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Abstract: To simulate the dynamic failure evolution with-
out using nonlocal terms in the strain-stress space, a damage
diffusion equation is formulated with the use of a combined
damage/plasticity model that was primarily applied to the case
of rock fragmentation. A vectorized model solver is developed
for large-scale simulation. Two-dimensional sample problems
are considered to illustrate the features of the proposed solu-
tion procedure. It appears that the proposed approach is effec-
tive in simulating the evolution of localization, with parallel
computing, in a single computational domain involving differ-
ent lower-order governing differential equations.
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1 Introduction

There exist two different approaches to model the evolution of
material failure, i.e., continuous and discontinuous ones, af-
ter the onset of failure is identified. Decohesion models and
fracture mechanics models are representative of discontinuous
approaches, in which strong discontinuities are introduced into
a continuum body such that the mathematical model is well-
posed for given boundary and/or initial data. On the other
hand, nonlocal (integral or strain gradient) models, Cosserat
continuum models and rate-dependent models are among the
continuous approaches proposed to regularize the localization
problems, in which the higher order terms in space and/or time
are introduced into the strain-stress relations so that the math-
ematical model is well-posed in a higher order sense for given
boundary and/or initial data. As demonstrated for different
problems, there are certain kinds of applicability and limitation
for different approaches, depending on the scale of the prob-
lem and the degrees of discontinuity considered [Bazant and
Chen (1997); Chen (1996)]. If the initiation and orientation of
localized failure mode is identified via the bifurcation analy-
sis, either a continuous or a discontinuous approach could be
used to model and simulate the evolution of failure, depending
on the degree of discontinuity and the scale considered.

If a continuous approach is of interest, the use of higher order
terms in space makes it difficult to perform large-scale com-
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puter simulation, due to the limitation of current computational
capabilities. As can be found by reviewing the existing non-
local models, the nonlocal terms are usually included in the
limit surface so that a single higher order governing equation
will appear in the problem domain. Can we find an alternative
approach to replace the single higher order equation with two
lower order equations? If we can, parallel computing might be
used for the large-scale simulation of localization problems.

As shown in the previous research [Chen and Sulsky, (1995)],
the evolution of localization might be equally well character-
ized by the formation and propagation of a moving material
surface of discontinuity. With the use of a moving material sur-
face, a partitioned-modeling approach has been proposed for
localization problems. The basic idea of the approach is that
local constitutive models are used inside and outside the local-
ized deformation zone with a moving boundary being defined
between different material domains. As a result, the extrap-
olation of material properties beyond the limitations of cur-
rent experimental techniques might be avoided in modeling
the evolution of localization. An attempt has also been made
to investigate the use of the jump forms of conservation laws
in defining the moving material surface. By taking the initial
point of localization as that point where the type of the govern-
ing differential equations changes, a moving material surface
of discontinuity can be defined through the jump forms of con-
servation laws across the surface. Because the transition from
a hyperbolic equation to an elliptic one could be represented
by a parabolic one which governs a diffusion process, an ana-
Iytical solution has been obtained for a dynamic softening bar
with the use of a similarity method for the transition involving
a weak discontinuity. To obtain a closed-form solution, the
diffusion speed of the moving material surface was assumed
to be constant [Xin and Chen (2000)].

In reality, the motion of the material surface depends on the
stress state and internal state variables, so that the constant
diffusion speed can be thought as a special case of diffusion,
i.e., the time average of a real diffusion process. Due to the
limitation of current experimental facilities, it is still a chal-
lenging task to quantitatively determine how the internal en-
ergy diffuses in real-time associated with the evolution of lo-
calization. As will be shown in this paper, however, the use
of different governing differential equations, after localization
occurs, makes it possible to replace the single higher order
equation with two lower order equations so that parallel com-
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puting might be used for the large-scale simulation of localiza-
tion problems.

To predict the evolution of localization without the assump-
tion of a constant diffusion speed, a damage diffusion equation
is formulated with the use of a combined damage/plasticity
model. As a result, lower order wave and diffusion equa-
tions will appear in a single computational domain. Two-
dimensional sample problems are then considered to illustrate
how the dynamic evolution of localization can be simulated
without using nonlocal terms in the strain-stress space.

2 Constitutive Modeling

To estimate stress-wave-induced fracturing, a combined dam-
age/plasticity model has evolved over a number of years,
which was primarily applied to the case of rock fragmenta-
tion [Chen (1993); Taylor, Chen and Kuszmaul (1986); Thorne
(1990) and (1991)]. Within the loading regime of the model,
an isotropic elasticity tensor governs the elastic material be-
havior, a scalar measure of damage is active through the degra-
dation of the elasticity tensor if the confining pressure P > 0
(tensile regime), and a pressure-dependent perfectly plastic
model is used if P < 0 (compressive regime).

Based on the previous work, the evolution of tensile damage
can be described by the following equations:
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in which C; is a crack-density parameter, Kjc the fracture
toughness, €, the mean volumetric strain, €,,, the maximum
volumetric strain rate experienced by the material at fracture,
¢ the uniaxial wave speed /E/p with E being Young’s modu-
lus, p material density and D a single damage parameter. Also,
K and v are the original bulk modulus and Poisson’s ratio, re-
spectively, for the undamaged material, and the barred quan-
tities represent the corresponding parameters of the damaged
material. The model parameters k and m can be determined
by using the fracture stress versus strain rate curve. To ob-
tain consistent unloading/reloading moduli, the assumption of
o= 16fB/9 is employed with B being the fraction of damage.

With the use of
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the rate forms of Eqgs. 1-4 can be found to be
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with F; denoting functionals. As can be seen, the damage
evolution can be determined for given &,, based on the load-
ing/unloading condition. It has been assumed in the above
derivation that the effect of strain rate is history-independent.
As a result, the condition of £,,x = 0 can be used. As can be
seen from Eqs. 7-10, a one-step vectorized model solver can
be designed for large-scale computer simulation.

The fundamental assumption of the above damage model is
that the material is permeated by an array of randomly dis-
tributed microcracks which grow and interact with one another
under tensile loading. Hence, the constitutive model does not
treat each individual crack; rather it predicts the growth of the
microcracks as an internal state variable, D, which determines
the accumulation of material damage. However, only the evo-
lution of damage with time at a given material point, instead of
the evolution of damage both with time and in space, is con-
sidered in the model. In other words, the model is local in
nature. As a result, the simulation results are mesh-dependent.
To remedy this defect, nonlocal terms have been included in
the model at the cost of more CPU time and difficulty in vec-
torizing the code.

Based on a recent study on the failure wave phenomenon
[Chen and Xin (1999); Feng and Chen (1999)], it appears that,
in the dynamic failure process of certain engineering materi-
als, microfissuring at one location induces local deformation
heterogeneity that in turn initiates microfissuring in the adja-
cent material and so on, if a critical state is reached. Hence,
a diffusion equation governing the progressive percolation of
heterogeneous microdamage appears to capture the essence of
the dynamic failure evolution in certain engineering materi-
als, as verified with the experimental data available. The use
of jump conditions could also result in a diffusion equation
governing the failure wave speed, through a mathematical ar-
gument [Chen and Xin (1999)]. However, a well-defined con-
stitutive model is required to be incorporated into the damage
diffusion equation.

To simulate the dynamic failure evolution of a class of brit-
tle solids, it is proposed that a strain-based damage diffusion
equation be combined with the above tensile damage model
without the use of nonlocal terms in the strain-stress space, as
shown next.
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3 Damage Diffusion

If the bifurcation analysis of acoustic tensor identifies the onset
of localization based on the continuum tangent stiffness tensor,
a surface of discontinuity will be driven by the heterogeneity
and stress concentration, with n being the vector normal to the
surface. The law of damage diffusion is assumed to be

I (11)

in which C is the concentration of microcracks (the number of
microcracks per unit volume), J the flux of microcracks (the
number of microcracks diffusing down the concentration gra-
dient per unit time per unit area), and d the damage diffusivity
function. If the damage diffusion is assumed to be isotropic,
a damage diffusivity function of mode I at any location x and
time ¢ can be defined to be
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in which &, represents the value of €, at the final state before
rupture. As can be seen, the diffusion process will diminish
with the evolution of failure and the model parameter A; con-
trols the rate of diffusion.

To initiate the diffusion of damage, an internal damage evo-
lution per unit time must be given here, which takes the form
of

2
ox1)=k ( Kic ) e

2tq \ PCE€max
when €, —€,; > 0. In Eq. 13, #; and €,; denote the charac-
teristic time of the concentration diffusion of microcracks and
the critical state strain, respectively. The concentration of mi-
crocracks C is related to the crack-density parameter, Cy, that
represents the volume fraction of material made up of microc-
racks, namely,

C;=MC
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where A, is the characteristic volume of a microcrack. The
equation governing the tensile damage diffusion can then be
written as, in a standard form,

8_C J (dg—c) +0 (15)
n

or  om

The above diffusion equation can be solved in parallel with the
wave equation to simulate the evolution of dynamic localiza-
tion.

For the sample problems considered in the next section,
central-difference in space and forward integration in time will
be used to solve the diffusion equation, while constant stress
elements in space and forward integration in time will be em-
ployed to solve the wave equation. When the diffusion equa-
tion and wave equation are solved in a parallel (staggered) set-
ting, the time step satisfying both stability conditions is used
to solve the whole problem at the same time.
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Figure 2 : Pressure-volumetric strain for three strain rates

4 Demonstrations

To demonstrate the proposed procedure, the model parameters
are assigned the following values:

E =50Gpa, v=0.3, p =2500kg/m’
Kic = 1.0Mpa/m, m=17, k=5x10221/m?
€, =0.002, g, =0.01,

A1 =500, A2 =0.01, t;,=0.01.

With the time increment being 10~7 second for the damage
model solver, Fig. 1 shows the strain rate effect on the dam-
age histories under a constant uniaxial tensile strain rate con-
dition. Fig. 2 illustrates the corresponding pressure versus vol-
umetric strain curves for three constant strain rates. As can be
obersved, the strain rate effect on the limit state can be pre-
dicted by this tensile damage model.

The geometry and notation for the plane problem are shown in
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Figure 3 : The problem geometry and boundary conditions for
2-D simulation

Fig. 3. The dimensions used for the analysis are Ly = 1.0 m
and Ly = 1.5 m. The initial condition consists of zero displace-
ment and zero velocity throughout the problem domain, while
the boundary condition is shown in Fig. 3. A constant load is
applied suddenly through a mechanism that provides no lateral
constraint and ensures that the displacement in the y-direction
is the same for all points on the upper surface. Element mesh I
and IT are defined to be 20 x 30 and 10 x 15 quadrilateral cells
with each cell consisting of 4 triangle elements, respectively.
The location of the imperfection point is at the origin, at which
the failure is initiated when €, > €,; and € > 0.

With the time step satisfying the stability criteria, Figs. 4-7.
demonstrate the evolution of the effective strain field and cor-
responding effective stress field in the post-limit regime with
element mesh I. The numerical test indicates that the strain
within the localization zone is increasing with the decrease of
the corresponding stress. Fig. 8 illustrates the effective strain
field, obtained by using mesh II. Fig. 9 and 10 show the dam-
age contour in the deep post-limit regime with mesh I and II,
respectively. As can be seen, the numerical solutions are not
mesh-sensitive although mesh I is double-refined from mesh
II.

5 Conclusions

Based on the dynamic failure mechanisms of brittle solids,
an effective numerical procedure is proposed to simulate the
evolution of localization due to microcracking. A three-
dimensional diffusion equation is formulated with a rate-
dependent tensile damage model. As a result, a single higher
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Figure 4 : The strain profile in the middle post-limit regime
with mesh I
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Figure 5 : The stress profile corresponding to Fig. 4
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Figure 6 : The strain profile in the deep post-limit regime with
mesh I
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Figure 7 : The stress profile corresponding to Fig. 6
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Figure 9 : The damage contour corresponding to Fig. 6
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order governing equation can be replaced with two lower or-
der governing equations in a single computational domain for
localization problems. Two-dimensional sample problems are
considered to illustrate how the dynamic evolution of local-
ization can be simulated without using nonlocal models in the
strain-stress space. As can be found from the numerical so-
lutions, the essential features of the evolution of localization,
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Figure 8 : The strain profile in the deep post-limit regime

with mesh II
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Figure 10 : The damage contour corresponding to Fig. 8

and a localization zone of finite width can be predicted with
the proposed procedure.

Future research is required to better understand the conver-
gent behavior, to perform the bifurcation analysis for the diffu-
sion equation, and to apply the proposed procedure to general
cases.
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