. In the step-by-step duration reduction, any deci-
sion at a particular stage is dependent on decisions at previous

An integer programming method for CPM time-cost analysis 17

Table 9 : Problem size assessment

Algorithm Normal
variables

Zero-one
variables

Constraints

#1 (1st step) - 8 1
#1 (last step) - 2 4
#2 (Dd = 23) - 11 8

Liu, et.al. (1995) 9 20 42

stages. The consequence of this dependency may be illustrated
with reference to activity B. In particular, following this ap-
proach project crashing to duration of 24 weeks includes B2
because this alternative was chosen at a previous stage (Table
8a). However, the best solution includes B2 for a 25-week du-
ration but not for the 24-week one as indicated by the direct
duration reduction method (Table 8b). The project time-cost
curves derived by the proposed algorithms are graphically il-
lustrated in Figure 3. Selected activities and, therefore, cost
values are identical at most duration levels. Cost differences
appear at durations of 22 and 24 weeks.

To obtain an efficiency indication in terms of resource require-
ments, the size of the integer programs are assessed and com-
pared to a previous method with reference to the application
example. A recently presented method that also employs in-
teger programming is examined (Liu, Burns, and Feng 1995).
Table 9 summarizes the results of the comparison. The pro-
posed algorithms present a varying problem size depending on
the crashing stage. For this reason, two cases are shown for Al-
gorithm #1, one at the first and another for the last (infeasible)
project crashing stage. For Algorithm #2, a typical case asso-
ciated with a desired project duration of 23 weeks is included.
The integer program in Liu et.al. (1995) has a constant size
in all cases. The assessment results, although in favor of the
proposed algorithms, should be considered as indicative and
cannot be generalized for any network type and size. This is
because it is difficult to establish a robust method to compare
requirements among different formulations and, thus, compar-
isons can be only made with regard to particular applications.

5 Conclusions

The time-cost tradeoff problem which is encountered in
project planning has been recognized as a particularly difficult
combinatorial problem. Many different methods employing
mathematical programming, heuristics, or genetic algorithm
applications have been proposed, none of which is completely
satisfactory considering accuracy, efficiency, and applicability.
In an attempt to improve efficiency and applicability, a method
for assessing minimum cost options for executing a project at
various project lengths is presented. The project is described
through a matrix where all paths are tabulated with respect
to activities employing a zero-one representation. Given the
time-cost relationships for project activities, integer program-

ming is employed to choose among all feasible activity du-
rations those which limit project duration at a desired level
with the lowest possible cost. Two alternative formulations
are proposed (and incorporated in corresponding algorithms)
to reduce project duration from its normal to the desired level
in an optimal way. The first performs a step-by-step project
duration reduction. In each step, only critical paths are consid-
ered which are compressed by one time unit. This approach
accelerates the solution process but may lead to sub-optimal
results. The second formulation performs a direct reduction
to the desired duration level, leads to the optimal solution but
requires solving a larger integer program than before. Any dis-
crete time-cost relationship for project activities can be mod-
eled and this makes the method valuable for real life project
applications. The proposed approach is intuitive and can fa-
cilitate future extensions to other activity relationships besides
the default finish-to-start which has been assumed in this anal-
ysis.

References

Crowston, W. B. (1970): Decision cpm: Network reduction
and solution. Operational Research Quarterly, vol. 21, pp.
435–452.

De, P.; Dunne, E.; Ghosh, J.; Wells, C. (1995): The discrete
time-cost tradeoff problem revisited. European Journal of
Operational Research, vol. 81, pp. 225–238.

Feng, C.; Liu, L.; Burns, S. A. (1997): Using genetic al-
gorithms to solve construction time-cost trade-off problems.
ASCE Journal of Computing in Civil Engineering, vol. 11, no.
3, pp. 184–189.

Fulkerson, D. R. (1961): A network flow computation for
project cost curves. Management Science, vol. 7, pp. 167–
178.

Goyal, S. (1975): A note on a simple cpm time-cost tradeoff
algorithm. Management Science, vol. 21, pp. 718–722.

Hindelang, T. J.; Muth, J. F. (1979): A dynamic program-
ming algorithm for decision cpm networks. Operations Re-
search, vol. 27, pp. 225–241.

Liu, L.; Burns, S. A.; Feng, C. (1995): Construction time-
cost trade-off analysis using lp/ip hybrid method. ASCE Jour-
nal of Construction Engineering and Management, vol. 121,
no. 4, pp. 446–454.

Meyer, W. L.; Shaffer, L. R. (1965): Extending cpm for
multiflow project time-cost curves. ASCE Journal of the Con-
struction Division, vol. 91, pp. 45–67.

Panagiotakopoulos, D. (1977): Cost-time model for large
cpm project networks. ASCE Journal of the Construction Di-
vision, vol. 103, pp. 201–211.

18 Copyright c 2000 Tech Science Press CMES, vol.1, no.4, pp.9-18, 2000

Perera, S. (1980): Linear programming solution to network
compression. ASCE Journal of the Construction Division, vol.
106, pp. 315–326.

Robinson, D. R. (1975): A dynamic programming solution
to cost-time tradeoff for cpm. Management Science, vol. 22,
pp. 158–166.

Shtub, A.; Bard, J.; Globerson, S. (1994): Project
Management: Engineering, Technology, and Implementation.
Prentice Hall International Editions.

Siemens, N. (1971): A simple cpm time-cost tradeoff algo-
rithm. Management Science, vol. 17, pp. 354–363.

