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Abstract: The paper presents a numerical simulation for
mixed mode crack initiation based on the concepts of damage
mechanics. A model with two scalar damage variables is in-
troduced for characterization of damage in a material element.
Then a tangent modulus tensor is derived for damage-coupled
constitutive equations. A failure criterion is developed with
the concept of damage accumulation not only to identify the
location of damaged element where the crack initiation angle
but also to determine the critical load for mixed mode fracture.
The damage model developed is incorporated in a general-
purpose finite element program ABAQUA through its UMAT
subroutine. The finite element program is then used to perform
numerical simulation for pre-cracked specimens under mono-
tonic tensile loading. The thin plates are made of aluminum
alloy and particulate composite embedded with a crack of in-
clined angle β = 0Æ, 30Æ, 45Æand 60Æfor mixed mode fracture
analysis. The predicted crack initiation loads and the angles of
crack initiation agree well with the test results.

1 Introduction

Most conventional approaches for mixed mode fracture pre-
diction are based on the theory of fracture mechanics. The
fracture parameters, such as the stress intensity factor KC and
the strain energy release rate GC for brittle materials, the J-
integral and COD for ductile materials, have been widely ap-
plied to conduct fracture analysis of engineering components
containing a macro-crack. However, an important mecha-
nism of failure in the materials is attributed to the presence of
micro-cracks/voids. These micro-defects result in changes of
mechanical property in the form of material degradation due
to initiation, growth and coalescence of these micro-defects.
Complete avoidance of such material damage is not realis-
tic, especially for stress analysis at a crack tip. In addition,
research results have cast doubts on the validity of the J-
integral and COD as intrinsic material properties for ductile
fracture, which by definition should be independent of geom-
etry and loading history [Giovanola and Finnie (1984b,a); Liu
and Zhuang (1985)].

The material damage has been successfully characterized with
the theory of damage mechanics first introduced by Kachanov
(1958) and later developed by many researchers [Lemaitre and
Chaboche (1990); Krajcinovic and Lemaitre (1987)]. With
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the introduction of averaging macro-variables (damage vari-
ables), the deterioration of materials as a result of the nu-
cleation and growth of distributed material micro-defects can
be determined quantitatively. Chow and Wang developed an
anisotropic model which has been successfully applied to ana-
lyze mixed mode crack initiation and propagation of aluminum
alloy 2024-T3 [Chow and Wang (1988, 1989b,a)]. The model
is based on a second-order damage tensor. Considerable com-
puting time is however required for the FEM analysis on the
transformation between local coordinate system and principal
damage coordinate system. For the sake of computing effi-
ciency, Chow and Wei have recently proposed an isotropic
damage model with two scalars [Chow and Wei (1999)]. This
paper is intended to present an investigation on the application
of the proposed damage model to characterize ductile behavior
of two materials, including damage-coupled constitutive equa-
tions, finite element formulation and ductile fracture of mixed
mode crack.

2 Damage-Coupled Constitutive Equations

The gradual deterioration of the material under service due
to nucleation and growth of micro-cracks or defects can be
characterized with an internal state variable known as dam-
age variable [Lemaitre and Chaboche (1990)]. Chow and Wei
have recently developed a two-scalar damage model to eval-
uate damage accumulation under both monotonic and cyclic
loading [Chow and Wei (1999)]. This section provides a brief
description of the model required in the following sections for
the development of finite element formulation.

Following the damage mechanics theory, the effective stress is
defined as

σ = M(D) : σ (1)

where σ is the true stress tensor, D is the damage tensor and
M(D) is the damage effect tensor which can be expressed as

M(D) =
1

1�D

2
6666664

1 µ µ 0 0 0
µ 1 µ 0 0 0
µ µ 1 0 0 0
0 0 0 1�µ 0 0
0 0 0 0 1�µ 0
0 0 0 0 0 1�µ

3
7777775

(2)

D and µ are two scalar variables to characterize damage accu-
mulation in materials. The thermodynamic conjugate forces
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of the damage variables D and µ, known as the damage energy
release rate, can be derived from the Helmholtz free energy ψ
as

YD = �ρ
∂ψ
∂D

= �
1

1�D
σT : C�1 : σ

Yµ = �ρ
∂ψ
∂µ

= �
1

1�D
σT : Z : σ (3)

where C is the elastic tensor for damaged materials

C�1 =
1
E
�2

6666664

1 �ν �ν 0 0 0
�ν 1 �ν 0 0 0
�ν �ν 1 0 0 0
0 0 0 2(1+ν) 0 0
0 0 0 0 2(1+ν) 0
0 0 0 0 0 2(1+ν)

3
7777775

The tensor Z can be expressed as

Z =
1

E0(1�D)
�2

6666664

z1 z2 z2 0 0 0
z2 z1 z2 0 0 0
z2 z2 z1 0 0 0
0 0 0 2(z1� z2) 0 0
0 0 0 0 2(z1� z2) 0
0 0 0 0 0 2(z1� z2)

3
7777775

z1 = 2µ(1�ν0)�2ν0

z2 = (1+µ)(1�ν0)�2µν0 (4)

E and ν are respectively the effective Young’s modulus and
effective Poisson’s ratio for damaged material. The relation-
ships between E and ν and the damage variables D and µ are
established as

E =
E0(1�D)2

1�4ν0µ+2(1�ν0)µ2

ν =
ν0�2(1�ν0)µ� (1�3ν0)µ2

1�4ν0µ+2(1�ν0)µ2 (5)

E0 and ν0 are the values of Young’s modulus and Poisson’s
ratio for intact or undamaged material.

The elastic law of damaged material can be expressed in the
effective stress-effective strain space as

σ = C0 : εe (6)

where C0 is the initial elastic tensor for undamaged material.
The yield surface is postulated with the concept of the effective
stress as

Fp(σ;R) = σp� [R0 +R(p)] = 0 (7)

where σp is the effective equivalent stress

σp =

�
1
2

σT : H0 : σ
�1=2

=
1�µ
1�D

σeq (8)

σeq is the Von-Mises equivalent stress, H0 is the plastic char-
acteristic tensor for undamaged material, R0 is the yield stress,
p is the effective equivalent plastic strain, and R is the strain
hardening threshold. The constitutive equations of plasticity
for damaged materials are accordingly derived in the effective
stress-effective strain space as

dεp = λp
∂Fp

∂σ
(9)

d p = λp
∂Fp

∂(�R)
= λp (10)

The plastic damage surface is formulated with the thermody-
namic conjugate forces of the plastic damage variables as

Fd(Yd ;B) = Yd � [B0 +B(w)] = 0 (11)

where Yd is the equivalent damage energy release rate postu-
lated as

Yd =

�
1
2

�
Y 2

D + γY 2
µ

��1=2

(12)

B0 is the initial plastic damage threshold, B is the plastic dam-
age hardening, w is the overall plastic-damage, and γ is the
damage evolution coefficient. The plastic damage evolution
equations are

dD =�λd
∂Fd

∂YD
= �

λdYD

2Yd

dµ = �λd
∂Fd

∂Yµ
=�

λd γYµ

2Yd

dw = �λd
∂Fd

∂B
= λd (13)

where λd is the Lagrange multiplier.

3 Finite Element Formulation

The proposed damage model is discretized and coded in the
user subroutine UMAT of a finite element package known as
ABAQUS (version 5.8). The implementation aims at provid-
ing a tool for numerical analysis based on the proposed dam-
age model and validating the model by comparing its predic-
tions with experimental measurements. The procedure is sim-
ilar in principle to the conventional FEM analysis, except that
the tangent modulus tensor is coupled with the damage vari-
ables. The formulation of the tangent modulus tensor is de-
rived as follows.

The total elastic strain shown in Eq. 6 can be alternatively writ-
ten as

dσ = C0 : dεe = C0 : dε�C0 : dεp (14)
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Multiplying the above equation by (∂Fp=∂σ)T yields

�
∂Fp

∂σ

�T

: dσ =

�
∂Fp

∂σ

�T

: C0 : dε�
�

∂Fp

∂σ

�T

: C0 : dεp

(15)

From the yield surface Eq. 7, we have

dFp (σ;R) =

�
∂Fp

∂σ

�T

: dσ�
dR
d p

d p = 0 (16)

�
∂Fp

∂σ

�T

: dσ =
dR
d p

d p (17)

Substituting the Eqs. 9-10 and 16-17 into Eq. 15, we obtain the
incremental plastic strain as

d p =

�
∂Fp

∂σ

�T

: C0 : dε

dR
d p

+

�
∂Fp

∂σ

�T

: C0 :
∂Fp

∂σ

(18)

Thus the relationship between dσ and dε is obtained with
Eqs. 9-10, 14 and 18 as

dσ = Cep
0 : dε (19)

where Cep
0 is the instantaneous tangent modulus tensor ex-

pressed as

Cep
0 = C0�

�
C0 :

∂Fp

∂σ

�
:

�
C0 :

∂Fp

∂σ

�T

dR
d p

+

�
∂Fp

∂σ

�T

: C0 :

�
∂Fp

∂σ

� (20)

From the definition of yield surface in Eq. 7,

∂Fp

∂σ
=

1
2σp

H0 : σ =
1

2σp
H0 : M : σ (21)

Substituting it into Eq. 20, the tensor Cep
0 can be derived with

Eq. 8 as

Cep
0 = C0�

(C0 : H0 : σ) : (C0 : H0 : σ)T

4σ2
eq

dR
d p

+(H0 : σ)T : C0 : (H0 : σ)
(22)

The above formulation of the instantaneous tangent modulus
in Eq. 20 or 22 is expressed in terms of the incremental ef-
fective stress and strain in Eq. 19. However a finite element
program such as ABAQUS is written in the true stress-true strain
space. Therefore, it is necessary to transform Eq. 19 to the
conventional stress-strain space as:

dσ = Cep : dε (23)

where Cep is the effective instantaneous tangent modulus ten-
sor in true stress-true strain space which can be derived and
described in the following section.

From the definition of effective stress in Eq. 1,

dσ = dM : σ+M : dσ (24)

The relationships between the effective and true elastic strain
and plastic strain are

εe = MT;�1 : εe dεp = MT;�1 : dεp (25)

Therefore, the effective strain is derived as

dε = dεe +dεp = MT;�1 : dε+dMT;�1 : εe

= MT;�1 : dε�MT;�1 : dM : MT;�1 : εe (26)

With the plastic damage evolution laws in Eq. 13, dM can be
expressed as

dM =
∂M
∂D

dD+
∂M
∂µ

dµ = �

�
∂M
∂D

∂Fd

∂YD
+

∂M
∂µ

∂Fd

∂Yµ

�
dw (27)

From the plastic damage surface expressed in Eq. 11

dFd =
∂Fd

∂YD
dYD +

∂Fd

∂Yµ
dYµ�

dB
dw

dw = 0 (28)

Then, with the formulae

dYD =

�
∂YD

∂σ

�T

: dσ+
∂YD

∂D
dD+

∂YD

∂µ
dµ

=

�
∂YD

∂σ

�T

: dσ�
�

∂YD

∂D
∂Fd

∂YD
+

∂YD

∂µ
∂Fd

∂Yµ

�
dw

dYµ =

�
∂Yµ

∂σ

�T

: dσ+
∂Yµ

∂D
dD+

∂Yµ

∂µ
dµ

=

�
∂Yµ

∂σ

�T

: dσ�
�

∂Yµ

∂D
∂Fd

∂YD
+

∂Yµ

∂µ
∂Fd

∂Yµ

�
dw (29)

Eq. 28 becomes

dw = T : dσ

T =

"
∂Fd

∂YD

�
∂YD

∂σ

�T

+
∂Fd

∂Yµ

�
∂Yµ

∂σ

�T
#,"

∂YD

∂D

�
∂Fd

∂YD

�2

+

dB
dw

+

�
∂YD

∂µ
+

∂Yµ

∂D

�
∂Fd

∂YD

∂Fd

∂Yµ
+

∂Yµ

∂µ

�
∂Fd

∂Yµ

�2
#

(30)

Combining Eqs. 19, 23, 24, 26, 27 and 30, the effective instan-
taneous tangent modulus tensor is derived instead as

Cep = MT;�1 : UT;�1 : Cep
0 : MT;�1 (31)

where

U = I�
�
U0 +Cep

0 : MT;�1 : U0 : MT;�1 : C�1� : σ : T : MT;�1

U0 =
∂M
∂D

∂Fd

∂YD
+

∂M
∂µ

∂Fd

∂Yµ
(32)
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Figure 1 : Mixed mode specimen

In addition, the derivatives in Eq. 30 and 32 are derived as

∂YD

∂σ
=�

2
1�D

C�1 : σ

∂Yµ

∂σ
=�

2
1�D

Z : σ (33)

∂YD

∂D
=

3
1�D

YD

∂YD

∂µ
=

∂Yµ

∂D
=

2
1�D

Yµ

∂Yµ

∂µ
=�σT :

∂M
∂µ

: C�1
0 :

∂M
∂µ

: σ (34)

∂Fd

∂YD
=

YD

2Yd

∂Fd

∂Yµ
=

γYµ

2Yd
(35)

∂M
∂µ

=
1

1�D

2
6666664

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 �1 0 0
0 0 0 0 �1 0
0 0 0 0 0 �1

3
7777775

∂M
∂D

=
1

1�D
M (36)

Figure 2 : Typical finite elements for mixed mode fracture
analysis

M�1 = (1�D)�2
6666664

m1 m2 m2 0 0 0
m2 m1 m2 0 0 0
m2 m2 m1 0 0 0
0 0 0 m1�m2 0 0
0 0 0 0 m1�m2 0
0 0 0 0 0 m1�m2

3
7777775

m1 =
1+µ

1+µ�2µ2

m2 = �
µ

1+µ�2µ2 (37)

Usually the matrix form of Cep in Eq. 31 is a 6�6 asymmet-
ric matrix for which most general purpose finite element pro-
grams may encounter computational convergency difficulties.
Consequently, the symmetric form

Cs =
1
2

�
Cep +Cep;T � (38)

is taken as a tangent modulus matrix when the finite element
stiffness matrix is computed

K =
Z

v
BT : Cs : B (39)

where B is the transformation matrix.

4 Crack Initiation Angles for Al 2024-T3 Plates

A thin plate of aluminum alloy 2024-T3 containing an iso-
lated crack was firstly investigated as shown in Fig.1. The
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Figure 3 : Damage distribution contours in AL2024-T3 plate
for θ = 45Æ

length dimension L is 86 mm, the thickness of the plate is
3.175 mm and the crack length is 15 mm. θ is the inclined
angle of the isolated crack and β is the angle measured from
the pre-crack direction. Different values of θ, namely 0Æ, 30Æ,
45Æand 60Æ, are chosen for numerical simulation with ABAQUS
(Version 5.8). Linear, reduced-integration solid elements are
used for the FE analysis. A typical finite element discretiza-
tion of the plate with a typical inclined crack of 45Æis depicted
in Fig.2. Radial elements were chosen around the crack tip for
the convenience of determining angular distributionsof overall
damage at the crack tip. The mechanical properties of AL024-
T3, which were determined and reported in reference [Chow
and Wei (1999)], are summarized as:

E0 = 74300 MPa ν0 = 0:34 R0 = 330 MPa
γ = �0:4 B0 = 0:936 MPa wc = 0:185

The overall damage distribution in the plate containing a typ-
ical inclined crack of 45Æwas calculated as shown in Fig.3. It
can be observed from the figure that the damage accumula-
tion is confined around the crack tip region. Crack initiation
is postulated to occur at the location when the overall damage
reaches its critical value. The direction of the crack exten-
sion βi is determined from the detailed damage distribution at
the crack tip. The angular distributions of the overall damage
at the crack tip are calculated as shown in Fig.4 for different
inclined cracks of 0Æ, 30Æ, 45Æand 60Æ. The normalized dam-
age at a constant radial distance from the crack tip was plotted
against the angle of rotation β. The location of unit value of
the normalized damage is used to determine the direction of
crack extension, i.e. the initiation angle βi.

Table 1 summarizes the predicted crack initiation angles for
the mixed mode specimens. The measured and predicted re-

damage distribution at crack tip

0.40
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0.80

1.00

-30 0 30 60 90

angle, degree

60

45

30

0

Figure 4 : Angular distributions of damage for mixed mode
AL2024-T3 specimen

Table 1 : Crack Initiation Angle βi for Al2024-T3 (character-
istic crack length: 0.1 mm)

inclined test numerical simulation
angle proposed model anisotropic model

0 0 0 0
30 35.9 37.5 43
45 53.7 52.5 56
60 71.2 67.5 73

sults based on an anisotropic damage model reported by Chow
and Wang are also included for comparison [Chow and Wang
(1989b)]. It can be observed from the table that both of the nu-
merical results agree well with the measured ones. An advan-
tage of the proposed damage model is its ease of computation
relative to the anisotropic damage model with a second-order
tensor.

5 Fracture Analysis for Particulate Composite Plates

The boundary between the particles and the matrix in particu-
late composites constitutes the source of micro-defects, which
will grow and coalescence until a macro-crack is formed under
load. To ignore these micro-structural changes in the failure
prediction by the conventional methods is not therefore con-
sidered realistic. The material deterioration due to damage ac-
cumulation should be taken into account for durability analysis
with the theory of damage mechanics. The proposed damage
model is accordingly applied to predict mixed mode fracture
of a thin plate made of a particulate composite as shown in
Fig.1. The dimensions of the plate are 4 in � 4 in � 0.2 in.
The length of pre-crack is 1 in. and its inclined angle is repre-
sented by θ.

In order to determine mechanical properties and damage pa-
rameters for the particulate composite material, a modified
dog-bone specimen is chosen for the measurement. The speci-
men is incrementally loaded at different strains until final rup-
ture. Upon each incremental maximum strain, the specimen
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Figure 5 : Normalized Young’s modulus vs applied strain for
a particulate composite
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posite

Table 2 : Crack Initiation Load for Particulate Composite
(characteristic crack length: 1.4 mm)

Pre-crack angle (Æ) 0 30 60
Load prediction 24.0 27.2 36.9
(lb) test 23.4 27.0 36.2

Table 3 : Crack initiation Angle βi (Æ) Particulate Composite
(characteristic crack length: 1.4mm)

Pre-crack angle (Æ) 0 30 60
βi prediction 0 28 62
(Æ) test 0 33 68

is unloaded to zero-stress, forming a hysteretic loop. The ef-
fective Young’s modulus is determined after each unloading.
The change of effective Young’s modulus is taken as material
degradation to evaluate the damage variable D as shown in Fig.
5 and 6. The true stress-true strain curve of the material is de-
picted in Fig.7. The value of Dc, which is considered an intrin-
sic material property, was determined to be 0.3. For the partic-
ulate composite, the value of Poisson’s ratio is assumed to be
constant during loading process. Accordingly, both the dam-
age evolution coefficient γ and the damage variable µ are con-
sidered insignificant and thus assumed to be zero. Therefore,
the damage model is simplified to the conventional isotropic
damage model with one scalar damage variable.

The FE analysis is similar to the case example of AL2024-
T3. The loading is applied through the displacement boundary
condition. The element is postulated to be fully damaged and
therefore failed when the plastic damage D at its integration
point reaches a critical value Dc. The load applied at Dc is de-
termined as crack initiation load and the position of damaged
integration point is used to define the direction of crack exten-
sion, i.e. the crack initiation angle. Three different inclined
crack angles, θ = 0Æ, 30Æand 60Æ, are chosen for the analy-
sis. The numerical results on the crack initiation angle and the
fracture load are summarized in Table 2 and 3, demonstrating
a satisfactory agreement with the experimental measurements.

6 Conclusions

Damage-coupled finite element formulation has been derived
for the proposed damage model. The model has been imple-
mented in ABAQUS (version 5.8) through its UMAT subroutine
for failure analysis of mixed mode fracture. A failure crite-
rion is developed to determine the crack initiation at the loca-
tion where the overall damage accumulation reaches a critical
value of the material. Therefore, the crack initiation angle and
fracture load can be determined from the FEM results. Two en-
gineering materials, AL2024-T3 and a particulate composite,
are chosen for the investigation. A mixed mode fracture analy-
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sis was carried out and the predicted results are compared well
with the test data.
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