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Abstract: Model reference adaptive control formulations
are presented that rigorously impose the dynamical structure
of the state space descriptions of several distinct large classes
of dynamical systems. Of particular interest, the formulations
enable the imposition of exact kinematic differential equation
constraints upon the adaptation process that compensates for
model errors and disturbances at the acceleration level. Other
adaptive control formulations are tailored for redundantly ac-
tuated and constrained dynamical systems. The utility of the
resulting structured adaptive control formulations is studied by
considering examples from nonlinear oscillations, aircraft con-
trol, spacecraft control, and cooperative robotic system con-
trol. The theoretical and computational results provide new
insights and provide a basis for optimism regarding practical
adoption of adaptive control methodology in advanced imple-
mentations.

1 Introduction

Over the past two decades, adaptive control formulations have
evolved and have been studied as candidates for controlling
low- to moderate-dimensioned uncertain dynamical systems.
A number of obstacles have become evident that have limited
the degree to which adaptive control methodology has found a
home in practical applications. One pervasive qualitative ob-
stacle stems from the truth that adaptive control theory has
been developed with a relatively high level of mathematical
abstraction that limits access and understanding of the formu-
lations to a small fraction of the engineers involved in the tar-
get applications. However, the low level of adoption is not
merely a consequence of abstraction, there are several techni-
cal limitations that need to be addressed in order for adaptive
control methods to more adequately accommodate:

1. High state space dimensionality;

2. Actuator saturation and actuator dynamics;

3. Over- and Under-actuation, as regards the number of
available actuators compared to the number of acceler-
ation states of the system;
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4. Unusual features of a particular system’s state space de-
scription that are not adequately captured in a generic
adaptive control formulation;

5. Relevant stability proofs for a candidate adaptive control
approach, as regards applicability to a particular system
and operational environment;

6. Output feedback, as opposed to full-state feedback, to
comply with the demands of a particular system and
available sensors;

7. Multi-mode systems with drastic variations in local in-
put/output characteristics; and finally,

8. Means for tuning of various matrices that parameterize,
and therefore govern, the behavior of the resulting adap-
tive control laws.

These and related issues have been addressed to some extent in
the literature, and the present paper is an effort to bring some
of the recent results together, extend and particularize them in
a coherent way, in order to study their utility through applica-
tions to several aerospace and robotic system examples.

2 Structured Dynamical Systems

The most common starting point for formulating adaptive con-
trol theory for nonlinear dynamical systems is to begin with a
vector first order differential equation of the form

ẋ = f (t;x; p)+ [B(x; p)]u+d (1)

where, x is an n vector of state variables, d is an n vector
of unknown (but bounded) disturbances, u is an m vector of
control inputs and p is an r vector of uncertain parameters.
We have found that exploiting more particularized structure
in the state variable models is highly desirable. Perhaps the
most important structural feature: A subset of the system dif-
ferential equations is often exact (do not depend on uncertain
parameters) and therefore should be imposed as exact differ-
ential equation constraints in the adaptation process. For the
purpose of formulating adaptive control formulations, several
alternatives to Eq. 1 are considered, based upon functional de-
scription of inherent structure present in the description of sys-
tem’s governing differential equations. One motivation of the
present paper is to enable rigorous, exact differential equation
constraints to be imposed in the adaptive control theory, and
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to demonstrate that the theoretical and computational devel-
opments are very attractive. The state-space differential equa-
tions governing the motion of most systems of interest can be
partitioned into categories treated in the following sections.

2.1 Structured First Order Form

The differential equations for a large family of physical sys-
tems can be neatly partitioned into two subsets of differential
equations, one governing exact kinematic relationships and the
other describing the typically uncertain momentum dynamics
of the system. The set of differential equations governing the
kinematics is often mathematically and physically exact once
a “judicious” choice of position and velocity coordinates is
made. For example, to describe the dynamics of an aircraft,
one could use the position coordinates as three translational
positions and any set from an infinite choice of attitude (rota-
tional position) descriptions [Junkins and Kim (1995); Shus-
ter (1993); Junkins and Turner (1986)]. Similarly the velocity
coordinates could be either be the traditional stability axes de-
scription or the body axes description. Once the position and
velocity coordinate choices are made, certain time derivative
relationships between the positions and the velocities can be
written which are unique and exact. An infinite family of such
systems is included in a nonlinear state space model of the fol-
lowing generic structure:

σ̇ = f (σ;ω) (exact kinematics) (2)

ω̇ = G(σ;ω; p)+B(σ;ω; p)u+d (uncertain dynamics) (3)

y = Y (σ;ω; p) (uncertain measurement model) (4)

where,
σ 2 Rn is a vector of position coordinates
ω 2 Rn is a vector of velocity coordinates
d 2 Rn is a vector of unknown disturbance accelerations
f (σ;ω)2 Rn is a known vector function of exact kinematic re-
lationships
p 2 Rk is a parameter vector describing force and moment
influences, e.g. Aerodynamic coefficients, Propulsive influ-
ences, Inertias etc.
G(σ;ω; p)2 Rn are control independent force terms
B(σ;ω; p)2 Rn�n is a matrix of control dependent force terms
u 2 Rm is a control vector
y 2 Rs (s� m) is the output vector

All vector functions in the above are assumed smooth and
twice differentiable functions of all arguments. We now
present a methodology to derive output tracking control laws
for systems, which conform to Eq. 2-4. First consider a fur-
ther specialized class of problems, which is contained in the
more general description in Eq. 2-4. We assume that the mo-
mentum level equations in Eq. 2-4 can be particularized to the
following mathematical structure.

ω̇ = Ag(σ;ω)+Bu+H(σ;ω) (5)

where
A 2 Rn�p is the assumed constant matrix containing all uncer-
tain system model parameters (in lieu of the parameter vector
p in Eq. 1).
g(σ;ω) 2 Rp is a vector of basis functions whose amplitudes
are the uncertain A matrix
H(σ;ω) 2 Rn is a vector of known functions which do not de-
pend on unknown model parameters.

In the case where outputs are the position coordinates y = σ,
we can derive elegant control laws that drive (y� yr) ! 0,
where yr(t) is the trajectory output from a reference model
or a pre-computed maneuver trajectory. Let the reference tra-
jectory satisfy a differential equation with the same functional
structure as Eq. 2-4, with known reference values for all pa-
rameters, and σr(t), ωr(t) describe the trajectory that is to be
tracked. We will show that a control law based on dynamic
model inversion can be derived that seeks to drive (y�yr)! 0
and (ẏ� ẏr)! 0 (in this case: (σ�σr)!0 and (ω�ωr)! 0).

2.2 Ideal Model Inversion

Let us denote e= σ�σr the error between the actual trajectory
and the reference trajectory position coordinates. The control
objective therefore is to drive ‘e’ to zero. Consider the follow-
ing differential equation governing the ideal position tracking
error dynamics.

ë+Cė+Ke = 0 (6)

where C 2 Rn�n s.t. xTCx � 0 8x 6= 0 and K 2 Rn�n s.t.
xT Kx > 0 8x 6= 0.

It can be seen clearly that Eq. 6 and the above positivity condi-
tions on ‘C’ and ‘K’ guarantee exponential convergence of e(t)
to zero for all initial conditions. In the developments below, we
exploit the above structure, to constrain the tracking dynamics
to obey Eq. 6 and leave the matrices ‘C’ and ‘K’ to be chosen
from the admissible set to satisfy appropriate design criteria.
In particular, these matrices directly dictate the desired time
constants and thus could be designed using pole-placement or
eigenstructure assignment methods.

The ideal inversion control law is derived as follows. Let the
position tracking error be defined as:

e
∆
= σ�σr (7)

Differentiating Eq. 7 twice, we obtain the desired acceleration

σ̈ = σ̈r �C (σ̇� σ̇r)�K (σ�σr) (8)

The non-linear equations describing the kinematics, Eq. 1 can
be differentiated once to yield the following exact kinematic
relationship

σ̈ =

�
∂ f
∂σ

�
σ̇+

�
∂ f
∂ω

�
ω̇ (9)
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Now substituting for ω̇ from Eq. 5 in Eq. 9 and replacing σ̈
by the desired acceleration of Eq. 8, we obtain the following
acceleration constraint on the control ‘u’.�

∂ f
∂ω

�
[Ag(σ;ω)+Bu+H(σ;ω)] = σ̈r�

�
∂ f
∂σ

�
f (σ;ω)�

C ( f (σ;ω)� σ̇r)�K(σ�σr) (10)

which for the case of a square full rank ‘B’ matrix leads to the
nonlinear feedback control law

u =�B�1 (Ag(σ;ω)�Ψ) (11)

where

Ψ� �H(σ;ω)+

�
∂ f
∂ω

�
�1�

σ̈r �

�
∂ f
∂σ

�
f (σ;ω)�

C ( f (σ;ω)� σ̇r)�K(σ�σr)g (12)

Equation 11 is the ideal model inversion control law. Worthy
of note are the following: The control influence matrix ‘B’ is
assumed full rank i.e. rank(B) = n. If this is not the case then
the ideal control law obviously cannot guarantee perfect track-
ing as prescribed (an arbitrary desired acceleration cannot be
achieved). Secondly the implementation requires calculation
of two matrix inverses, We assume B�1 exists for the present
discussion, but later in the adaptive version of the above con-
trol law, we show how to implement the inverse directly rather
than estimating the matrix and then taking it’s inverse at each
instant of time. Finally, note the truth that for a ‘proper’ choice
of position and velocity coordinates and a ‘well-designed’ ref-
erence trajectory, the Jacobian matrix [∂ f =∂ω] almost always
has an inverse. The inverse of the kinematic description of any
rigid body orientation exists (and has a non-singular Jacobian
matrix), so long as the coordinates remain in a singularity free
volume. Moreover, the above control law guarantees exponen-
tial convergence of the tracking errors so long as the matrices
‘A’ and ‘B’ are known precisely. The proof of stability is triv-
ial and can be established from Eq. 6. What to do when A and
B are poorly known?

2.3 Structured Adaptive Model Inversion (SAMI)

The matrices ‘A’ and ‘B’ for the typical case of an aircraft or
a missile are obtained through experimentation and empirical
results and seldom known with high precision. Computational
fluid dynamics and other tools are also used to estimate the
aerodynamic and propulsive influences. These matrices are
typically only locally valid in the neighborhood of a specified
flight condition. As a consequence, these matrices virtually
always have significant unknown errors. Further, if a severe
maneuver is to be tracked or in the event of battle damage,
these influences may drastically change, thereby altering the
system input/output dynamics in a difficult to anticipate way.
To maintain and/or recover stability and to provide improved

robustness to changes in operating conditions, we present an
adaptive version of the above control law, where ‘A’ and ‘B’
are estimated on the fly. Eq. 11 gives us the desired control
law relation,

ë+Cė+Ke =
∂ f
∂ω

[Ag(σ;ω)+Bu�Ψ] (13)

Of course, if A and B are exactly known, then the right hand
side of Eq. 13 vanishes exactly. Let Â and B̂ be the esti-
mates of ‘A’ and ‘B’ obtained in real time from some (to-be-
specified) adaptation law, then the control law that’s imple-
mented is given by the following relation

u =�B̂�1 �Âg(σ;ω)�Ψ
�

(14)

Re-arranging the above yields the control identity

B̂u+ Âg(σ;ω)�Ψ = 0 (15)

Substituting Eq. 14 into Eq. 5, the result into Eq. 9, and fol-
lowing straightforward algebraic manipulations, we are led to
the closed-loop error dynamics:

ë+Cė+Ke =
∂ f
∂ω

�
Ãg(σ;ω)+ B̃u

�
(16)

where we have made use of Ã = A� Â; B̃ = B� B̂.

Equation 14 can further be written compactly as the first order
system

ε̇ = Amε+

"
0

∂ f
∂ω

Q̃T Φ

#
(17)

where,

ε =
�

e
ė

�
; Q̃ =

�
Ã
B̃

�
; Φ =

�
g(σ;ω)

u

�
;

Am =

�
0 I
�K �C

�
:

Now, we define a Lyapunov function as the positive definite
function

V = εT Pε+Tr
�
Q̃T Γ�1Q̃

�
(18)

where Tr(), defines the trace of a matrix () and Γ = ΓT > 0,
is a user-chosen positive definite symmetric adaptation gain
matrix and the unspecified matrix must also satisfy P = PT >
0. Obviously V is a positive definite measure of tracking and
learning errors with a global minimum at

�
ε = 0; Q̃ = 0

	
.

Differentiating ‘V ’ with respect to time and using Eq. 17, we
obtain

V̇ = �εT Rε+ εT
�

P1 P12

P12 P2

�" 0
∂ f
∂ω

Q̃T Φ

#
+

"
0

∂ f
∂ω

Q̃T Φ

#T �
P1 P12

P12 P2

�
ε+

Tr
�

Q̃T Γ�1 ˙̃Q+ ˙̃Q
T

Γ�1Q̃
�

(19)
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where P is now found as the solution of the algebraic Lya-
punov equation PAm +AT

mP = �R for a chosen R = RT > 0.
The Lyapunov equation always has a solution (i.e. a positive
definite P, for any chosen R = RT > 0) since Am is Hurwitz.
Equation 19 is now manipulated to cause all but the �εT Rε
term to vanish. This approach yields the following adaptation
law for the estimate of ‘Q’,

˙̂Q = ˙̃Q = Γ
�

∂ f
∂ω

�T

ėΦT (20)

and also the A, B adaptive estimates are

˙̂A = Γ1

�
∂ f
∂ω

�T

ėg (σ;ω)T ; ˙̂B = Γ1

�
∂ f
∂ω

�T

ėuT (21)

The above choice of adaptation laws leads us to

V̇ =�εT Rε � 0 (22)

and guarantees bounded tracking of all the trajectory error
states. To guarantee convergence of parameter estimates to
their true values, on the other hand, one needs persistent exci-
tation in the regression vector and for this parameter estima-
tion problem, one requires further analysis. To prove asymp-
totic convergence of trajectory tracking errors however, one
only needs to show that all the signals are bounded and from
Barbalat’s lemma[Ioannou and Sun (1995)], using the absolute
continuity arguments[Ioannou and Sun (1995)] one can con-
clude that ε ! 0, as t ! ∞. The following lemma establishes
asymptotic convergence of the tracking errors.

Lemma Consider the kinematic description of a dynamical
system as elicited in Eq. 2-4, the momentum level description
as the specialized class in Eq. 5 and a prescribed reference
trajectory generated from a system with similar description in
Eq. 2-4. Then control law in Eq. 14 together with the adapta-
tion laws in Eq. 21 guarantees asymptotic convergence of the
tracking errors ε i.e ε! 0, as t ! ∞.

Proof We define the following, x(t) 2 L∞ if jjx(t)jj∞
∆
=

sup
t � 0

jx(t)j < ∞ and x(t) 2 Lp if jjx(t)jjp
∆
= [

R ∞
0 jx(τ)jpdτ]1=p < ∞,

for p 2 [1;∞). From Eqs. 18 and 22, we conclude that ε 2
L∞, Q̃ 2 L∞ and hence Ã, B̃ 2 L∞. Further integrating Eq. 22
between the limits t = 0 and t = ∞, we obtain V(∞)�V (0) =R ∞

0 ε(τ)T Rε(τ)dτ < ∞ (Using the fact that V̇ � 0, V > 0). Thus
we conclude that ε 2 L2 and hence ε 2 L2\L∞.

Consider Eq. 17, where we have the boundedness of the first
term on the right hand side (Am is Hurwitz) established. We
now proceed to establish the boundedness of the second term.
We already know that Q̃ is bounded and for a coordinate choice
that’s away from singularities, ∂ f =∂ω is bounded. We only
need to show the boundedness of Φ to conclude the bounded-
ness of ε̇.

Now, Φ =
�
gT (σ;ω)uT

�T
and since e, ė2 L∞, and σr, σ̇r 2 L∞,

we conclude that σ, σ̇ 2 L∞ which implies that g(σ;ω) 2 L∞.

(In particular, we restrict g(σ;ω) to not have terms of the form
g1(σ;ω)=g2(σ;ω) where g2(σ;ω) could vanish locally). Sim-
ilarly looking at the expression for u, we conclude u 2 L∞ and
therefore Φ2 L∞. We have finally established that ε̇ is bounded
(i.e. ε̇ 2 L∞). Now, we are in a position to use Barbalat’s
Lemma [Ioannou and Sun (1995)] which implies that ε ! 0,
as t !∞, since ε 2 L2 \L∞ and ε̇ 2 L∞ and therefore e, ė! 0
as t ! ∞. This concludes the proof of asymptotic stability.

Example 1. We illustrate the above control methodology on
a simple example. Consider a reference trajectory generated
by by the following reference differential equation

ẍr + cẋr + kxr = ur (23)

Let the actual system be exactly modeled by the modified
Duffing differential equation

ẍ+a1ẋ+a2x+a3x3 = u (24)

The control objective is to force the actual non-linear system
of Eq. 24 to track a reference trajectory generated by the lin-
ear Eq. 23. This example provides a simple situation to eval-
uate the robustness of the Structured Adaptive Model Inver-
sion (SAMI) controller to parameter variations, un-modeled
dynamics, and initial condition errors. We follow this sim-
ple example with higher dimensional studies. The reference
trajectory is represented by xr, ẋr, which according to our no-
tation are designated σr and ωr respectively. Re-casting the
system in Eq. 24 into the generic state space form described in
Eqs. 1, 2-4, we obtain the specializations

σ = x;

ω = ẋ;

A =
�
�a3 �a2 �a1

�
g(σ;ω) =

�
x3 x ẋ

�T

B = 1;

H(σ;ω) = 0

f (σ;ω) = ω�
∂ f
∂σ

�
= 0�

∂ f
∂ω

�
= 1

Control Law:

u =�B̂�1 �Âg(σ;ω)�Ψ
�

Adaptation Laws:

˙̂A = γ1(ẋ� ẋr)

2
4 x3

x
ẋ

3
5

T

;

˙̂B = γ2(ẋ� ẋr)u
T
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Figure 1 : Reference trajectory and the actual trajectory for example 1

Table 1 : System and Control Gain Parameters for Example 1

True system parameters:
A = [1:5 �1 0:5]; B = b = 1

Model system parameters:
Ar = [1 1:4 ] ; Br = 1; ur = 1
Â(t = 0) = (1+0:25�RN)�A
B̂(t = 0) = (1+0:25�RN)�B
RN = Random number between �1 and 1

Desgin parameters:
C1 = 30; K1 = 120; γ1 = γ2 = 1

Initial conditions:
True system: [0:5 0:5]
Model system: [0 0]

where Ψ = fẍr �C1(ẋ� ẋr)�K1(x� xr)g, Â =�
�â3 � â2 � â1

�
, B̂ = 1=b̂, and γ1 and γ2 are chosen

scalar adaptation gains and K1 and C1 are selected to design
the desired tracking error dynamics. Note that we can define
M = B̂�1 and make use of the identity d

�
B̂B̂�1

�Æ
dt = 0,

leading to the adaptation law Ṁ = �γ2M
�
(ẋ� ẋr)uT

�
M to

be used in lieu of the ˙̂B equation. Thus u = �M(Âg�Ψ)
and we avoid the necessity of computing B̂(t) and B̂�1. It
is easy to verify that a large family of numerical values for
fK1; C1; γ1; γ2g lead to a corresponding family of
stable closed loop dynamic response characteristics. The

values for fK1; C1g can be selected to achieve the desired
eigenstructure for the closed loop response, whereas fγ1; γ2g
can be chosen based upon a simulation study considering a
family of representative model errors and disturbances. The
numerical values used for simulation in the example detailed
above are given in Tab. 1.

It is trivial to numerically verify that this control law is very ro-
bust to initial condition errors, modeling errors and parameter
uncertainties. In addition, observe that the true system in this
case is unstable. Thus the adaptive control law achieves essen-
tially perfect tracking in addition to stabilizing this unstable
system. The actual trajectory is plotted over the reference tra-
jectory in Fig. 1 while the position and velocity tracking errors
are plotted in Fig. 2. The control effort is plotted in Fig. 3.

2.4 Structured Adaptive Model Inversion for Aircraft Tra-
jectory Tracking

Having developed the control methodology and considered
a simple example, we now explore the application of SAMI
based controllers to different dynamical systems, each hav-
ing it’s own peculiarity in the system dynamics. Though the
above approach is fairly general, encompassing a very large
class of problems, sometimes it is required/desired to make
minor modifications to further tailor the procedure for partic-
ular problems. The examples studied in the next few sections
highlight this truth.
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Figure 2 : Position and velocity tracking errors for example 1

Figure 3 : Control effort for example 1

2.4.1 Longitudinal Dynamics for Vertical Takeoff and Land-
ing (VTOL) Aircraft

With reference to Fig. 4, consider the dynamics of a Harrier
class aircraft. In particular, consider the low-speed transition
from vertical take-off and landing (VTOL) to forward wing-
borne flight. The momentum level equations for the three de-
gree of freedom longitudinal dynamics are modeled by the fol-

lowing three differential equations:

mu̇ =�mqw+Fx(δe;δn;T;α;V)�mg sinθ (25)

mẇ = mqu+Fz(δe;δn;T;α;V)+mg cosθ (26)

Iq̇ = M(δe;δrcs;δn;T;α;V) (27)

where m and I are the instantaneous mass and pitch inertia,
velocity coordinates ω(t) consist of linear velocities and an-
gular velocity (u;w;q) with vector components taken in the
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Figure 4 : Harrier vertical takeoff and landing aircraft forces and moments

body axes system. The complicated non-linear function de-
pendence of Fx, Fz, M on fδe;δrcs;δn;T;α;Vg is simply noted;
these functional dependencies are not given in detail here (see
http://aero.tamu.edu/ucav ). The dependencies are often ap-
proximated for simulation by multi-dimensioned tables with
local interpolation. We are interested in the transition from
low-velocity thruster-supported and controlled flight to higher
velocity aerodynamically supported flight. Fx, Fz are the total
external forces acting on the a=c, while ‘M’ is the moment act-
ing along the y-axis of the body axes, g is the acceleration due
to gravity. Nominally the aerodynamic forces and moment are
predominantly functions of angle of attack ‘α’ and the total
velocity ‘V ’, defined as

α(t) = tan�1
�w

u

�
; V(t) =

�
u2 +w2�1=2

(28)

however, in the low speed transition region, these forces and
moments are also strongly dependent on the thrust vector mag-
nitude and direction, which alters the flow field about the
airplane and therefore modifies drastically the aerodynamic
forces and moments. This nonlinear coupling is very diffi-
cult to model accurately. The nonlinear aerodynamic force
and moment models for most simulations are based on ex-
perimental and computational sudies and are stored for real-
time interpolation in a multidimensional lookup table. The

set fδe;δn;δrcs;Tg represents the four-element control vec-
tor, consisting of the elevator δe, the thrust vector gimbal an-
gle δn, the reaction control δrcs and the thrust T . The position
coordinates σ(t) consist of (x;H;θ) where (x;H) represent the
location of aircraft cg in ground axes (x-location and altitude)
and θ is the pitch angle. The exact kinematic differential equa-
tions in terms of h(t), x(t) and θ(t) are given as

Ḣ(t) = u(t) sinθ(t)�w cosθ(t) (29)

ẋ(t) = u(t)cosθ(t)+w sinθ(t) (30)

θ̇ = q(t) (31)

Let the tracking error in position coordinates be denoted σ�
σr = [∆H ∆x δθ]T . We are not interested in tracking x-
location of the aircraft, although we want to track ground ve-
locity ẋ, along with other position coordinates H and θ. The
ideal model tracking error dynamics for this example are spec-
ified as�

∆Ḧ
∆θ̈

�
+

�
c1 0
0 c3

��
∆Ḣ
∆θ̇

�

+

�
k1 0
0 k3

��
∆H
∆θ

�
(32)

∆ẍ+ c2ẋ = 0 (33)
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(a) (b)

Figure 5 : (a) Error states; (b) References vs actual Trajectory

For this system we identify that

f (σ;ω) =

2
4 sinθ �cosθ 0

cosθ sinθ 0
0 0 1

3
5
8<
:

u
w
q

9=
; (34)

H(σ;ω) =

8<
:

�qw�g sinθ
qu+g cosθ

0

9=
; (35)

g(σ;ω; p;U)=

8<
:

Fx

Fz

M

9=
; (36)

∂ f
∂ω

=

2
4 sinθ �cosθ 0

cosθ sinθ 0
0 0 1

3
5 (37)

The uncertain terms g(σ;ω; p;U) are the aerodynamic and
propulsive forces and moments given by (Fx;Fz;M). Suppose
that the forces and moments have been linearized at a family of

equilibrium points (through out the trajectory given by (H;V)
as

g(σ;ω; p;U)= g(σr;ωr;Ur)+A(H;V)∆x+B(H;V )∆u (38)

Note that (H;V) are time varying for the maneuver that has
been considered. Hence, the assumption that unknown matri-
ces A and B are constant is no longer true. But we can typi-
cally assume that A and B are varying sufficiently slowly and
the adaptive laws continuously modify A and B fast enough
to guarantee stable tracking. We find this two time scale ap-
proach is usually valid, but is not universally true, of course.
The ideal model inversion control law is same as given by
Eq. 11. The adaptive control law (SAMI) adopted is given
by Eqs. 14 and 21.

Example 2. A trajectory was generated for a transition ma-
neuver using the approach in Verma and Junkins (1999, 2000)
for the Harrier VTOL aircraft. The maneuver starts with
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Figure 6 : Control requirements

thrust-borne flight at 20 f t=sec and 50 f t altitude and tran-
sitions to aerodynamic flight at 400 f t=sec and 1000 f t alti-
tude. Notice, during the course of this maneuver, the control
influence matrix changes in a drastic way due to the veloc-
ity squared dependence and propulsive/ aerodynamic coupling
effects. An adaptive controller is presented to track this tran-
sition trajectory, taking into consideration this wide variation
in control effectiveness. Modeling errors of up to 15% in all
system parameters were introduced in system matrices (aero-
dynamic derivatives etc.). The aircraft is also subjected to an
(unknown to the control system) external disturbance of tri-
angular vertical gust starting at 15 sec. and ending at 25 sec.
The aircraft response is plotted over the reference trajectory
in Fig. 5b. The tracking error in trajectory states is plotted
in Fig. 5a. The control requirements are plotted in Fig. 6. It
can be seen that admirable tracking has been achieved, keep-
ing the errors very small within desirable bounds. The control
requirement is reasonable and is seen to be well within satura-
tion limits. While technically the four actuators are redundant
for this three degree of freedom vehicle, the velocity depen-
dence of the control influence matrix means the aerodynamic
input δe has very limited effectiveness at low velocity. Finally
we desire not to utilize thrust vectoring at high velocity so the
system would become under-actuated at high velocity flight as
is usual for aircraft control.

2.5 Structured Adaptive Model Inversion for Tracking
Spacecraft Maneuvers

The rotational equations of motion[Junkinsand Turner (1986)]
of a spacecraft in any chosen reference frame can be structured
to follow the same form as in Eq. 1.

σ̇ =
1
4

B(σ)ω (exact kinematics) (39)

[I]ω̇+[ω̃][I]ω= u+d (uncertain dynamics) (40)

where,

B(σ) =
�
(1�σT σ)I3�3 +2[σ̃]+2σσT� (41)

[I] is the Inertia Matrix
d is the unknown bounded external disturbance vector and

[x̃] =

2
4 0 �x3 x2

x3 0 �x1

�x2 x1 0

3
5 is the skew symmetric vector

cross product operator

The modified Rodrigues Parameter vector[Shuster (1993)] σ
is adopted as a rigid body attitude measure relative to the in-
ertially fixed reference frame. Note that the vector σ contains
information about both the principal rotation axis ê and the
principal rotation angle Φ, since they are related through the
geometric condition

σ = ê tan
Φ
4

(42)

Therefore, σ ! 0 corresponds to zero angular error and for
σ!∞, the orientation corresponds to Φ!�360 which means
that the MRP vector set goes singular for large tumbling mo-
tions. For all rotations �180Æ < Φ < 180Æ, it is evident that
σT σ < 1. It has been shown that it is possible to map the orig-
inal MRP vector set to its corresponding shadow (or image)
counterpart σS through the transformation

σS =�
1

σ2 σ (43)

where the notation σ2 = σT σ is used. It can be shown that σ
and σS both satisfy the same differential equation Eq. 39. By
choosing to switch the MRPs; using Eq. 43 whenever σT σ =
σ2 > 1, the MRP vector remains bounded within a unit sphere,
even for the case of tumbling motion. Switching when the
σ2 = 1 surface is penetrated also results in the corresponding
MRPs always measuring the shortest rotational distance back
to the origin. (i.e., less than 180Æ). As mentioned earlier, it is
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assumed that the given (desired) reference trajectory, denoted
by σr(t) is twice differentiable. The trajectory tracking error
ε(t) can now be defined as

ε(t) = σ(t)�σr(t) (44)

For this case, we specify an ideal tracking error dynamics as
the PID form

ε̈+Cε̇+Kε+Ki

Z
εdt = 0 (45)

Note an integral feedback term has been added to the desired
tracking error dynamics. We could still retain the stability
properties by a proper choice of the matrices C, K and Ki, as
well as further optimize the closed loop response.

Note, as an alternative to the MRP vector, any attitude or po-
sition vector could have been used. The MRP vector however
has important advantages for large motions. We note this ap-
proach (imposing a sliding error surface dynamics) is closely
related to the developments in Ref. [19], however the use of
MRPs and especially, the important extensions to allow adap-
tive trajectory tracking are novel extensions of Paielli’s idea.

Carrying on with the developments mentioned earlier in this
paper we obtain�

∂ f
∂ω

�
ω̇ = σ̈r�

�
∂ f
∂σ

�
f (σ;ω)�C ( f (σ;ω)� σ̇r)�

K(σ�σr)�Ki

Z
(σ�σr)dt (46)

Thus we calculate the desired acceleration vector ω̇ which
would enforce linear tracking error dynamics thereby achiev-
ing the objective of dynamic inversion. Using this desired ω̇
one can impose an algebraic constraint that determines the re-
quired control torque by model inversion. For this spacecraft
maneuver problem, let us now evaluate the required quantities
to solve for the controls explicitly. Differentiating Eq. 39, we
obtain

σ̈ =
1
4

Bω̇+
1
4

Ḃω (47)

and we can make use of the explicit expression of the matrix
inverse of B which is

B�1 =
1

(1+σ2)2 BT (48)

The above expression is readily verified by using it to confirm
that B�1B = I3�3. Since for jσj � 1, the matrix B is obviously
always invertible (and this is another manifestation of the ad-
vantages of the MRPs as attitude co-ordinates). The product
Ḃω using the vector product definitions Eq. 41 for ‘B’ can be
expressed as

Ḃω = σT ω(1�σ2)ω� (1+σ2)
ω2

2
σ�

2σT ω[ω̃]σ+2(σT ω)2σ (49)

where the shorthand notation ω2 = ωT ω is used. The expres-
sion in Eq. 49 is obtained using the algebraic identities [ã]a= 0
and [ã][ã] = aaT � aT aI3�3, 8a 2 R3. If we denote the right
hand side of Eq. 49 as Ψ, we can rewrite Eq. 47 as

σ̈ =
1
4

Bω̇+Ψ (50)

Observing that [∂ f =∂ω] = B in this case, and using Eqs. 46
and 50 we obtain the desired angular acceleration vector ω̇ as
follows

ω̇ =
4BT

(1+σ2)2

�
σ̈r �Ψ�C(σ̇� σ̇r)�K(σ�σr)�

Ki

Z
(σ�σr)dt

�
(51)

Let us denote this acceleration constraint on ω̇ as ω̇=Θ, where
Θ represents the right hand side of Eq. 51. Using Eq. 40, we
then have the required torque

u = [ω̃][I]ω+[I]Θ�d (52)

The above control law will ensure that the tracking error dy-
namics is linear and of the form expressed in Eq. 45. Observe,
that even though Eqs. 51, 52 constitute nonlinear feedback
laws, the ideal tracking dynamics are implicitly constrained
to be a linear differential Eq. 45 with C, K and Ki left free as
the control design parameters.

It is mentioned here that some of these developments were mo-
tivated by those in Schaub, Akella, and Junkins (1999); Paielli
and Bach (1993). Paielli’s nice paper used the vector part of
the quaternion as attitude coordinates and did not consider any
adaptive control issues. In our work, we eliminated the �180Æ

singularities implicit in the Paielli formulation and also intro-
duced adaptive control methods to enable stable control with
large model errors. We also observe that the control law con-
tains the inertia matrix linearly. When the inertia matrix is un-
known, of course we cannot directly implement Eq. 52 exactly.
In the following section we introduce an adaptive controller for
such situations.

An attractive component of this methodology when dealing
with known system parameters is that the structure of the track-
ing error dynamics can be easily modified using standard lin-
ear control theory techniques, which lead to appropriate choice
of the constants C, K and Ki.

2.5.1 Structured Adaptive Model Inversion

While the desired acceleration vector Θ is a kinematic quantity
depending only on the position σ (and the derivatives thereof)
in order to compute the proper control vector to enforce lin-
earized tracking error dynamics, the system inertia matrix [I]
and the external torque vector d must be known precisely. In
the following development it is assumed that only crude es-
timates of the two are known. In this case, it is evident that
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the desired acceleration vector Θ is no longer equal to the ac-
tual acceleration ω̇. The following adaptive control law for-
mulation approach requires that the unknown parameters ap-
pear linearly in the control formulation. Therefore we rewrite
Eq. 52 as

u = [L�]g+[M�]Θ�d� (53)

where the matrices [L�] and [M�] are defined as follows

[L1] =

2
4 0 I23 �I23

�I13 0 I13

I12 I12 0

3
5 ;

[L2] =

2
4 I13 I33� I22 �I12

�I23 I12 I11 � I33

I22 � I11 �I13 I23

3
5 ;

[L�] = [L1
...L2];

[M�] = [I]

The vector d� is the true external torque and the 6�1 vector g
is defined as

g� [ω2
1 ω2

2 ω2
3 ω1ω2 ω2ω3 ω3ω1]

T

The control vector expression in Eq. 53 is rewritten by intro-
ducing a 3�10 matrix [Q�]

[Q�] = [L�
...M�

...d�] (54)

and the 10�1 vector of basis functions:

x �

2
4 g

Θ
�1

3
5 (55)

into a compact form for the adaptive feedback law:

u = [Q�]x (56)

Note that direct implementation using Eq. 56, would require
that all system parameters are perfectly known. Now assume
that the inertia matrix and the external disturbance torque vec-
tor are not known precisely. Using Eq. 56 the system is over-
parameterized because we have a 3�10 matrix parameterizing
all the uncertain parameters, however the actual number of un-
certain parameters are only 12 (nine components of the Inertia
matrix and the 3� 1 disturbance torque vector. This version
of the control law is a direct version as we are obviously not
learning the true parameters but some equivalent representa-
tion of the system; were we concerned with system identifi-
cation, then this redundant parameterization would have to be
avoided. The actual control vector u, which is implemented in
the adaptive approach, is given by the adaptive feedback law

u = [Q(t)]x (57)

where [Q(t)] = [L(t)
...M(t)

...d(t)] contains the time varying
adaptive estimates of the poorly known system parameters.
The difference between the adaptive estimates and true system
parameters is expressed through the error matrix

[Q̃] = [Q(t)]� [Q�] (58)

The desired linear tracking dynamics can be compactly written
as

ż = Az+b (59)

where

z�

8<
:

R
εdt
ε
ε̇

9=
; ; (60)

A�

2
4 0 I3�3 0

0 0 I3�3

�KiI3�3 �KI3�3 �CI3�3

3
5 ; (61)

b�

8<
:

0
0
ξ

9=
; ; and (62)

ξ�
1
4

B[I]�1[Q̃]x (63)

Let us now define a positive definite Lyapunov function V as
a positive measure of the tracking error (z) and the adaptation
errors Q̃.

V = zT Pz+Tr
�
Q̃T Γ�1Q̃

�
(64)

where P and Γ are yet to be determined positive definite gain
matrices. Differentiating the above with respect to time yields

V̇ = zT (PA+AT P)z+2zT Pb+2Tr
�

Q̃T Γ�1 ˙̃Q
�

(65)

Since [A] is a stable matrix, Lyapunov’s stability theorem for
linear systems states that for any symmetric positive definite
matrix [R], we are guaranteed that there exists a corresponding
symmetric, positive definite matrix [P] such that PA+AT P =
�R.

Therefore

V̇ = �zT Rz+2zT Pb+2Tr
�

Q̃T Γ�1 ˙̃Q
�
=

� zT Rz+2zT P3
1
4

B[I]�1Q̃x+2Tr
�

Q̃T Γ�1 ˙̃Q
�

(66)

where P3 is the 9�3 sub-matrix formed out of P = [P1
...P2

...P3].
Further we can show that

1
4

zT P3B[I]�1Q̃x =
1
4

Tr
�
xT Q̃T [I]�1BT PT

3 z
�

1
4

Tr
�
Q̃T [I]�1BT PT

3 zxT
�

(67)
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Figure 7 : Control of spacecraft tracking maneuvers with large disturbances

Therefore:

V̇ =�zT Rz+2Tr

�
1
4

Q̃T [I]�1BT PT
3 zxT + Q̃Γ�1 ˙̃Q

�
(68)

Thus we choose the adaptive update law to be of the form

Q̇ = ˙̃Q =�
1
4

Γ[I]�1BT PT
3 zxT (69)

This choice nulls the second term of Eq. 68 and we obtain:

V̇ =�zT Rz� 0 (70)

Choosing Γ = [I], we can eliminate both Γ and the unknown
inertia matrix [I] and the adaptive law becomes simply

Q̇ = �
1
B

T

PT
3 zxT (71)

Thus we achieve bounded tracking of all error states and
bounded parameter errors using the control law Eq. 57 in con-
junction with the adaptation law Eq. 71.

2.5.2 Numerical Simulations

Two different simulations were studied to explore the ade-
quacy of the control law proposed in the previous sections.

Example 3 Robust Tracking for Spacecraft Attitude Maneu-
vers

This example deals with de-tumbling a rigid spacecraft and
requiring it to track a smooth prescribed reference trajectory.
Another way of looking at this example would be to view it
from a ‘formation flight task point of view’. Imagine two rigid
spacecraft in formation flight, one being the chief and the other
a deputy. The commanded reference trajectory for the deputy
could be derived from the ideal or desired relative motion and
relayed to the deputy by the chief. The deputy now tries to
follow the chief’s commanded trajectory. The reference ma-
neuver in this case was simply designed to orient a spacecraft
at rest from 3-1-3 Euler angles (-20, 15, 4 deg) to the angles
(40, 35, 40) with a zero final angular velocity. This illustrative
reference trajectory for the MRPs corresponding to the above
specified Euler angles was chosen to be cubic splines functions
of time. The maneuver is by no means an optimal maneuver
satisfying some performance index, it is simply an illustration
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Figure 8 : Control of spacecraft tracking maneuvers with large disturbances

to evaluate the effectiveness of the control law derived in ear-
lier sections. The spacecraft properties are taken from Akella,
Junkins, and Robinett (1998).

A large and persistent disturbance of magnitude d(t) =
0:02 sin[log(2+ cos t)][1;1;1]T rad=s2 (unknown to the adap-
tive controller), is applied to the system throughout it’s maneu-
vering phase The control law compensates for all errors and is
able to track the simple reference maneuver (Fig. 7(a) (b)) very
well, in spite of all these uncertainties and disturbances. The
time histories of the MRP and the angular velocity errors can
be seen in Fig. 8(a) (b). Note very high control torques are
demanded to correct for the errors initially. This is mainly be-
cause of the large initial condition errors and the large external
disturbances. These control torque demands are not physically
achievable on a spacecraft mission. However the saturated
control case in Fig. 8(c) shows that the tracking is near perfect
after a few seconds even when there is a drastic torque reduc-
tion imposed, to restrict the magnitude to an achievable torque
bound. Further it is mentioned that the reference maneuver
and control gains do not correspond to any optimal strategy
and hence the control demands must be viewed in this context.
The control histories in Fig. 8(c) shows a periodic oscillatory
behavior, required to cancel the external disturbance.

2.6 Constrained Second Order Dynamical Systems

Consider the class of dynamical systems whose behavior is
governed by the classical discrete coordinate version[Junkins
and Kim (1995)] of Lagrange’s equations:

d
dt

�
∂L
∂q̇

�
�

∂L
∂q

= Q (72)

where the Lagrangian L is defined in the classical form L =
T �V and Q is the generalized force. The kinetic and potential
energy functions have the forms T = T (q; q̇; t), V = V(q). A
modest generalization using the Lagrange multiplier approach
allows Eq. 72 to be applied to a significant class of redundant
coordinate, constrained systems. The constraints resulting due
to redundant coordinates can be formulated as kinematic non-
holonomic constraints of the Pfaffian type and expressed as

Aq̇+a0 = 0 (73)

For an n coordinate system with m redundancy, Lagrange’s
equations are modified with the additional constraint forces as

d
dt

�
∂L
∂q̇

�
�

∂L
∂q

= Q+AT λ (74)
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where A = A(q) is an m�n continuous, differentiable matrix
function, a0(q) is a smooth, m�1 vector function, and λ is an
m�1 vector of Lagrange multipliers.

For natural multi-body systems, the kinetic energy can be writ-
ten as a symmetric quadratic form in the generalized velocities

T =
1
2

n

∑
i=1

n

∑
j=1

mi j(q)q̇iq̇ j =
1
2

q̇T Mq̇ (75)

It is convenient to collect the mass matrix M = M(q) using
velocity level kinematics, before the differentiation implied by
Lagrange’s equations are carried out. The equations of mo-
tion then follow[Junkins and Kim (1995)] from Eq. 74 as the
following system of second order equations

Mq̈+
∂V
∂q

+G = Q+AT λ (76)

where ∂V=∂q is the n� 1 vector gradient of the potential en-
ergy function. The n�1 vector G = G(q; q̇) is given as

G =
�
q̇C1q̇ � � � q̇TCNq̇

�T
(77)

c(i)jk =
1
2

�
∂mi j

∂qk
+

∂mik

∂q j
�

∂m jk

∂qi

�
; (78)

where mik are the elements of the mass matrix, ci
jk generates

an element of the n� n symmetric matrix Ci = Ci(q) and is
known as the Christoffel operator. Clearly the Ci and therefore
G vanishes identically if the simplest case for which the mass
matrix is configuration invariant. For the case wherein the non-
conservative forces are generated by a m�1 vector of control
inputs u, we typically have Q = Bu and Eq. 76 becomes

M(q)q̈+
∂V
∂q

+G(q; q̇) = Bu+A(q)T λ (79)

To obtain the solution for this redundant coordinate dynami-
cal system it is convenient to differentiate the kinematic con-
straints in Eq. 73 obtain the constraints at momentum level,
given as

Aq̈+ Ȧq̇+ ȧ0 = 0 (80)

One standard approach for solving n + m unknowns in the
vectors q(t) and λ(t) is to solve Eqs. 79 and 80 simultane-
ously[Ahmad and Zribi (1991); Krishnan (1992)]. The result-
ing generalized constraint forces AT λ and the dynamics of the
system can be given as

AT λ = F1 +F2u (81)

Mq̈+
∂V
∂q

+G0 = B0u (82)

where F1 =AT (AM�1AT )�1
�
AM�1 (G+∂V=∂q)� (Ȧq̇+ ȧ0)

�
,

F2 =�AT (AM�1AT )�1AM�1B, and G0 = G�F1, B0 = B�F2.

Note that, though Eq. 82 represents the n coupled differen-
tial equations governing the dynamics of the system, not all of
them are independent. Also note the presence of the inverse of
mass matrix in the differential equation governing the dynam-
ics of the system.

Another way of approaching the solution of this system is to
project the dynamics of the system onto the null space of the
constraints or null space of matrix A. Let us first componenti-
ate the n-dimensional vector space into two orthogonal spaces
defined by range space of S1 2 Rn�m, and S2 2 Rn�(n�m). Fur-
ther, S1 is chosen such that (AS1)

�1 exists. Let the acceleration
vector q̈(t) be given as

q̈(t) = S1ξ(t)+S2η(t) (83)

Then from Eq. 80, we get

ξ(t) =�(AS1)
�1(AS2η+ Ȧq̇): (84)

If we define N =Null(A), then we have AN = 0. Using Eqs. 76
and 84, the projected dynamics of the system on null space of
constraints is given as

NT M(I�S1(AS1)
�1A)S2η�NT MS1(AS1)

�1Ȧq̇

= NT
�

Bu�G�
∂V
∂q

�
(85)

Let coordinates q be arranged such that matrix A is defined as

A = [A1 A2] (86)

and A1 2 Rm�m is full rank. It can be easily verified that the
null space of matrix of A can be written

N =

�
�A�1

1 A2

I

�
(87)

Let us also choose the matrix S1 and S2 as

S1 =

�
Im�m

0

�
; S2 =

�
0

I(n�m)�(n�m)

�
: (88)

Hence if q̈(t) is partitioned as q̈(t) =

�
q̈1(t)
q̈2(t)

�
, then q̈1(t) =

ξ(t) and q̈2(t) = η(t). Using Eqs. 86, 87 and 88, the Eq. 85
can be simplified to give the dynamics as

NT MNq̈2 = NT
�

M

�
A�1

1 Ȧ
0

�
q̇+Bu�G�

∂V
∂q

�
: (89)

In many systems, the mass matrix M can be block partitioned

as M =

�
M1 0
0 M2

�
.

Substituting the mass matrix M and the matrix N from
Eq. 87 and defining H1 = A�1

1 A2, H2 = A�1
1 Ȧ and H3 =�

�HT
1 I(n�m)�(n�m)

�
, Eq. 89 is further simplified as

(M̃1 +M2)q̈2 + G̃ = H3Bu (90)

where M̃1 = HT
1 M1H1, G̃ = HT

1 M1H2q̇+H3G.
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Figure 9 : Dual robot cooperative manipulation example

2.6.1 Dynamics of a Dual Robot System

Consider the pair of robot arms moving a payload[Junkins and
Kim (1995); Sanyal, Verma, and Junkins (2000)] as shown in
Fig. 9. For simplicity, we assume that there are four active
joints, namely, the shoulder and elbow joints of the left and
right robot arms. The wrist joints are considered free. We as-
sume the manipulator to be composed of rigid links, the pay-
load to be a rigid body, and the entire system to undergo planar
motion. We also assume that there are no conservative forces
and hence, neglect gravitational potential energy (V ) in this
example. In this example, the configuration coordinate vec-
tor naturally partitions into left (L), right (R), and payload (P)
configuration coordinates as:

q =

8<
:

qL

qR

qP

9=
; =

�
θ1 θ2

... θ3 θ4
... θ5 xc3 yc3

�T

The 7� 7 system mass matrix has the block diagonal struc-
ture[Junkins and Kim (1995); Sanyal, Verma, and Junkins
(2000)] given as M(q) = diag [ML; MR; Mp]. Introducing
the elbow angles θi j = θ j � θi the partitioned mass matrices

can be compactly written as:

ML =

�
I1 +

1
4 m1l2

1 +m2l2
1

1
4 m2l1l2 cosθ12

1
4 m2l1l2 cosθ12 I2 +

1
4 m2l2

2

�
; (91)

MR =

�
I4 +

1
4 m5l2

5 +m4l2
4

1
4 m4l5l4 cosθ65

1
4 m4l5l4 cosθ65 I4 +

1
4 m4l2

4

�
; (92)

Mp = diag [I3; m3; m3] : (93)

The nonlinear vector G(q; q̇) has the form:

G(q; q̇) =

8<
:

GL

GR

0

9=
; ; (94)

GL =
1
2

�
�m2θ̇2l1l2 sinθ12

�m2θ̇1l1l2 sinθ12

�
; (95)

GR =
1
2

�
�m4θ̇5l4l5 sinθ65

�m4θ̇6l4l5 sinθ65

�
(96)

The control vector containing the four shoulder and elbow
torques is

u = [u1 u2 u6 u5]
T (97)
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and, we can readily establish that the control influence matri-
ces are

B =

2
4 BL 0

0 BR

0 0

3
5 ; BL = BR =

�
1 �1
0 1

�
(98)

Taking the origin for an inertial coordinate system (x;y) at the
shoulder joint of the left arm, the geometric constraints arising
out of the fixing of left and right robot wrists to the payload at
points Q and P are:

l1 cosθ1 + l2 cosθ2 +
1
2

l3 cosθ3� xc3 = 0 (99)

l1 sinθ1 + l2 sinθ2 +
1
2

l3 sinθ3� yc3 = 0 (100)

l5 cosθ6 + l4 cosθ5�
1
2

l3 cosθ3� xc3 +D = 0 (101)

l5 sinθ6 + l4 sinθ5�
1
2

l3 sinθ3� yc3 = 0 (102)

The above four constraints effectively reduce the seven de-
grees of freedom of the system to only three degrees of free-
dom. On differentiating Eqs. 99-102 with respect to time,
yields a kinematic constraint of the Pfaffian form like Eq. 73
with a0 = 0 and with

A(q) =

�
AL 0 ALP

0 AR ARP

�
; (103)

where

AL =

�
�l1 sinθ1 �l2 sinθ2

l1 cosθ1 l2 cosθ2

�
; (104)

AR =

�
�l5 sinθ6 �l4 sinθ5

l5 cosθ6 l4 cosθ5

�
; (105)

ALP =

�
� 1

2 l3 sinθ3 �1 0
1
2 l3 cosθ3 0 �1

�
; (106)

ARP =

� 1
2 l3 sinθ3 �1 0
� 1

2 l3 cosθ3 0 �1

�
: (107)

To represent the dynamics of the system as described by
Eq. 90, we need to identify the following variables:

M1(q) =

�
ML(q)

MR(q)

�
4�4

; (108)

M2 = [MP]3�3 = diag
�

I3; m3; m3
�

(109)

A1(q) =

�
AL(q)

AR(q)

�
4�4

; (110)

A2(q) =

�
ALP(q)
ARP(q)

�
4�3

: (111)

2.6.2 Ideal Model Inversion

Assume that we are given a reference trajectory qr, which is
twice differentiable. This implies that at each point of time

we have all the reference position, velocity and acceleration
coordinates (qr, q̇r, q̈r) available. Defining error as e = q2 �
q2;r, the error dynamics can be written as�
M̃1(q)+M2

�
ë = �G̃(q; q̇)+H3(q)Bu+

�
M̃1(q)+M2

�
q2;r

(112)

We define the model error dynamics as

�
M̃1(q)+M2

�
ë+

�
C+

1
2

˙̃M1(q)

�
ė+Ke = 0; (113)

where matrices C and K are positive definite. It can
be seen that if we chose Lyapunov function as V =
1
2 ėT

�
M̃1(q)+M2

�
ė+ 1

2 eT Ke, the time derivative of Lyapunov
function is

V̇ = ėT �M̃1(q)+M2
�

ë+
1
2

ė ˙̃M1(q)ė+ eT Kė (114)

or V̇ = �ėT Cė� 0.

By taking higher time derivatives of V , it can be easily shown
that the dynamics of Eq. 113 are asymptotically[Mukherjee
and Chen (1992, 1993)]. The ideal inversion controller for
achieving the model error dynamics of Eq. 113, results in the
following non-linear feedback control law:

u = (H3B)† (M2q̈2;r�ψ) (115)

where

ψ = �G̃� M̃1q̈2;r +

�
C+

1
2

˙̃M1

�
ė+Ke (116)

and ()† denote the pseudo inverse of the quantity in paren-
theses. As seen in earlier examples, for perfect tracking of a
trajectory using inverse dynamics control law, the rank of the
control influence matrix should at least be equal to the degree
of freedom of the system. When the system is over-actuated,
the pseudo inverse ensures the minimum norm solution for the
control vector. Due to uncertainties in the payload parameters,
the payload mass matrix M2 is poorly known and hence the
controller in Eq. 115 can not be implemented exactly. We also
assume that the control influence matrix B is uncertain. As is
the case in this example, it is assumed that both uncertain ma-
trices M2 and B are constant. In the next section we develop
the structured adaptive model inversion control law algorithm
to provide robustness in the presence of these uncertainties.

2.6.3 Cooperative Adaptive Control of the Dual Robot Sys-
tem

Let M̂2 and β̂ be the time varying estimates of the respective
true (but unknown) constant matrices M2 and B, where the es-
timates are obtained in real time from some adaptation law.
Then, the following relation gives the control law that’s imple-
mented

u =
�

H3β̂
�† �

M̂2q̈2;r�ψ
�

(117)
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Re-arranging the above yields the control identity

H3B̂u� M̂2q̈2;r +ψ = 0: (118)

Note that the true error dynamics of Eq. 112 can be re written
as

�
M̃1(q)+M2

�
ë+

�
c+

1
2

˙̃M1(q)

�
ė+Ke

= H3(q)Bu�M2q̈2;r +ψ (119)

From Eq. 119 and Eq. 118 we obtain the error dynamics in the
form

�
M̃1(q)+M2

�
ë+

�
C+

1
2

˙̃M1(q)

�
ė+Ke

= H3(q)∆Bu�∆M2q̈2;r; (120)

where, ∆M2 = M2 � M̂2 and ∆B = B� B̂. Now we define a
Lyapunov function as

V =
1
2

ėT
�
M̃1(q)+M2

�
ė+

1
2

eT Ke+

1
2

Tr
�
∆MT

2 Γ�1
m ∆M2 +∆BT Γ�1

b ∆B
�
; (121)

where Γm and Γb are user-defined positive definite symmet-
ric adaptation gain matrices. The time derivative of Lyapunov
function is obtained as

V̇ =�ėT Cė+Tr
�
∆MT

2

�
Γ�1

m ∆Ṁ2 � ėq̈T
2;r

�
+

∆BT
�
Γ�1

b ∆Ḃ+HT
3 ėuT

��
(122)

The adaptive laws for M̂2 are B̂ obtained from the above equa-
tion so as to force the terms in square bracket to go to zero.
The resulting adaptive laws are:

Ṁ2 = �Γmėq̈T
2;r; Ḃ = ΓbHT

3 ėuT (123)

The resulting time derivative of the Lyapunov function is

V̇ =�ėT Cė (124)

Since V̇ is semi negative definite, it ensures that the tra-
jectory tracking dynamics is stable and all error states are
bounded. However, this does not ensure that the error dynam-
ics is asymptotically stable. The proof for asymptotic stabil-
ity requires similar arguments as those described in the above
Lemma. Eq. 117 along with Eq. 123 represents the complete
structure of the control law. The design parameters for this
controller are the matrices C, K, which define the model er-
ror dynamics as in Eq. 113, the adaptive gain matrices Γm, Γb.
The payload matrix M̂2(0) and control influence matrix B̂(0)
has to be initialized with the best possible estimates available.
For the numerical simulation, first a smooth reference trajec-
tory was generated using the approach as outlined in Junkins

Figure 10 : Reference trajectory for the payload

and Kim (1995); Verma and Junkins (1999). The initial and
final boundary conditions for the payload trajectory are cho-
sen as [0, 4.5, 3.5] and [π=2, 0, 1] respectively, where the first
coordinate is the angular displacement in radians and the other
two coordinates are the (x, y) location of the payload. Fig. 10
shows the reference trajectory of the payload for a rest to rest
maneuver.

Each arm length for the robot is chose as 5 m and the sepa-
ration between the two shoulders is chosen as 6 m. The true
payload was chosen as having a mass of 8 kg and inertia of 10
kg�m2. Large uncertainty was assumed in the payload. The
initial uncertain estimate of the payload is chosen to have a
mass of 3 kg (62% error) and inertia of 5 kg�m2 (50% error).
An initial error was introduced in position as well as velocity
coordinates. Fig. 11 shows the response of error states for ideal
case (when no uncertainty present), and the cases with un-
certainty including both, the adaptive and non-adaptive cases.
The figure shows the advantage and the effectiveness of adap-
tive controls by suppressing the errors more effectively in the
trajectory states. We note that small ex, ey offsets are evident
in Fig. 11. Of course, these can be eliminated by including
integral feedback in Eq. 113, analogous to Eq. 45.

3 Conclusions

We presented through various examples from aerospace and
robotic systems, an elegant methodology to derive control
laws, based on Structured Adaptive Model Inversion. The
highlight of this exercise is the ability to enforce the ex-
act kinematic relationships on the system under considera-
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Figure 11 : Comparative payload trajectory error plots for
ideal case, uncertain case with and without adaptation

tion and be able to derive a robust trajectory-tracking con-
troller. The controller is shown to be robust under a variety
of structured and unstructured perturbations like external dis-
turbances, modeling errors, initial condition errors and para-
metric uncertainties with and without actuator saturation. The
trajectory tracking in all cases is admirable and the controls
are within acceptable limits.
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