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Coupling of Underground Pipelines and Slowly Moving Landslides by BEM
Analysis
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Abstract: Many sloping areas in the world are affected
by slow movements. If they are occupied by settlements
or are crossed by roads, pipelines or other infrastructures,
a correct evaluation of future displacements is crucial for
land management and sometimes for men safety. It is
widely recognized that rainfall is the main triggering fac-
tor, producing an intermittent and delayed recharge of the
groundwater; as a consequence, the displacement rate is
cyclic, following a seasonal trend. In Italy this problem
is particularly relevant since many exploited sloping ar-
eas are affected by slowly moving landslides that interact
with man-made works. In present paper a BEM proce-
dure is proposed and a case study is analyzed concerning
underground pipelines in moving landslides.

1 Introduction

Landslides, like other natural events as floods, earth-
quakes, avalanches and volcanic eruptions, are natural
hazards causing large economic and human losses. Of-
ten such phenomena are translational and involve fine-
grained soils inducing continuous damages to roads, rail-
ways, pipelines for gas or hydrocarbon transportation, in-
dustrial and civil settlement, etc.

The costs required for reparation or deriving from fail-
ures of service are very high. Furthermore, sometimes
human lives are exposed to a high-risk also in the case of
very slow slope movements (e.g. for sudden failure of a
pipeline for high-pressure gas transportation).

The selection of the exploitation criteria of unstable
slowly moving slopes is always characterized by large
uncertainties. In fact, it is often not possible to carry out
drastic slope stabilization works and therefore it becomes
necessary to adopt advanced and sophisticated manage-
ment criteria. In such cases the acceptable and tolerable
risks from landsliding have to be defined. This stimu-
lates the selection of strategies based on criteria belong-
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ing to the Decision-Making Analysis. In particular, the
case of slowly moving landslides is a peculiar one spe-
cially suited for integrating the classical analysis meth-
ods with procedures capable of usefully exploiting data
coming from monitoring and experience, the well-known
observational method. In fact, the movement’s slowness
and the availability of long time data allow to define the
best management strategies and to continuously refine
the methods of analysis, the control procedures and the
design criteria of stabilization works.

In this context, here is presented a case of a pipeline
crossing a slowly moving landslide under monitoring in
the last years. A numerical procedure was implemented
in order to: i) predict the evolution of the phenomena
in terms of induced stress into the pipeline coming from
the displacement field of the surrounding soil, ii) make
available a general code that, from a typical set of slope
displacement data, is able to analyze the stress-strain be-
haviour of similar structures, but in different conditions
from those regarding the examined case.

In the following, after a brief description of the site and of
the collected data from monitoring, a detailed overview
of the adopted numerical approach will be given. Finally,
a comparison between experimental data and numerical
prediction will be shown and some conclusion will be
drawn.

2 Site description and experimental observation

The examined landslide is a typical earthflow in a fi-
nal stage of evolution with morphological features (main
scarp and lateral boundaries) not anymore clearly recog-
nizable (Figure 1). Its length may be estimated in about
1000 m; the average slope is 9.5Æ. A small stream flows
at the slope toe, adding the contribution of some erosion
to the other factors governing the landslide movement.

The earthflow involves highly plastic intensely fissured
clay shales; the main landslide body is constituted by
rather inhomogeneous softened materials.
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Figure 1 : Investigated slope: instrumentation and
pipeline location

The landslide is crossed longitudinally by a gas pipeline
(d = 0.6 m), located at a depth of about 2 m (Figure
1). The slope is instrumented with 7 inclinometers and
20 piezometers, installed at different times close to the
pipeline. An automatic rainfall gauge was installed on
January, 1995. Further data on the rainfall height be-
tween 1985 and 1995 have been provided by official files
collected by the pluviometer station of Ginestra degli
Schiavoni, located in the same hydrographic basin.

In October, 1995, the soil around the pipeline was tem-
porarily excavated in order to instrument the pipeline
with vibrating wire extensometers, for a total number of
45 (15 instrumented sections, each one equipped with 3
extensometers in symmetrical position). The zero read-
ings were taken more than one month later.

Figure 2 shows a slope longitudinal section, which is re-
ferred to the elevation above sea level, as revealed by the
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Figure 2 : Landslide body as revealed through incli-
nometer measurements and boreholes

inclinometer displacement profiles and from the thick-
ness of the remoulded soil during the site investigations.
It can be seen that the slip surface is quite shallow (3�4
m) in the upper part of the slope, and deepens (14�15 m)
at the toe (accumulation zone).

Figure 3 summarizes the main results of monitoring with
reference to only landslide displacement and axial force
as deduced from strain measurements.

It can be seen that the displacement of the landslide is
different along the landslide body itself, ranging between
8.2 and 94.4 mm in the upper part of the slope and be-
tween 57.6 and 107.3 in the lower part (accumulation
zone); such values are referred to a time period of almost
40 months, giving a maximum local rate of displacement
of 4.2 mm/month (I3) and a minimum local rate of dis-
placement of 0.2 mm/month (I4).

In the upper part of the Figure 3 are reported both the dis-
tribution of the displacement along the landslide and of
the axial force along the pipeline as measured on Febru-
ary, 23, 1999. Starting from the upper part of the slope,
it can be seen that up to almost 370 m the pipeline is
under an increasing axial force, meaning that the soil is
acting onto the pipeline with ”negative” traction; on the
contrary, from 370 m to 500 m the axial force decreases
and thus the tractions become ”positive”. In the remain-
ing 100 m, no decrease of force is measured, that means
no interaction between soil and pipeline occurs.
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Figure 3 : Relevant displacements, axial force on pipeline and sliding displacements of soil

3 Models of the analysis

The prediction of the limit displacement, leading to
pipe collapse, with respect to the interaction with the
sliding soil, have been reached in Rajani and Mor-
genstern (1994), Rajani, Robertson, and Morgenstern
(1995), Rizkalla and McImtye (1991); in particular Ra-
jani, Robertson, and Morgenstern (1995) and Rizkalla
and McImtye (1991) deals with a simplified procedure
characterized by the implementation of a spring model
for the soil. They derived the knowledge of pipe maxi-
mum stress by the mean displacement of soil mass that
is supposed to have rigid body motion. This approach
gives a simple evaluation of the soil displacement ampli-
tude yielding to pipeline failure, but does not take into
account three dimensional constitutive model of the soil
and gives no information about pipe and soil stress dis-
tribution.

The treatment of experimental data needs to intro-
duce some simplifications namely, landslide has large
transversal dimension in comparison to the diameter

of the pipe and can be assumed to have infinite size.
The value of the displacement along meridian curves of
landslide can be assumed as a constant with respect to
transversal direction.

Boundary Integral Equation Method (BIEM) is imple-
mented to formulate the soil model. It was seen Aliabadi
and Martìn (1998) that BIEM has effective advantages
in solving soil structure interaction because, among oth-
ers, it allows for the discretisation of small parts of the
soil boundary where contact takes place. In a more gen-
eral sense, the Boundary Element Method is a way of
solving the contact problem which, compared with other
methods of numerical analysis, seems to be a feasible
tool especially because of: the relevant parameters for the
friction contact models, particularly in Coulomb model,
are direct independent variables of the BEM, i.e. the
displacements and the tractions associated with outward
normal at boundary point; the non linear features of the
problem (size of the contact zone and presence of relative
tangential displacements) are associated with boundary
points and appear directly in the boundary element for-
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Figure 4 : Soil Volume and Boundary Model

mulation.

Numerical procedures are derived by the simplifications
previously described that are gained to the possibility to
get data files restricted to meridian curve of the sliding
surface. In following sections general models for the
soil and the pipe are presented; subsequently the models
are coupled and results are compared to the experimental
data coming from the Miscano site. In order to obtain the
desired coupling between three-dimensional soil model
and one-dimensional beam a suitable condensation of the
degrees of freedom has been done.

4 Soil equations

In figure 4 the soil volume is represented; it consists of a
three dimensional space subset, V , bounded by the slid-
ing surface Γ, by the cylindrical soil pipe interface Σ
and by the part Π of limit plane intercepted by Γ. The
global Cartesian orthogonal frame has axis x3 coincident
with pipe axis, x2 belonging to the vertical plane passing
through x3 and x1 resulting from right hand law.

The reciprocity Betti’s theorem, formulated between the
body V subjected to boundary tractions t and displace-
ments u, and Kelvin’s elastic state, originates the follow-
ing Boundary Integral Equation (BIE):

C(ξ)u(ξ) =
Z

∂V

G(x;ξ)t(x)dx�
Z

∂V

F (x;ξ)u(x)dx

+
Z

V

G(x;ξ)b(x)dx (1)

In Eq.1 the Kelvin’s solution, i.e. fundamental solution,
has the explicit expression (see for example Hartmann

(1989)):

G(x;ξ) =
1

16πµ(1�ν)r
[(3�4ν)I+∇r
∇r] (2)

F(x;ξ) =
1

8π(1�ν)r
f(1�2ν)(n
∇r�∇r
n)

+(∇r �n) [(1�2ν)I+3∇r
∇r]g (3)

where r is the magnitude of the position vector of inte-
gration point x with respect to the variable source point
ξ, ν and µ are soil elastic constants (i.e. Poisson ratio and
shear modulus).

The discretization of Eq. 1 is performed by the introduc-
tion of surface elements; in particular the external bound-
ary, i.e. the surface Γ[Π of sliding soil volume is mod-
eled by means of infinite strips having their longitudinal
direction parallel to x1 axis. The transversal variability of
shape function in each strip is assumed to be quadratic,
moreover constant functions are selected to model longi-
tudinal behaviour of displacements and tractions. A set
of local coordinate (η;ζ) is introduced (see figure 5).

The soil-pipe interface, surface Σ, is divided into cylin-
drical elements of length λk and radius R; a cylindrical
local coordinate system is introduced, consisting of an-
gular coordinate ϕ and axial coordinate τ. The origin is
set at the middle point Pk of the element axis. Subse-
quent analysis is carried out assuming vanishing bend-
ing effects; this hypothesis implies that displacements
and tractions can be mapped by means of constant shape
functions with respect to ϕ.

Eq. 1 is therefore transformed accordingly to the decom-
position of integrals over boundary elements. It results in
the following form where, for sake of compactness, the
body forces have been neglected:

C(ξ)u(ξ) = ∑
NE

8<
:te

1Z

�1

N (η)J (η)
∞Z

�∞

G(x(η;ζ) ;ξ)dζdη

+ue

1Z

�1

N (η)J (η)
∞Z

�∞

F (x(η;ζ) ;ξ)dζdη

9=
;

+∑
NI

8<
:

λk

2
tΣ

1Z

�1

2πZ

0

G(x(ϕ;τ) ;ξ)Rdϕdτ

+
λk

2
uΣ

1Z

�1

2πZ

0

F (x(ϕ;τ) ;ξ)Rdϕdτ

9=
; (4)
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Figure 5 : Shape functions and geometry representation on external Boundary Elements

The right hand side variables in Eq. 4 are the nodal val-
ues of unknown fields t and u. Left hand side contains
unknown value of displacement field at source point ξ.
It has to be noted that no collocation has been done to
obtain Eq. 4. The first sum in Eq. 4 is performed on
the number NE of elements belonging to Γ[Π, i.e. the
external boundary. J (η) represents the Jacobean of the
coordinate transformation. The second sum in Eq. 4 is
performed on the number NI of elements belonging to Σ;
the Jacobean, in this case, has the value λk=2.

The vectors te and ue are the nodal values of the traction
and of the displacement fields on the external boundary
and are partitioned into two sub-vectors containing the
nodal values of tractions and displacements belonging to
the limit plane and to the sliding surface respectively:

te =

�
tΠ
tΓ

�

ue =

�
uΠ
uΓ

�

Once the equation has been collocated on boundary
points that belongs to the external boundary it is possi-
ble to obtain 2NE equations involving nodal variables:
Eq. 4 is modified by means of analytical integration over
]�∞;∞[ of the right hand side which reduces the funda-
mental solution terms contained in the first two integrals

to 2D-like kernels Telles (1983). These functions have
the same expression of standard 2D fundamental solu-
tion provided to reverse the role played by source point
ξ and integration variable x. The first two integrals re-
duces to 2D standard problem that does not depend on
the coordinate x1.

The two integrals on cylindrical domain, Σ, with respect
to the variable ϕ, behaves as axisymmetric kernels pro-
vided to exchange the meaning of source point with in-
tegration point, Karmanidis (1975); even in the case of
integration over cylindrical boundary it is possible to as-
sume plane behaviour of the system.

The above mentioned considerations suggest that the
analysis can be limited to 2D geometry, displacements
and tractions; moreover the singularity of cylindrical ker-
nels with respect to the in plane coordinates is of the same
logarithmic type of the singularity of 2D-like kernels that
arise from the integration on the external boundary. The
same attention as in the case of plane solution has been
devoted to cylindrical integrals and the same numerical
quadrature formulas has been adopted.

Particular attention is needed in order to collocate Eq. 4
on points of Σ. The left hand side of Eq. 4 represents
the displacement of a point on the cylindrical boundary
Σ in terms of tractions and displacements of the whole
boundary V . Due to the shape functions introduced in
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the right hand side of the boundary equation and to the
integration performed with respect to out of plane vari-
ables, it appears evident that nodal variables uΣ and tΣ
represent the mean value of displacement and traction on
the directrix circumference of each element at point Pk.
To obtain the same number of equations and unknowns it
is necessary to collocate Eq. 1 using a unit ring load, ap-
plied at the point Pk. The ring load has unity value that do
not vary with respect to the local angular coordinate. The
angular variable corresponding to source point has been
called θ. Performing the integration of boundary equa-
tions with respect to θ, the collocated equation on Σ will
be transformed accordingly to the following relationship:

2πZ

0

1
2

Iu(θ;λ)Rdθ = πRIuΣ =

2πZ

0

8<
:∑

NE

2
4te

1Z

�1

N(η)J (η)
∞Z

�∞

G(x(η;ζ) ;ξ(θ;λ))dτdζ

+ ue

1Z

�1

N (η)J (η)
∞Z

�∞

F(x(η;ζ) ;ξ(θ;λ))dτdζ

3
5

+∑
NI

λi

2
tΣ

1Z

�1

2πZ

0

G(x(ϕ;τ) ;ξ(θ;λ))Rdϕdτ

+
λi

2
uΣ

1Z

�1

2πZ

0

F(x(ϕ;τ) ;ξ(θ;λ))Rdϕdτ

9=
;Rdθ (5)

Left-hand side of Eq. 5 contains the mean value of dis-
placement u, giving a suitable matching of variables on
right hand side. Finally the following matrix form is ob-
tained:2
4 HΠΠ HΠΓ HΠΣ

HΓΠ HΓΓ HΓΣ
HΣΠ HΣΓ HΣΣ

3
5
2
4 uΠ

uΓ
uΣ

3
5 =

2
4 GΠΠ GΠΓ GΠΣ

GΓΠ GΓΓ GΓΣ
GΣΠ GΣΓ GΣΣ

3
5
2
4 tΠ

tΓ
tΣ

3
5 (6)

The subscripts in Eq. 6 point out the collocation and the
integration points. Off diagonal terms of matrices are
calculated by means of standard Gauss’ quadrature. Di-
agonal sub-matrices of order two, Hαβ; are evaluated by
means of the rigid body condition.

Due to the fact that the integrand functions to obtain
HΣΣ are defined in rectangular coordinates, the rigid body
condition can be used with respect to axisymmetric-like
kernels too. It has to be noted that the sum of row sub-
matrices of order two of HΣΠ and HΣΓ vanishes because
matrix HΣΣ represents the opposite of the matrix corre-
sponding to the application of BEM to the volume of the
pipe supposed fulfilled by soil material. Thus the diag-
onal submatrices of order two belonging to HΣΣ can be
obtained by the opposite of the sum of the off diagonal
terms of HΣΣ.

In the calculation of the elements of the G matrix, a log-
arithmic quadrature formula is used for singular terms,
a standard Gauss formula has been used for the regular
terms.

5 Pipe model

In the following it has been supposed that the beam
undergoes to bending along a prefixed direction. Dis-
placements of pipe points are described accordingly to
Bernoulli hypothesis by following functions with respect
to local orthogonal frame (O;x;y;z) (see Figure 6) where
y axis belongs to bending plane:

ux = ux (0;0;z) = u0 (z) (7)

uy = uy (0;0;z) = v0 (z) (8)

uz = uz (0;0;z)�v0;zy = w0 (z)�v0;zy (9)

u0, v0, w0 represent the displacements of the line of cen-
troids of the beam which is chosen as the z axis; v0;z is the
derivative of v0 with respect to z representing the slope of
the deformed axis of the structure. Basing on the fact that
pipeline is embedded in landsliding soil mass having ax-
ial direction parallel to maximum slope and supposing
that bending stiffness of the pipe can be neglected with
respect to axial stiffness, the attention has been focused
on the equilibrium in axial direction:

EAwII
0 = �qz (10)

where EA is the axial stiffness of the beam. The displace-
ment field has vanishing ux and uy components, whereas
the axial component uz is constant with respect to y.

Obviously, the Bernoulli model does not take into ac-
count actual distribution of axial load qz with respect to
the circumference of beam cross section.

Eq. 10 is discretised by finite element method. Rod fi-
nite elements were selected, with cross sectional area A,
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Figure 6 : Beam local coordinate system and displacements

Young’s modulus E, length λk. Stiffness matrix of the el-
ements spans axial and transversal components of nodal
points displacement, up

k , in axial and transversal compo-
nents of nodal forces, fk. The resulting equation is:

fk = Kkup
k + f0

k (11)

where:

Kk =

2
664

EA=λk 0 EA=λk 0
0 0 0 0

EA=λk 0 EA=λk 0
0 0 0 0

3
775 (12)

up
k =

2
664

ui
y

ui
z

u j
y

u j
z

3
775 f0

k =

2
664

f 0i
y

f 0i
z

f 0 j
y

f 0 j
z

3
775 fk =

2
664

f i
y

f i
z

f j
y

f j
z

3
775

f0
k represents the fixed end forces produced by the applied

axial load; it can be evaluated by assuming linear varia-
tion of load with the abscissa z.

By collecting the nodal values of axial load distribution

on kth element into the vector qk =
h
qi

y;q
i
z;q

j
y;q

j
z

iT
, a lin-

ear operator Lk, transforming qk into f0
k , can be intro-

duced and matrix form of the application defined as fol-
lows:
2
664

f 0i
y

f 0i
z

f 0 j
y

f 0 j
z

3
775=

2
664

λk=3 0 λk=6 0
0 0 0 0

λk=6 0 λk=3 0
0 0 0 0

3
775

2
664

q i
y

q i
z

q j
y

q j
z

3
775 (13)

Eq. 11, 12 and 13 can be assembled in a standard way to
define the overall equilibrium equation of the structure:

Kup +Lq = 0 (14)

where K and L represent the matrices resulting from the
assemblage of Kk and Lk. Eq. 14 is the final relationship
between axial and transversal displacement field of the
beam axis and resultant per unit length of pipe axis, qz,
of boundary tractions acting on the lateral surface of the
beam itself.

6 Coupling equations

Soil volume, as previously described, is subjected to in-
terface tractions on the sliding surface that derive from
the contact between stable soil and moving soil mass.
Moreover tractions take place on soil pipe interface.

Pipe model, as introduced previously, allows for the anal-
ysis of the pipe response to axial loads applied to the
circumference of cross sections. More general coupling
equations, that take into account the bending effects, can
be obtained by the procedure outlined in Guarracino,
Minutolo, and Nunziante (1992). Moreover the afore-
mentioned equations have to be coupled with boundary
conditions involving end displacements and reactions on
the pipe; both prescribed displacements values or elastic
springs can be introduced, giving a modification of some
diagonal term of K matrix as in standard FEM analysis.

The coupling between soil and pipe model has been
reached by assuming the following relationship between
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Figure 7 : Comparison of displacements calculated by BEM soil model and by beam model from measured strain

tractions which are present in Eq. 6 and beam axial nodal
load involved in Eq. 14:

tΣ =�
q

2πR
(15)

In the case of no sliding between pipe and soil, as con-
firmed by the collected experimental evidence, the dis-
placements up in Eq. 14 are set equal to the displace-
ments uΣ in Eq. 6.

The coupling of Eq. 6 with Eq. 14 results in the following
set of equations that describes the pipe soil interaction in
the case of long pipes without sliding effects:

2
664

HΠΠ HΠΣ �GΠΓ �GΠΣ
HΓΠ HΓΣ �GΓΓ �GΓΣ
HΣΠ HΣΣ �GΣΓ �GΣΣ

K L

3
775

2
664

uΠ
uΣ
tΓ
tΣ

3
775 =

2
664

HΠΓ GΠΠ
HΓΓ GΓΠ
HΣΓ GΣΠ

0 0

3
775
�

uΓ
tΠ

�
(16)

The presence of sliding between pipe and soil can be
analysed by means of Eq. 16 coupling it with yield cri-
terion and performing an incremental analysis as in Ali-
abadi and Martìn (1998).

7 Numerical examples and comparison with experi-
mental results

The proposed procedure has been applied to the Mis-
cano pipeline. The measured soil displacements on slid-
ing surface, as reported in figure 3, have been applied as
boundary conditions. The vector uΓ in Eq. 6 is thus pre-
scribed; moreover, vanishing tΠ are assumed. Eq. 6 is
solved in terms of unknown variables uΠ, uΣ, tΓ, tΣ. The
resulting displacements on pipeline axis, uΣ, are shown
in figure 7. In the same figure the displacements cal-
culated by means of integration of strain measurements
on pipeline surface have been reported. The compar-
ison between the two curves is rather satisfactory. It
have to be mentioned that the integrated displacement
has an unknown initial value; therefore the comparison
has been made by imposing the coincidence of first point
displacement. The calculated tractions on soil-pipeline
surface have a maximum axial value of 113:59 kgm�2, to
be combined with a minimum radial pressure is 1440:0
kgm�2, giving a stress point within any yielding surface
as, for instance, that derived by the Coulomb strenght cri-
terion by assuming an internal soil friction angle equal
to the minimum value measured by laboratory and site
tests (φ = 25Æ). This finding confirms the goodness of
the adopted approach (no sliding between soil and pipe),
allowing to use it in an incremental analysis aimed to the
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definition of the collapse condition for the pipe subjected
to increasing soil movements due to landsliding process.

8 Conclusions

The analysis described in the present paper allows to
evaluate the response of pipelines embedded in soil mass
undergoing to displacement field. The Boundary Integral
Equation Method seems to be a suitable approach for the
analysis of soil pipe interaction. In particular, when field
experimental data are available, the proposed approach
can be used for pipeline management. Infact, by cali-
brating all the relevant parameters for the model on the
basis of the already collected data, it become possible to
implement an iterative procedure aimed to the prediction
of future pipeline behaviour during its timelife as a con-
sequence of soil displacements

It has to be stressed that the research activity is at the
preliminary stage. Further experimental data concerning
with different soil types, dispalcement fields and pipeline
geometry and characteristics have to be collected, as well
as further analysis have to be carried out before any con-
clusion could be drawn.
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