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Boundary Element Stress Analysis of Thick Reissner Plates in Bending under
Generalized Loading

A. El-Zafrany1

Abstract: In a recent publication, the author has intro-
duced boundary integral equations for thick plate bend-
ing problems, for cases with generalized types of load-
ing. Internal bending moments and shear forces, required
for stress analysis, were calculated by means of a finite
difference procedure, which requires fine boundary ele-
ment meshes to achieve an acceptable degree of accu-
racy. In this paper, boundary integral equations for in-
ternal bending moments and shear forces are presented
for thick Reissner plates in bending. Domain loading
terms in those boundary integral equations have also been
simplified for a variety of loading types including con-
centrated loading, linearly-distributed loading, and line
bending moments and shear forces acting on arbitrary
curves defined on the plate surface. A number of case
studies, with different loading and boundary conditions,
have been analysed and boundary element results have
been compared with corresponding analytical solutions.
It is clear that the boundary integral equations, presented
in this work, for internal bending moments and shear
forces, have led to very accurate results for plate bend-
ing problems with generalized types of loading.

1 Introduction

The boundary element analysis of thick Reissner plates in
bending was first introduced in 1982 by Weeën (1982).
Since then, several papers [Antes (1984); Karam and
Telles (1988); Long, Brebbia, and Telles (1988); El-
Zafrany, Debbih, and Fadhil (1995); El-Zafrany, Fad-
hil, and Debbih (1995); El-Zafrany and Fadhil (1997);
El-Zafrany (1998a)] have appeared in the literature,
with some interesting developments on Weeën’s origi-
nal work. In a recent publication [El-Zafrany (1998b)],
the author has introduced boundary integral equations for
thick plate bending problems, for cases with generalized
types of loading. Internal bending moments and shear
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forces, required for stress analysis, were calculated by
means of a finite difference procedure, which requires
fine boundary element meshes to achieve an acceptable
degree of accuracy.

In this paper, boundary integral equations for internal
bending moments and shear forces are presented for thick
Reissner plates in bending. Domain loading terms in
those boundary integral equations have been reduced to
single terms for cases with concentrated shear forces
and bending moments, and they have also been reduced
to boundary integrals for cases with linearly-distributed
loading, and line bending moments and shear forces act-
ing on arbitrary curves defined on the plate surface. The
new derivations have been implemented in a computer
program for the analysis of thick Reissner plates in bend-
ing, and several case studies were analysed.

2 Review of governing equations

For a plate of uniform thickness h, the equilibrium equa-
tions, over the plate thickness, derived according to
Reissner’s [Reissner (1945)] theory, can be written in the
following form:

Mxx;x +Mxy;y�Qx = 0 (1)

Myx;x +Myy;y�Qy = 0 (2)

Qx;x +Qy;y +q = 0 (3)

where bending moments per unit length (Mxx, Myy, Mxy)
and shear forces per unit length (Qx, Qy ) are defined in
terms of the lateral deflection w and the average slope an-
gles (θx, θy) by means of the following generalized equa-
tions:

Mαβ =
1
2
(1�ν)D

�
θα;β +θβ;α

�
+δα;β

[Dν(θ1;1+θ2;2 +ζq] (4)

Qβ =
1
2
(1�ν)Dλ2 �θβ +w

;β
�

(5)
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where D is the flexural rigidity of the plate, ν is its Pois-
son’s ratio, λ2 = 10=h2, q is the domain loading intensity
defined as shear force per unit area of the plate surface,
and

ζ =
ν

(1�ν)λ2
; fβ;α �

∂ fβ

∂xα
; α = 1;2; β = 1;2;

with (x1;x2)� (x;y), ()1 � ()x, ()2 � ()y, etc.

Using a weighted-residual approach, and Cauchy’s pric-
ipal value theorem, the boundary integral equations for
thick plates can be obtained as follows [El-Zafrany and
Fadhil (1997)]:

c11θx(xi;yi)+c12θy(xi;yi)+c13w(xi;yi)

+
I

Γ
(T11θn+T21θt +T31w)dΓ

=
I

Γ
(U11Mn +U21Mnt +U31Qn)dΓ+

ZZ
Ω

L1qdΓ (6)

c21θx(xi;yi)+c22θy(xi;yi)+c23w(xi;yi)

+
I

Γ
(T12θn+T22θt +T32w)dΓ

=
I

Γ
(U12Mn +U22Mnt +U32Qn)dΓ+

ZZ
Ω

L2qdΓ (7)

c31θx(xi;yi)+c32θy(xi;yi)+c33w(xi;yi)

+
I

Γ
(T13θn+T23θt +T33w)dΓ

=
I

Γ
(U13Mn +U23Mnt +U33Qn)dΓ+

ZZ
Ω

L3qdΓ (8)

where the parameters θn, θt , Mn, Mnt , Qn and the differ-
ent kernel functions are as defined in Appendix A.

Hence, at an internal source point (xi, yi) the slope angles
and lateral deflection are given by the following bound-
ary integral equations:

θx(xi;yi) = �

I
Γ
(T11θn +T21θt +T31w)dΓ

+
I

Γ
(U11Mn +U21Mnt +U31Qn)dΓ+

ZZ
Ω

L1qdΓ (9)

θy(xi;yi) =�

I
Γ
(T12θn +T22θt +T32w)dΓ

+
I

Γ
(U12Mn +U22Mnt +U32Qn)dΓ+

ZZ
Ω

L2qdΓ (10)

w(xi;yi) =�

I
Γ
(T13θn +T23θt +T33w)dΓ

+
I

Γ
(U13Mn +U23Mnt +U33Qn)dΓ+

ZZ
Ω

L3qdΓ (11)

3 Boundary integral equations for bending mo-
ments and shear forces

Substituting from Eqs.9-11 into Eq. 4, then the boundary
integral equations of bending moments, per unit length,
at an internal source point (xi, yi) can be expressed as
follows:

Mαβ(xi;yi) =
I

Γ

�
Aαβ1θn+Aαβ2θt +Aαβ3w

�
dΓ

�

I
Γ

�
Bαβ1Mn +Bαβ2Mnt +Bαβ3Qn

�
dΓ�

ZZ
Ω

pαβqdΓ+δαβζq (12)

where

Aαβ j =
1
2

D(1�ν)
�
Tjα;β +Tjβ;α

�
+

δαβDν(Tj1;1 +Tj2;2) (13)

Bαβ j =
1
2

D(1�ν)
�
Ujα;β +Ujβ;α

�
+

δαβDν(Uj1;1+Uj2;2) (14)

pαβ =
1
2

D(1�ν)
�
Lα;β +Lβ;α

�
+

δαβDν(L1;1 +L2;2) (15)

where j = 1;2;3.

Similarly by substituting from Eqs. 9-11 into Eq. 5, the
boundary integral equations of shear forces, per unit
length, at an internal source point (xi, yi) can be expressed
as follows:

Qβ(xi;yi) =
I

Γ

�
φβ1θn+φβ2θt +φβ3w

�
dΓ�

ZZ
Ω

ΛβqdΓ

�

I
Γ

�
ψβ1Mn +ψβ2Mnt +ψβ3Qn

�
dΓ (16)

where

φβ j =
1
2

Dλ2(1�ν)
�
Tj3;β�Tjβ

�
(17)

ψβ j =
1
2

Dλ2(1�ν)
�
Uj3;β�Ujβ

�
(18)

Λβ =
1
2

Dλ2(1�ν)
�
L3;β�Lβ

�
(19)

Using the expressions of kernel functions of displace-
ment boundary integral equations given in Appendix A,
explicit expressions for the moment and shear kernel
functions can be obtained as listed in Appendix B.
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4 Analysis of loading domain integrals

Using the approach presented in El-Zafrany (1998b), the
loading domain integrals in different boundary integral
equations presented in this work can be simplified and
reduced for different types of loading as will be discussed
in this section.

4.1 Case with concentrated loading

Consider a case where a concentrated shear force F and
bending moments Tx, and Ty are acting at a point (xl , yl),
in the z, x, and y directions, respectively. Using the prop-
erties of the Dirac delta function [El-Zafrany (1998b)],
the corresponding domain loading terms in Eqs. 6-11 can
be reduced as follows:
ZZ

Ω
Ljqdxdy

�

ZZ
Ω

Lj

�
�Tx

∂
∂y

+Ty
∂
∂x

+F

�
δ(x�xl ;y�yl)dxdy

=

�
Tx

∂
∂y
�Ty

∂
∂x

+F

�
Lj at x = xl , y = yl

��Q j1Ty +Q j2Tx +Q j3F (20)

where Q jβ =
∂

∂xβ
Lj , Q j3 = Lj at x = xl , y = yl . Hence,

the domain loading term in Eq. 12 can be simplified as
follows:
ZZ

Ω
pαβqdxdy ��Cαβ1Ty +Cαβ2Tx +Cαβ3F (21)

where

Cαβ j =
1
2

D(1�ν)
�
Qα j;βQα j;β

�
+δαβDν(Q1 j;1 +Q2 j;2)

(22)

which can be defined explicitly with respect to the source
point (xi, yi) by means of the following equations:

Cαβγ =
1�ν
4πrl

�
2

∂rl

∂xα

∂rl

∂xβ

∂rl

∂xγ
+

�
1�

2α1

r2
l

��
∂rl

∂xα
δβγ+

∂rl

∂xβ
δγα +

∂rl

∂xγ
δαβ�4

∂rl

∂xα

∂rl

∂xβ

∂rl

∂xγ

��
+

δαβν
2πrl

∂rl

∂xγ
(23)

Cαβ3 =
1

8π

�
2(1+ν)δαβ logzl � (1�ν)

�
1�

2α1

r2
1

�
�

δαβ�2
∂rl

∂xα

∂rl

∂xβ

��
(24)

where α = 1;2, β = 1;2, γ = 1;2,

rl =

q
(xl �xi)

2 +(yl �yi)
2; (25)

∂rl

∂x
=

xl �xi

rl
;

∂rl

∂y
=

yl �yi

rl
; (26)

zl = λrl , and α1 is as defined in Appendix A.

Similarly, the domain loading term in Eq. 16 can be re-
duced as follows:
ZZ

Ω
Λβqdxdy� �Cs

β1Ty +Cs
β2Tx +Cs

β3F (27)

where

Cs
β j =

1
2

D(1�ν)λ2 �Q3 j;β�Qβ j

�
(28)

or explicitly:

Cs
βα =�

1

2πr2
l

�
δαβ�2

∂rl

∂xα

∂rl

∂xβ

�
(29)

Cs
β3 = �

1
2πrl

∂rl

∂xβ
(30)

4.2 Case of line loading on an arbitrary curve

Consider a loaded curve Γl , inside the domain Ω of the
plate midplane, with line loadings Q, Mn, Mt , which rep-
resent shear force, and normal and tangential bending
moments per unit length along Γl . Using an approach
similar to that given in El-Zafrany (1998b), it can be
shown that:
ZZ

Ω
Ljqdxdy =

Z
Γl

�
Mn

∂
∂t
�Mt

∂
∂n

+Q

�
LjdΓ

�

Z
Γl

(�q j1Mt +q j2Mn +q j3Q)dΓ (31)

where q j3 = Lj , q jβ =
∂

∂nβ
Lj

Hence it can be reduced for this case of loading that:
ZZ

Ω
pαβqdxdy�

Z
Γl

�
�χαβ1Mt +χαβ2Mn +χαβ3Q

�
dΓ

(32)

where

χαβ j =
1
2

D(1�ν)
�
qα j;β +qβ j;α

�
+δαβDν(q1 j;1+q2 j;2)

(33)
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which can be written explicitly as follows:

χαβγ =
1�ν
4πr

�
2

∂r
∂xα

∂r
∂xβ

∂r
∂nγ

+

�
1�

2α1

r2

��
∂r

∂xα

�
n̂γ � îβ

�
+

∂r
∂xβ

�
n̂γ � îα

�
+

∂r
∂nγ

δαβ�4
∂r

∂xα

∂r
∂xβ

∂r
∂nγ

��

+
δαβν
2πr

∂r
∂nγ

(34)

χαβ3 �
1

8π

�
2(1+ν)δαβ logz� (1�ν)

�
1�

2α1

r2

�
�

δαβ�2
∂r

∂xα

∂r
∂xβ

��
(35)

with z and r and its derivatives as defined in Appendix A.

Similarly, it can be deduced that:
ZZ

Ω
Λβqdxdy �

Z
Γl

�
�χs

β1Mt +χs
β2Mn+χs

β3Q
�

dΓ (36)

where χs
β j =

1
2 Dλ2(1�ν)

�
q3 j;β�qβ; j

�
or explicitly

χs
βα =�

1
2πr2

��
n̂α � îβ

�
�2

∂r
∂xα

∂r
∂xβ

�
(37)

χs
β3 ��

1
2πr

∂r
∂xβ

(38)

4.3 Case with distributed loading

From the definitions of loading kernels [El-Zafrany, Deb-
bih, and Fadhil (1995)], it can be shown that:

Lα =

�
1+

ν
(1�ν)λ2 ∇2

�
∂φ�

∂xα
; (39)

L3 =

�
1�

2�ν
(1�ν)λ2 ∇2

�
φ� (40)

where φ� =
r2

8πD
(logz�1)

Substituting from Eq. 39 and 40 into Eq. 15, it can be
proved that

pαβ =

�
(1�ν)

∂2

∂xαxβ
+δαβν∇2

�
ψ� (41)

where

ψ� = D

�
1+

ν
(1�ν)λ2 ∇2

�
φ�

�

1
2π

�
r2

4
(logz�1)+

v logz
(1�ν)λ2

�
(42)

Assuming a linearly-distributed loading defined in terms
of the following intensity:

q(x;y) = a0 +a1x+a2y

where (a0, a1, a2) are given constants, then by using in-
tegration by parts [El-Zafrany (1993)], it can be proved
that:
ZZ

Ω
pαβdxdy =

�
(1�ν)

I
Γ

lα
∂ψ�

∂xβ
qdΓ+δαβν

I
Γ

∂ψ�

∂n
qdΓ

�

�

�
(1�ν)

I
Γ

lβaαψ�dΓ+δαβν
I

Γ

∂q
∂n

ψ�dΓ
�

(43)

where (l1, l2) are as defined in Appendix A.

Changing the order of integration, it can also be proved
that:
ZZ

Ω
pαβdxdy =�
(1�ν)

I
Γ

lβ
∂ψ�

∂xα
qdΓ+δαβν

I
Γ

∂ψ�

∂n
qdΓ

�

�

�
(1�ν)

I
Γ

lαaβψ�dΓ+δαβν
I

Γ

∂q
∂n

ψ�dΓ
�

(44)

For symmetric expressions we take the average of Eq. 43
and 44, leading to
ZZ

Ω
pαβq(x;y)dxdy =

I
Γ

ραβqdΓ�
I

Γ
ΣαβdΓ (45)

where

ραβ =
1
2
(1�ν)

�
lα

∂ψ�

∂xβ
+ lβ

∂ψ�

∂xα

�
+δαβν

∂ψ�

∂n
(46)

and

Σαβ =

�
1
2
(1�ν)

�
aαlβ +aβlα

�
+δαβv

∂q
∂n

�
ψ� (47)

which can be expressed as follows:

ραβ =
r

8π

�
(1�ν)

�
lα

∂r
∂xβ

+ lβ
∂r

∂xα

�
+2δαβν

∂r
∂n

�
�

h
(logz�0:5)+

α1

r2

i
(48)

Σαβ =
1

8π

�
(1�ν)

�
lαaβ + lβaα

�
+2δαβν

∂q
∂n

�
�

�
r2

2
(logz�1)+α1 logz

�
(49)
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Figure 1 : Deflection distribution of a simply-supported square plate

Figure 2 : Distribution of moment Mx for a simply-supported square plate

Similarly, the domain loading terms in the boundary inte-
gral equations of shear forces can be reduced as follows:ZZ

Ω
Γβq(x;y)dxdy =

I
Γ

ρs
βqdΓ�

I
Γ

Σs
βdΓ (50)

where

ρs
β =�

1
4π

�
lβ (logz�0:5)+

∂r
∂n

∂r
∂xβ

�
(51)

Σs
β =�

r
4π

(logz�0:5)
∂r
∂xβ

∂q
∂n

(52)

5 Case studies

The previous derivations were implemented in a com-
puter program for the analysis of thick Reissner plates in
bending. Several case studies were analyzed, and some
of the results will be reviewed next.

5.1 Simply-supported square plate

A simply-supported square plate of thickness 0.5 m, and
side length = 20 m was analyzed. The plate centre is the
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Figure 3 : Radial distribution of deflection w for a clamped circular plate under concentric line force

Figure 4 : Radial distribution of bending moment Mr for a clamped circular plate under concentric line force

origin of the Cartesian coordinates, and its intersecting
sides are parallel to the x and y axes. The Young’s mod-
ulus of the plate material is 2:05� 1011 N=m2, and its
Poisson’s ratio = 0:3. Two types of loading were tested
with this case: a uniformly- distributed loading with in-
tensity q = 3:5� 105 N=m2, and a concentrated force
F = 4:8� 107 N acting at the plate centre. Linear and
quadratic boundary element meshes with a total of 24
nodes equally spaced on the boundary were employed

in the analysis. The distributions of deflection w and mo-
ment Mx, along the central line, which is parallel to the
x axis, were plotted versus corresponding analytical so-
lutions, as shown in Figures 1 and 2, respectively. Those
figures demonstrate a good agreement between boundary
element results and analytical solutions with quadratic
boundary elements leading to more accurate results than
those obtained from linear elements with the same num-
ber of boundary nodes.
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Figure 5 : Radial distribution of shear force Qr for a clamped circular plate under concentric line force

Figure 6 : Radial distribution of deflection w for a clamped circular plate under concentric line moment

5.2 Clamped circular plate under concentric line
loading

In this case, a clamped solid circular plate, with outer
radius = 1 m, and thickness = 0:1 m is analyzed. The
plate material has a Young’s modulus = 2:1x1011 N=m2,
and a Poisson’s ratio = 0:3. Two types of line loading
were attempted. For the first type, four cases of concen-
tric line forces were tested, with a total shear force F =
3:1416x105 N, acting uniformly along concentric circles

with radii R0 = 0, 0.25, 0.50, 0.75 m. For the second type,
three cases of concentric line moment were considered,
where a total normal bending moment Mn = 3:1416x105

Nm, was applied uniformly along concentric circles with
radii = 0:25, 0.50, 0.75 m. The radial distributions of lat-
eral deflection w, bending moment Mr and shear force Qr

as obtained from boundary element analysis, for the first
type of line loading, were plotted against corresponding
analytical solutions, as shown in Figures 3, 4 and 5, re-
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Figure 7 : Radial distribution of bending moment Mr for a clamped circular plate under concentric line moment

Figure 8 : Radial distribution of deflection w for a simply-supported circular plate under concentric line force

spectively, whilst the radial distributions of lateral deflec-
tion w, and bending moment Mr for the second type of
line loading, were plotted against corresponding analyti-
cal solutions, as shown in Figures 6 and 7, respectively.
It is clear from those figures that there is a very good
agreement between boundary element results and analyt-
ical solutions. Figure 4 shows the discontinuities in the
shear force distributions at the points of application of
line forces, whilst Figure 7 indicates the discontinuities
in the bending moment distributions at the points of ap-

plication of line moments.

5.3 Simply-supported circular plate under concentric
line loading

This case study represents a simply-supported circular
plate which has the same dimensions, material proper-
ties and cases of loading similar to the previous case,
The radial distributions of lateral deflection w, bending
moment Mr and shear force Qr as obtained from bound-
ary element analysis, for the first type of line loading,
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Figure 9 : Radial distribution of bending moment Mr for a simply-supported circular plate under concentric line
force

Figure 10 : Radial distribution of shear force Qr for a simply-supported circular plate under concentric line force

were plotted against corresponding analytical solutions,
as shown in Figures 8, 9 and 10, respectively and the ra-
dial distributions of lateral deflection w, and bending mo-
ment Mr for the second type of line loading, were plot-
ted against corresponding analytical solutions, as shown
in Figures 11 and 12, respectively. It is clear from the
figures that an excellent agreement between boundary el-
ement results and analytical solutions has been obtained.

6 Conclusions

The results of the previous case studies have proved that
the new derivations presented in this work have been vali-
dated. Boundary integral equations for bending moments
and shear forces, per unit length, have led to very ac-
curate boundary element results for different cases with
generalized loading. Discontinuous distributions of in-
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Figure 11 : Radial distribution of deflection w for a simply-supported circular plate under concentric line moment

Figure 12 : Radial distribution of bending moment Mr for a simply-supported circular plate under concentric line
moment

ternal shear forces and bending moments, as expected for
cases with line forces and line moments, have been accu-
rately evaluated with the new boundary element deriva-
tions.
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Appendix A: Parameters and kernel functions for
displacement boundary integral equa-
tions

θn = lθx +mθy (53)

θt = �mθx + lθy (54)

Mn = l2Mxx +m2Myy +2lmMxy (55)

Mnt = lm(Myy�Mxx)+
�
l2
�m2Mxy

�
(56)

Qn = lQx +mQx (57)

Uαβ = �
1

πD(1�ν)

�
∂r

∂nα

∂r
∂xβ

�
A(z)+

1�ν
4

�

�

�
n̂α � îβ

��
B(z)�

1�ν
4

�
logz�

1
2

���
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n̂1� n̂= lî+m ĵ, representing a unit vector in the outward
normal direction to the boundary.

n̂2 � t̂ = �mî+ l ĵ, representing a unit vector in the tan-
gential direction to the boundary.
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Appendix B: Kernel functions for internal moment
and shear boundary integral equa-
tions
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��

+

�
4F(z)

z
�

2
z2 �A(z)

��
∂r

∂xα

�
lβ

∂r
∂n

+v
�
t̂ � îβ
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