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Abstract: This paper presents the three-dimensional scat-
tering field obtained when 2D smooth topographical deforma-
tions are subjected to a dilatational point load placed at some
point in the medium. The solution is formulated using bound-
ary elements for a wide range of frequencies and spatially har-
monic line loads, which are then used to obtain time series
by means of (fast) inverse Fourier transforms into space-time.
The topographical surface is modeled with a number of bound-
ary elements, defined according to the excitation frequency of
the harmonic source, and in such a way that the free surface
can be discretized along a sufficient distance to fully reproduce
the responses at the receivers in the time window considered
(T � 1

�
∆ f ).

Simulation analyses utilizing this idealized model are used to
study the alteration of the wave scattering generated by the
half-space, when the free surface is changed to simulate a ridge
or a valley deformation. The amplitude of the wavefield in the
frequency vs axial-wavenumber domain is presented to allow
the recognition, identification, and physical interpretation of
the variation of the wavefield.

keyword: boundary elements, topographic deformations,
point blast source, seismic wave amplification

1 Introduction

Surface topographical deformations produce site effects, lead-
ing to seismic signal amplification, and these can be signifi-
cant over a large frequency domain [Davis and West (1973);
Griffiths and Bollinger (1979); Bard and Tucker (1985)]. The
prediction of the ground movement in the vicinity of differ-
ent topographic deformations has occupied many researchers
for years. Some of the first analytical studies on wave diffrac-
tion and scattering looked at wave motion and reverberations
in alluvial basins of regular shape [Trifunac (1971); Trifunac
(1973); Wong and Trifunac (1974); Lee and Cao (1989);
Todorovska and Lee (1990), (1991)], and the wave scattering
induced by cavities [Lee (1977); Datta and Shah (1982); Lee
(1988); Lee and Karl (1992)]. More recently, semi-analytical
methods have been used to study wave diffraction caused by
geological irregularities of arbitrary shape within globally ho-
mogeneous media [Sanchez-Sesma (1983); Moeen-Vaziri and
Trifunac (1988); Lee and Wu (1994)]. By contrast, the ap-
plication of purely numerical methods (i.e. finite elements or
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differences combined with boundaries) have mostly been em-
ployed in situations where the response is required only within
localised irregular domains, such as soil-structure interaction
problems [Waas (1972); Lysmer, Udaka, Seed, and Hwang
(1974); Kausel (1974)]. Techniques based on representation
theorems have also been developed to model topographic ef-
fects: the direct boundary element method (BEM) [Wong
and Jennings (1975); Zhang and Chopra (1991)], the indi-
rect boundary element method (IBEM) [Sánchez-Sesma and
Rosenblueth (1979); Wong (1982); Luco, Wong, and De Bar-
ros (1990); Sánchez-Sesma and Campillo (1991), (1993)] and
combinations of integral representations with discrete wave
number expansions of Green’s functions [Bouchon (1985);
Kawase (1988); Pei and Papageorgiou (1993)]. Discrete meth-
ods have also occasionally been used to model large alluvial
basins, but only in plane-strain [Ohtsuki and Harumi (1983)].
Finally, hybrid methods involving a combination of finite el-
ements to model the interior domain containing the inho-
mogeneities and semi-analytical representations for the exte-
rior domain have been used [Shah, Wong, and Datta (1982)].
The above methods have been reviewed in detail by Sánchez-
Sesma (1987).

These methods have largely been employed in cases where a
two-dimensional (2D) solution is wanted. However, site ob-
servations appear to indicate amplification that is both higher
and more broadband than predicted by numerical simulations
[Bard and Tucker (1985); Geli, Bard, and Jullien (1988)]. The
need to extend the numerical simulation to more realistic mod-
els, taking into account the three-dimensional character of real
topographical deformations, is recognized. If the full scatter-
ing wave field, generated by sources placed in the presence of
three-dimensional (3D) propagation media, is evaluated, then
the numerical calculations are very costly in terms of computer
effort.

If the medium is 2D and the dynamic source 3D (such as
a point load), the model is often termed a two-and-a-half-
dimensional problem (2-1/2-D) its solution becomes much
simpler. Solutions for such problems involve a two spatial
Fourier transform in the direction in which the geometry does
not vary. A sequence of 2D problems with different spatial
wavenumbers, kz, must first be solved, and then the inverse
Fourier transform is used to synthesize the 3D field.

The 2-1/2-D wave equation for inclusions such as the circu-
lar cylinder can be separated, and so their solution can be
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known in closed form. The solution is harder to determine
for inclusions with irregular cross-sections. In these cases, the
Boundary Element Method (BEM) may be the best tool, es-
pecially if the solution needs to satisfy the far field conditions
required if the inclusions are buried in an unbounded or half-
space elastic medium. Zhang and Chopra (1991) presented
a BEM formulation to determine the three-dimensional seis-
mic response of an infinitely long canyon of arbitrary cross-
section in a homogeneous visco-elastic half-space. The dy-
namic excitation was represented by Rayleigh surface waves
or plane body waves approaching the half-space from any di-
rection. In their formulation, the three-dimensional boundary
integral equation is reduced to a set of two-dimensional prob-
lems by means of Fourier transforms of the three dimensional
Green’s functions along the canyon axis. The required half-
space surface discretization was performed on both sides of
the canyon over a distance of at least twice the shear wave-
length using equal linear boundary elements. The element
size on the canyon surface was kept to less than one-fifth of
the shear wavelength. The accuracy of the solution has been
verified by comparison with previous solutions for the limited
cases of two-dimensional response and three-dimensional re-
sponse results for infinitely-long regular canyons provided by
the indirect boundary method [Luco, Wong, and De Barros
(1990)], when the medium is excited by a single harmonic
plane source. This work also includes the comparison of the 2-
1/2-D solution with the solution of a finite-length canyon pro-
vided by a fully three-dimensional boundary element method.
This shows that the finiteness of the canyon has only a small
effect on the displacements that are a long way from the ends
of the canyon. Later, Pedersen, Sánchez-Sesma, and Campillo
(1994) also studied the three dimensional seismic response
of two-dimensional topographies to plane waves with an az-
imuth ψ, relative to the structure, and an incidence θ, relative
to the vertical axis. They used the indirect boundary element
method (IBEM), using the Green’s functions for a harmonic
point force moving along the axis of the topography in a full
space. Pedersen, Sánchez-Sesma, and Campillo (1994) pre-
sented scattering results in the frequency and time domains
for topographies of simple geometry, namely, a semi-circular
canyon and a semi-circular ridge, when subjected to incident
plane waves. The required numerical equations were defined
assuming the surface topography to be divided into a number
of segments, each with a constant force distribution. The num-
ber of segments was variable with frequency, allowing the ex-
istence of five segments per wavelength. Their results showed
that the spectral amplitude of the seismic response in the cases
of the semi-circular canyon or of the semi-ridge are dominated
by the scattering generated by the edges of the canyon or of
the ridge. The total scattered wave field presented a compli-
cated pattern of amplification and deamplification, which does
not seem to change to any great extent when the incident plane
waves arrive outside the symmetry axis of the topography.

Stamos and Beskos (1996) presented a special direct bound-

ary element method to describe the 3D dynamic response of
long lined tunnels with a uniform cross-section, buried in an
elastic or visco-elastic half-space, and subjected to plane har-
monic waves propagating in arbitrary directions. The problem
is reduced to a two-dimensional one by a coordinate transfor-
mation and appropriate integration of the full space dynamic
fundamental solution along the direction of the tunnel axis.
Quadratic isoparametric line boundary elements are used, and
the solutions compared with other methods.

In our work, the three-dimensional wave scattering in the
vicinity of two dimensional topographies is addressed again
using the BEM. The problem is similar to the one solved first
by Zhang and Chopra and then by Pedersen et al, but here,
the medium is illuminated by a dilatational point load (blast
load) and the surface deformation is assumed to be a smooth
canyon or a smooth ridge, in an attempt to extend the numer-
ical simulation to more realistic models. The required half-
space surface discretization is extended as expected along a fi-
nite length, although in this paper, smaller elements are placed
in the vicinity of the axis deformation.

The solution at each frequency is given in terms of waves with
varying wavenumber, kz , (where z is the direction in which the
geometry does not vary), using the appropriated Green’s func-
tions [Sánchez-Sesma and Campillo (1991), Tadeu and Kausel
(2000)]. This is then Fourier transformed into the spatial do-
main. To find the wavenumber transform in discrete form, it
is assumed that an infinite number of virtual point sources are
equally spaced along the z axis, far enough apart to prevent
spatial contamination [Bouchon and Aki (1977)]. The analy-
ses utilize complex frequencies, moving down the frequency
axis, in the complex plane. Thus, the neighboring fictitious
sources can only exert a very slight influence [Phinney (1965)].
No claim is made here for theoretical or computational BEM
innovation.

The rest of this paper explains briefly the BEM method and its
validation. Then, this model is used for simulation analyses to
investigate three-dimensional wave propagation in the vicinity
of a flat half-space, a smooth canyon or a smooth ridge excited
by a point load. Results are obtained in the frequency and in
the time domains, in particular for the different apparent wave
velocities along the z axis, for a quantitative study of the 3D
effects of the scattering.

2 Problem formulation

Consider an infinitely long, cylindrical, irregular cavity buried
in a uniform elastic medium (see Fig. 1) and subjected to a
harmonic dilatational point source at position (x0 , 0, 0), oscil-
lating with a frequency Ω. The incident field can be expressed
by means of the now classical dilatational potential φ

φinc � Ae
i w

α � αt ��� � x � x0 	 2 
 y2 
 z2 �� 
x � x0 � 2 � y2 � z2

(1)



Wave scattering by 2D smooth topographical elastic deformations caused by a point blast source 81

z

O x

y

Solid

Figure 1 : Geometry of the problem.

where the subscript inc denotes the incident field, A is the
wave amplitude, α is the compressional wave velocity of the
medium, and i ��� � 1.

Defining the effective wavenumbers

kα ��� ω2

α2 � k2
z Im kα � 0 (2)

by means of the axial wavenumber kz , and Fourier-
transforming Eq. 1 in the z direction, we get

φ̂inc � ω � x � y � kz � � � iA
2

H � 2 �0 � kα � � x � x0 � 2 � y2  (3)

in which the H � 2 �n �"!#!$!%� are second kind Hankel functions of
order n.

When we take an infinite number of virtual point sources,
equally spaced along the z direction at a sufficient distance,
L, from each other to avoid spatial contamination [Bouchon
and Aki (1977)], the incident field may be written as

φinc � ω � x � y � z � � 2π
L

∞

∑
m &(' ∞

φ̂inc � ω � x � y � kz � e ' ikzmz (4)

with kzm � 2π ) Lm. This equation converges and can be ap-
proximated by a finite sum of terms.

3 Boundary element formulation

3.1 Cylindrical cavity

The 3D field generated by a cylindrical cavity subjected to
spatially sinusoidal harmonic line loads (defined by Eq. 3)
is found by means of the Boundary Element Method (BEM).
Since the basic equations used when applying boundary ele-
ments to wave propagation are widely known [Manolis (1988);
Banerjee (1994)], only a brief explanation of the method to be
applied in the frequency domain, is presented.

The boundary integral equations can be constructed using the
dynamic reciprocal theorem, through which, in the absence
of distributed loads and in the presence of virtual point loads,
δ � x � x0 � , the following equation is defined,

ci ju j � x0 � ω � �+*
C

ti � x � v � ω � Gi j � x � x0 � ω � ds

�,*
C

Hi j � x � v � x0 � ω � u j � x � ω � ds (5)

In this equation i � j � 1 � 2 stands for the normal and tan-
gential directions relative to the cavity surface, respectively,
while i � j � 3 refers to the z direction. Gi j � x � x0 � ω � and
Hi j � x � v � x0 � ω � are the displacements and tractions in the direc-
tion j at x (on the boundary C) as a result of a unit point force
in the direction i at x0 (the source). The vector v is the unit
outward normal at the boundary, while ci j is a constant, de-
pending on the local geometry of the boundary. For a smooth
boundary, ci j is equal to δi j ) 2, where δi j is the Kronecker’s
delta.

Expressions for the tensions may be obtained from the two-
and-a-half dimensional fundamental solution (Green’s func-
tions), by taking partial derivatives to deduce the strains and
then applying Hooke’s law to find the stresses. The displace-
ment and stress functions, in Cartesian co-ordinates, which
apply to the present problem, are listed in Tadeu and Kausel
(2000). These stress fields are conveniently transformed into
the normal, tangential and z local co-ordinate system at each
element by equilibrium relations. The boundary conditions at
the boundary of a cavity prescribe null tractions, leading to the
simplified form of Eq. 5,

ci ju j � x0 � ω � �-�.*
C

Hi j � x � v � x0 � ω � u j � x � ω � ds (6)

The evaluation of this integral for an arbitrary cross section
requires the discretization of both the boundary and boundary
values. If N boundary elements are used and the nodal dis-
placements are assumed to be constant within each element,
and equal to the value at the associated nodal point, Eq. 6
changes to

ci ju
k
j �+� N

∑
n & 1

Hkn
i j un

j (7)

In this equation, k is the element number at the point where the
virtual load is applied, un

j is the boundary values in element n,

and Hkn
i j is the element integrals

Hkn
i j ��*

Cn

Hi j � x � vnxk � ω � ds (8)

in which vn is the unit outward normal for nth boundary seg-
ment Cn.

By successively applying the virtual load to each node on the
boundary, a system of linear equations relating nodal forces
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Figure 2 : Discontinuous linear boundary elements. Interpo-
lating functions and nodal points position.

and nodal displacements is obtained, and these can be solved
for the nodal displacements.

If an incident wave strikes the cavity, Eq. 6 changes to

ci ju j 0 x0 1 ω 243+5.6
C

Hi j 0 x 1 v 1 x0 1 ω 2 u j 0 x 1 ω 2 ds 7 uinc
j 0 x0 1 ω 2

(9)

In this equation the incident field is obtained by taking partial
derivatives of Eq. 3 to deduce displacements along x, y and z,
and then applying equilibrium relations to obtain the normal
and tangential displacements along the boundary.

If the displacements and tractions are allowed to vary linearly
within the boundary elements, the required integrals of Eq. 8
change to

Hkn
i j 386

Cn

φHi j 0 xn 1 vnxk 1 ω 2 ds (10)

where φ are the linear interpolation functions.

The displacement and stress variations within a boundary el-
ement are defined in terms of the nodal values. The traction
discontinuity at the corner between two boundary elements is
handled by means of discontinuous boundary elements. Thus,
the nodes that would meet at the corner are moved inside
[Brebbia (1984)]. Figure 2 displays the interpolation functions
used and the position of the nodal points.

In this work, the required integrations in Eq. 10 are performed
using Gaussian quadrature when the element to be integrated
is not the loaded element. For the loaded element, the exist-

ing singular integrands are carried out in closed form [Tadeu
(1999a), (1999b)].

3.1.1 Validation of the BEM Algorithm

The BEM algorithm was implemented and validated by apply-
ing it to a cylindrical circular cavity, placed in a homogeneous
elastic medium, subjected to a dilatational point load applied
at point O, as in Fig. 3a, for which the solution is known in
closed form and described in Pao and Mow (1973).

The response is calculated over a fine vertical grid plane,
placed perpendicular to the z axis. Figure 3c gives the analyt-
ical scattered z displacement field computed when a harmonic
pressure load of 2450 Hz is excited. The difference in the
response obtained using the BEM - the error - when the inclu-
sion is modeled with 17 and 52 linear boundary elements, is
displayed in Fig. 3d and 3e, respectively.

In the present example, the ratio between the wavelength of the
dilatational waves to the length of boundary elements varies
between 3 (17 boundary elements) and 9.0 (52 boundary el-
ements). The BEM accuracy improves as shorter boundary
elements are used to model the response, as anticipated.

3.2 Surface topography

The surface topography can be described as a cavity of infi-
nite size. So, the equations developed for the cylindrical cavity
(Eq. 5), above, can be used to calculate its solution. The use of
complex frequencies together with the geometrical damping of
the response with distance makes the full discretization of the
infinite surface unnecessary. Boundary elements are only re-
quired to the extent that they make a significant contribution to
the response. If solutions are required in the time domain, the
contribution to the response behind the time window, defined
by the frequency step of the analysis, T 3 2π 9 ∆ω, need not
be taken into account. Hence, the boundary elements are dis-
tributed along the surface up to a spatial distance (Ldist) from
the receivers, given by Ldist 3 αT . This gives a discretized
surface with a length 2Ldist 7 2a, where 2a is the length of the
segment occupied by the receivers. Many simulations were
performed to study how varying the size of boundary elements
affects the accuracy of the response. The performance was
found to be better when smaller elements were placed in the
vicinity of the receivers. The authors of this paper suggest
that boundary elements of varying size should be placed along
the surface, with the shorter elements being used nearer to the
center of the surface boundary discretization, thereby reducing
computational cost.

Figure 4 illustrates the scheme used in this work to determine
the placement and size of the boundary elements. It makes use
of a geometrical construction, by which an auxiliary circular
arc is divided into equal segments according to a previously
defined ratio between the wavelength of the dilatational waves
and the length of boundary elements.
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Figure 4 : Boundary elements distribution ( f = 100 Hz – ∆ f = 40 Hz).

The boundary elements are then defined on the topographic
surface by the vertical projection of these segments. The radius
of the required circular arc (R) is bigger than > 2Ldist ? 2a @BA 2
and is placed tangent to the topographic surface at its bound-
ary discretization end, avoiding the existence of unduly
small boundary elements. In this work R is assumed to beC > 2Ldist ? 2a @DA 2E$A cos10 F .
3.2.1 Validation of the BEM algorithm

The BEM algorithm was implemented and validated by apply-
ing it to a flat half-space, subjected to a dilatational line load
placed at x = 0 G 0 m and y = 0 G 6 m, as in Fig. 5a, for which
the solution is known in closed form and described in Kawase
(1988).

Figure 5 shows the horizontal displacement field, over a fine
vertical grid plane, placed perpendicular to the z axis, com-
puted when a harmonic pressure line load of 100 Hz is ex-
cited. Figure 5b displays the response given by the closed
form solution. The difference in the response obtained using
the BEM (the error) is presented for a ratio between the wave-
length of the dilatational waves and the length of boundary
elements equal to 10, when 122 linear boundary elements are
used. Figure 5c presents the error when evenly-spaced bound-
ary elements are used along the surface boundary. Figure 5d
shows the error when the length of the boundary elements is
varied according to the method described above (see Fig. 4).
It can be concluded that, for the same computational cost, the

BEM accuracy improves with the use of shorter boundary ele-
ments as we move to the center of the surface discretization.

4 Results in space-time

A numerical fast Fourier transform in kz gives the displace-
ments in the spatial-temporal domain, taking a source whose
temporal variation is given by a Ricker wavelet, as defined
below. The Ricker wavelet has the advantage of decaying
rapidly, in both time and frequency, which both reduces com-
putational effort, and allows the computed time series and syn-
thetic waveforms to be interpreted more easily.

The Ricker wavelet function is given by

u > τ @4= A H 1 I 2τ2 J e K τ2
(11)

where A is the amplitude, τ =-> t I ts @LA t0 and t denotes time; ts

is the time when the maximum occurs, while πt0 is the charac-
teristic (dominant) period of the wavelet. Its Fourier transform
is

U > ω @M= A N 2 O πt0e K iωts P Ω2e K Ω2
(12)

in which Ω = ωt0 A 2.

The Fourier transformations are achieved by discrete summa-
tions over wavenumbers and frequencies, which is mathemat-
ically the same as adding periodic sources at spatial intervals
L = 2π A ∆kz (in the z-axis), and temporal intervals T = 2π A ∆ω,
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Figure 5 : Half-space problem validation.

with ∆kz , and ∆ω being the wavenumber and frequency steps,
respectively [Bouchon and Aki (1977)]. The spatial separa-
tion L must be large enough for contamination of the response
by the periodic sources not to occur. Thus, the contribution
to the response by the fictitious sources must occur at times
later than T . It is also very useful for this if the frequency
axis is shifted slightly downward, by considering complex fre-
quencies with a small imaginary part of the form ωc Q ω R iη
(with η Q 0 S 7∆ω). The periodic sources are thus practically
eliminated. In the time domain, this shift is later taken into ac-
count by applying an exponential window eηt to the response
[Kausel (1992)].

5 Numerical applications

Selected results are presented for simulations with three sim-
ple geometries: a flat surface, a smooth ridge and a smooth

canyon. The ridge and the canyon deformations were defined
with circular arcs of constant radius (2.0 m), (see Fig. 6). At
time t Q 0, a point source, defined by the dilatational poten-
tial φ, expressed as shown in Eq. 1, acts at the coordinates
(x Q R 15 S 0 m, y Q 0 S 5 m, z Q 0 S 0 m), creating a spherical di-
latational pulse propagating away from it.

The dilatational wave velocity (α Q 4208 m T s), the shear wave
velocity (β Q 2656 m T s) and density (ρ Q 2140 Kg T m3) of the
elastic medium remain constant in all the analyses. Compu-
tations are performed in the frequency range (40 – 1280 Hz),
with a frequency increment of 40 S 0 Hz, which determines the
total duration (T Q 25 S 0 ms) of the analysis in the time do-
main. The source time dependence is a Ricker wavelet with a
characteristic frequency of 450 Hz.

The field generated is computed at two lines of 41, evenly-
spaced (0 S 25 m), receivers. One of the lines of receivers is
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Figure 6 : Geometry for numerical applications.

placed horizontally 0 V 5 m below the surface (line 1), while the
second is placed vertically at x W 5 V 0 m (line 2).

The surface topographies are modeled with a number of linear
boundary elements that changes with the excitation frequency
of the harmonic load. The ratio between the wavelength of the
incident waves and the length of the boundary elements is kept
to a minimum of 6. In any case the number of the boundary
elements used to model each surface is never less than 23.

Simulations are performed following waves with different ap-
parent wave velocities along the z axis to quantitatively study
the 3D effects of the scattering. This apparent wave velocity
(c) results from waves arriving at the z axis with a path incli-
nation given by arccos X v Y c Z , where v is the true wave velocity
(see Fig. 7). In the equations presented above kz is taken to
be ω Y c. In the examples selected, three apparent velocities (c)
are chosen, namely c W ∞ m Y s, c W 4208 m Y s and c W 2656
m Y s. Waves arriving at the receivers with a 90 [ inclination in
relation to the z axis are represented by c W ∞ m Y s, which can
be understood as a pure two-dimensional problem where the
source is linear. As the path inclination ranges from 90 [ to 0 [ ,
there is a lower bound value for c that corresponds to the slow-
est wave velocities (Rayleigh waves). Below this value, there
are inhomogeneous waves which decay very quickly with de-
creasing values of c.

As the P waves impinge on the surface, they scatter back into
the medium as P and S waves (the latter as a result of P-S con-
version). In addition, there are guided waves – Rayleigh waves

(x)

y

z

d

c

L

a v

Figure 7 : Apparent wave velocity.

– propagating along the surface, which decay very rapidly with
the distance to its surface.

Figure 8-10 display the amplitude of the total horizontal (x)
displacement time and the space-frequency responses recorded
at the receivers placed along line 1, for the three topographical
surfaces. Lines indicating the limits of the topographical de-
formations and their inflection points (locating the change of
curvature from convex to concave) are added to allow an easier
interpretation of the results.

When c W ∞ m Y s (Fig. 8), and the surface is flat, the first set
of pulses recorded at the receivers corresponds to the incident
P field and P waves reflected from the surface, while second
arrivals are S mode converted waves resulting from the P wave
incidence on the surface. The guided waves (R) follow the S
waves, but given the small difference in velocities, they do not
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fully separate as two pulses. The different pulses are identi-
fied in this figure with the labels P, S and R. The arrival times
obtained for the different pulses are consistent with the predic-
tions given by ray acoustics.

The results obtained when the topographical surface is irreg-
ular reveal a significant interference that increases with fre-
quency. In the case of the smooth ridge, complicated wave pat-
terns are caused by reverberations within the concave part of
the surface. The space-frequency response agrees with this in-
terpretation, locating a more pronounced wave field difference
close to the central part of the line receivers. It can be further
observed that the time responses show signal amplification and
de-amplification at those same receivers. In the case of the
smooth canyon, amplification of the signal occurs, but here it
is close to the extreme of the deformation, again within the
concave parts of the surfaces. The space-frequency response
places amplifications of the signal at those same receivers. As
expected, higher responses occur at the edge nearer to the dy-
namic source. The presence of the ridge and the canyon causes
a “shadow” after the deformations, which is more pronounced
in the case of a canyon.

As the apparent velocity decreases, both the arrival times of
the different pulses and their amplitude decrease (see Fig. 9-
10), indicating that the scattering energy is mainly concen-
trated in the vertical z plane containing the dynamic source.
A pulse in these plots, with a travel time τ, corresponds to
waves that travel from the source to the reflector and back
to the receiver, along the same ray path inclination in rela-
tion to the z axis. The travel distance (L) in this domain is
smaller because it corresponds to the projection of the initial
vertical path (d) relative to the inclined path, leading to a dis-
tance L \ d sin ] arccos ^ v _ c `ba (see Fig. 7). In this way, a fall
in the apparent velocity causes a better separation of the P, S
and Rayleigh waves. When the apparent velocity equals the
velocity of the P waves (see Fig. 9), the waves traveling at
this velocity arrive at the various receivers at t \ 0 c 0 ms, and
only the waves traveling at lower velocity, the S and Rayleigh
waves, survive in these time plots. Furthermore, when the ap-
parent velocity is assumed to be c \ 2656 m _ s, only the guided
waves (Rayleigh waves) survive.

The concave parts of the surface determine the position of the
amplification signals. However, interference from the differ-
ent topographic deformations decreases as the apparent wave
velocity along z diminishes. It can be further observed that the
amplitude of the Rayleigh waves decays with the distance to
the source (see Fig. 10).

Figure 11 illustrates the vertical displacement at the receivers,
again placed along line 1, when the apparent velocity is as-
sumed to be c \ ∞ m _ s. Given the position of the source close
to the surface, receivers placed in the vicinity of this surface
are mostly submitted to horizontal P displacement, so the P
waves decrease in importance, as shown in this figure. Again,
as shorter incident waves are excited, i.e. as the frequency in-

creases, the scattered field exhibits wave pattern interference
similar to that found for the horizontal wave displacement:
amplification of the signal occurs at concave parts of the to-
pographical surfaces. In fact, the space-frequency responses
for the smooth canyon and the ridge denote differences in re-
lation to the wave field calculated for the flat surface, which
agrees with this behavior. As the apparent velocity decreases,
the interference from the different topographical deformations
rapidly loses its importance (not illustrated). As expected, the
vertical displacement of the Rayleigh waves is larger than its x
displacement.

The z displacement is null for c \ ∞ m _ s, which corresponds to
the two dimensional field. Figure 12 shows the z displacement
at receivers, again placed along line 1, when the apparent ve-
locity is assumed to be c \ 4208 m _ s. The type of topograph-
ical surface is still important. As the frequency increases, the
space-frequency domain still shows higher amplitude scattered
responses in the vicinity of the concave part of the surface de-
formations.

Figures 13-14 display the total displacement time recorded at
the receivers placed along line 2, for the three topographical
surfaces. Figure 13a depicts the horizontal (x) displacement
when the apparent velocity is c \ ∞ m _ s. The result of the in-
cident pulse P and P reflected pulse from the surface is labeled
P, while the S mode converted pulse resulting from the P inci-
dence pulse on the surface and the Rayleigh pulse are labeled
S and R, respectively. The flight time of each of these pulses
corresponds to the travel path of a pulse from the source to the
surface and back to the receivers.

Analysis of the results reveals complicated wave patterns,
which originate in reverberations within the topographical sur-
face deformation. Additional pulses are present. The pulse
that reflects on the surface topographical deformation as an S
pulse is identified as S2.

The pulses directly incident on the canyon deformation are
easily reflected onto the formation, creating a shadow behind
the surface deformation. The time responses reveal this phe-
nomenon, exhibiting body pulses with very small amplitude
at an intermediate depth. Notice that the response increases
again for receivers located at greater depths, owing to the re-
flection directed from the canyon surface. The only significant
pulses surviving at the receivers close to the surface are those
resulting from the guided modes, which decrease rapidly with
depth. The results further show that these guided waves are
more pronounced in the presence of the canyon than in the
presence of the ridge.

Figure 13b illustrates the horizontal displacement (x) when the
apparent velocity is assumed to be c \ 4208 m _ s (velocity of
the P waves). As explained before, only the waves with veloc-
ity less than that of the P wave remain (S and Rayleigh waves).
The amplitude of this remaining wave field diminishes and the
effect of the shadow phenomenon is significantly reduced.
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Flat surface

Smooth ridge

Smooth canyon

Figure 8 : Total horizontal displacement time and frequency responses recorded at the receivers placed along line 1: c e ∞ m f s.
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Flat surface

Smooth ridge

Smooth canyon

Figure 9 : Total horizontal displacement time and frequency responses recorded at the receivers placed along line 1:
c g 4208 m h s.
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Flat surface

Smooth ridge

Smooth canyon

Figure 10 : Total horizontal displacement time and frequency responses recorded at the receivers placed along line 1:
c j 2656 m k s.
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Flat surface

Smooth ridge

Smooth canyon

Figure 11 : Total vertical displacement time and frequency responses recorded at the receivers placed along line 1: c l ∞ m m s.
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Flat surface

Smooth ridge

Smooth canyon

Figure 12 : Total z displacement time and frequency responses recorded at the receivers placed along line 1: c o 4208 m p s.
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Flat surface

Smooth ridge

Smooth canyon

(a) (b)

Figure 13 : Total horizontal displacement time responses recorded at the receivers placed along line 2: a) c q ∞ m r s,
b) c q 4208 m r s.
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Flat surface

Smooth ridge

Smooth canyon

(a) (b)

Figure 14 : Time responses recorded at the receivers placed along line 2: a) Total vertical displacements when c t ∞ m u s,
b) Total z displacements when c t 4208 m u s.
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The vertical displacement time (y) for the apparent velocity
c v ∞ m w s, is plotted in Fig. 14a. It can be observed that the
amplitude of the wave field is higher than for the horizontal
displacement. Nevertheless, as before, the P waves lose their
importance and the influence of the topographic deformation
is still present.

Figure 14b displays the z displacement for the apparent veloc-
ity c v 4208 m w s. The time response follows a behavior similar
to that observed in the (x) direction. Again, the results show
that the amplitude of the guided waves is more pronounced in
the presence of the canyon.

6 Conclusions

The boundary element formulation developed was found to be
efficient in the calculation of the 3D scattered field generated
by a dilatational point load illuminating a half-space with to-
pographical deformations. It could therefore be used in the
context of research on seismic problems.

This program was used to compute the wave fields in the vicin-
ity of smooth ridges and canyons in homogeneous elastic me-
dia when they are illuminated by dilatational point sources.
The frequency and synthetic seismograms were built following
waves with different apparent wave velocities along the z axis.
The time responses appear very complicated but were consis-
tent with the predictions given by ray acoustics, and were used
by the authors to elucidate the most important aspects, with an
eye to developing non-destructive testing and imaging meth-
ods.

The bigger interference noted in the time and frequency re-
sponses, when we move from the flat half-space and include
the smooth ridge and canyon deformations, originate within
the concave parts of the surface deformations, leading to the
amplification and de-amplification of the signals. As the ap-
parent velocity decreases, the arrival times of the different
pulses and their amplitude both decrease, indicating that the
scattering energy is mainly concentrated in the vertical z plane
containing the dynamic source. It can be further observed that
the direct incident pulses on the canyon deformation are eas-
ily reflected onto the formation, creating a shadow behind the
surface deformation.
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