
Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

To Generate Good Triangular Meshes, Conforming to Control Spacing
Requirements

Xiang-Yang Li1 Shang-Hua Teng2 Peng-Jun Wan 3

Abstract: To conduct numerical simulations by finite
element methods, we often need to generate a high qual-
ity mesh, yet with a smaller number of elements. More-
over, the size of each of the elements in the mesh should
be approximately equal to a given size requirement. Li et
al. recently proposed a new method, named biting, which
combines the strengths of advancing front and sphere
packing. It generates high quality meshes with a theoret-
ical guarantee. In this paper, we show that biting squares
instead of circles not only generates high quality meshes
but also has the following advantages. It is easier to gen-
erate high quality elements near the boundary with the-
oretical guarantee; it is very efficient time-wise; in addi-
tion, it is easier to implement. Furthermore, it provides
simple and straightforward boundary protections in three
dimensions.

keyword: Unstructured mesh generation, advancing
front, biting, sphere packing, spacing function.

1 Introduction

In numerical simulations or computer graphics appli-
cations, we often need to decompose a domain into a
collection of primitive elements. Not all meshes play
equally well for numerical simulations. It is often the
case that we are required to generate high quality meshes
with small number of elements. In order to reduce the
problem size, an unstructured mesh with a varying lo-
cal topology and spacing is often used for problems
with complex shape boundaries and with solutions that
change rapidly. Over the years, several meshing meth-

1 Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL 61801. And Department of Computer Sci-
ence, Illinois Institute of Technology, Chicago, IL 60616.

2 Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, IL 61801. And Akamai Technologies Inc.,
201 Broadway, Cambridge, MA 02319.

3 Department of Computer Science, Illinois Institute of Technology,
Chicago, IL 60616.

ods have been developed to generate high quality tri-
angular meshes in 2D or 3D. See Bern, Eppstein, and
Gilbert (1990); Li and Teng (1998); Mitchell and Vava-
sis (1992); Ruppert (1992); Shewchuk (1998). Those
based on advancing front, Delaunay triangulations, and
quadtrees/octrees have become popular due to their ef-
fectiveness in practical applications. However, these
methods do not come with equal strengths. For exam-
ple, the advancing front method offers a high quality of
vertex placement strategy and an integrity of the bound-
ary. See Blacker (1991); Lohrer (1996); Lohrer and
Parikh (1988). Unfortunately, it does not provide gen-
eral guarantees on the size and quality of meshes it pro-
duces. Especially, it is hard or time consuming to process
when the fronts meet each other or one front meets itself.
On the other hand, more sophisticated methods such as
quadtree/octree refinement, [Bern, Eppstein, and Gilbert
(1990); Mitchell and Vavasis (1992)], and Delaunay
based methods, [Chew (1997); Miller, Talmor, Teng, and
Walkington (1995); Ruppert (1992); Shewchuk (1998)],
guarantee to generate a well-shaped mesh such that the
number of elements is within a constant factor of the op-
timal.

For numerical simulations, we are often required to gen-
erate a mesh whose element size is no larger than an ele-
ment size specified by a function, namely, control spac-
ing function. Some methods, such as Delaunay refine-
ment, are not explicitly designed for generating a high
quality mesh conforming to a spacing function. Recently,
the authors had developed a new two-dimensional mesh-
ing algorithm called biting; see Li, Teng, and Üngör
(2000). The algorithm combines the strengths of advanc-
ing front and these provably good meshing methods. It
generates a high quality mesh conforming to a given con-
trol spacing function.

The biting algorithm uses the sphere packing 4 as the

4 In this paper, we use sphere as a more general terminology. It
represents circle in two dimensions.

98 Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

underlying structure, in conjunction with the advancing
front method. The biting method first constructs a well-
spaced vertex set by implicitly building a sphere pack-
ing of the domain and then uses the Delaunay triangula-
tion of this vertex set as the final mesh. They use a new
and efficient method to construct an almost tight sphere
packing. At a high level, this new advancing-front-based
packing algorithm first finds a sphere packing of the do-
main boundary and then grows the packing towards the
interior of the domain. The packing is constructed im-
plicitly as follows. For each point in the domain, it de-
fines a biting sphere, with a radius proportional to the
control spacing defined on it. The algorithm selects a
corner vertex from the current domain boundary and re-
moves its biting sphere from the domain. The domain
boundary is updated and the algorithm is repeated until
the domain is empty. They show that the set of smaller
spheres centered at all biting centers is a sphere pack-
ing. In other words, the new method uses the advancing
front to construct a sphere packing implicitly. Li, Teng,
and Üngör (2000) showed that the Delaunay triangula-
tion of the centers of all bitten spheres has small radius-
edge ratio. Recall that, here the radius-edge ratio of an
element is the ratio of its circumradius over the length of
its shortest edge. The radius-edge ratio of a mesh is the
largest radius-edge ratio of all of its elements. Further-
more, they showed that the size of each mesh element
is within a small constant factor of the control spacing.
Consequently, the number of mesh elements is within a
small constant factor of any mesh that has small radius-
edge ratio and conforms to the control spacing.

In this paper, we show that biting square (or cube in 3D)
instead of sphere will also generate a high quality mesh
whose size is within a constant factor of the optimal. In
addition, the time complexity of two dimensional square-
biting method is O(n logn), where n is the number of the
output vertices. Furthermore, it is easier to implement
this method than the previous sphere-biting method. It is
also straightforward to extend the square-biting scheme
to three dimensions without difficulty in protecting the
domain boundary.

The rest of the paper is organized as follows. Section 2
introduces definitions that will be used in this paper. Sec-
tion 3 presents the biting-square method and the proofs
about the quality of the sphere packing that it generates.
Section 4 gives the details of boundary protection to com-
plete the proof of our main theorem. We analyze the

time complexity of the square-biting method in Section
5. Section 6 gives some experimental results to show that
the square-biting method actually generates well-shaped
meshes. We conclude our paper in Section 7.

2 Preliminary

In this section, we review some definitions and results
which are essential in presenting our algorithm and in
proving the quality guarantees of the algorithm. Most of
them can be found in many places, but for the complete-
ness of the presentation, we still include them here.

2.1 Well-shaped and Well-conformed Mesh

In two dimensions, we assume that the input domain Ω
is a planar-straight-line graph (PSLG), which is a collec-
tion of line segments and points in the plane, closed un-
der intersection. If a control spacing function f (x) over
Ω is given, the generated mesh should conform well to
f (x) in addition to be well-shaped.

Quality measures. Different numerical methods and
scientific problems may have different quality require-
ments on the underline meshes. Notice that, for very
slowly varying functions, an essential quality require-
ment of the mesh is that all angles are not obtuse. On
the other hand, another common shape criterion for mesh
elements (triangle in 2D, tetrahedron in 3D) is the condi-
tion that the angles of each element are not too small, i.e.,
the aspect ratio of each element is bounded from above
by a constant. See Babuška and Aziz (1976); Bern, Epp-
stein, and Gilbert (1990); Strang and Fix (1973). The as-
pect ratio of an element is often defined as the ratio of the
radius of the smallest sphere containing the element to
the radius of the largest sphere contained in the element.
The aspect ratio of a mesh is defined as the largest as-
pect ratio of all of its elements. Unfortunately, until now,
no method guarantees to generate three-dimensional De-
launay meshes with practically good small aspect ratio.
An alternative but weaker quality measurement is to use
the radius-edge ratio introduced by Miller, Talmor, Teng,
and Walkington (1995, 1998).

In three dimensions, slivers are the only tetrahedra which
have small radius-edge ratio but very large aspect ratio.
Here, a sliver is a tetrahedron whose four vertices lie
close to a plane and whose projection to that plane is
a convex quadrilateral with no short edge. Notice that,

To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 99

in the recent breakthrough, Li (2000) developed a new
refinement based algorithm that guarantees to generate
meshes with bounded aspect ratio, i.e., sliver-free Delau-
nay meshes. However, the theoretical bound on the as-
pect ratio is large, although theoretically it is a constant.
Experimental results are necessary to show the practical
advantages of that algorithm.

Delaunay triangulation is widely used on mesh genera-
tion because it often provides a bridge to prove the the-
oretical quality guarantees of meshing algorithms. A
simplicial mesh is Delaunay triangulation if the circum-
sphere of each of its elements does not contain any ver-
tices inside it. The Delaunay triangulation of a set of
two-dimensional vertices maximizes the minimum angle
among all possible triangulations. Unfortunately, this is
not true in three dimensions.

Based on the radius-edge ratio quality measure, we de-
fine well-shaped meshes as following.

Definition 2.1 [ρ-WELL-SHAPED MESH] A mesh M is
ρ-well-shaped if the maximum radius-edge ratio over all
of its elements is bounded from above by ρ.

Spacing function. A spacing function f (x) is used to
specify the ideal element size at every point of the do-
main Ω. The spacing function is typically defined from
the geometry structure of the domain and/or the numer-
ical system to be conducted on the domain. Let’s first
study what is the role of geometry structure of the do-
main in generating well-shaped meshes over it. Consider
an input domain Ω and a well-shaped mesh M generated
on Ω. The element of M could not have arbitrary size
anywhere. For example, assume that one region of Ω has
two closed vertices or segments. Then the local mesh
elements in that region could not be too large. In other
words, the geometrical structure of the domain more or
less defines the element size of any well-shaped mesh
that could be generated. Ruppert (1992) introduced the
concept called local feature size function lfs(x) to cap-
ture this geometry condition. It is the radius of the small-
est sphere centered at x that contains two non-incident
features of the domain. Here the features are the input
vertices and segments in two dimensions.

If the mesh is used for scientific computing, the numer-
ical condition also determines the largest element size
at each point such that the numerical error is not large.
This element size specification is usually obtained from

an a priori error analysis, or an a posteriori error anal-
ysis based on an initial numerical simulation. In other
words, it defines a numerical spacing functions, denoted
by nsf(x), for each point x in the domain Ω. The value of
nsf(x), from the interpolation viewpoint, is determined
by the eigenvalues of the Hessian matrix H; see Strang
and Fix (1973). The spacing of the mesh vertices, re-
quired by the accuracy of the discretization near x should
depend on the reciprocal of the square root of the largest
eigenvalues of H at x. Generally, the control spacing
function of Ω is the combination of the local feature size
lfs(x) and the numerical condition nsf(x).

To make it possible that we can generate a well-shaped
mesh that conforms to a given control spacing f (x), we
expect to see some smoothness condition of f (x). The
following Lipschitz condition are often used to capture
the smoothness of f (x).

Definition 2.2 [α-LIPSCHITZ] A function f (x) is α-
Lipschitz, if for any two points x, y of the domain

j f (x)� f (y)j � αjjx�yjj:

Element size. Given a mesh M, without doubt, we need
to describe the element size so we can measure its confor-
mity to a given spacing function. There are several ways
to describe the elements size of M. Edge length func-
tion el(x) and nearest neighbor function N(x) are two of
the widely used ones. For each point x 2 Ω, el(x) is the
length of the longest edge of all mesh elements that con-
tain x; while N(x) is the distance of x to the second near-
est mesh vertex in M. Notice that if x is a mesh vertex,
then x itself is the nearest mesh vertex of x.

Given the elements size specification f (x), the generated
mesh should conform well to it in addition to be well-
shaped. In the ideal mesh M, the elements size derived at
any vertex of M should be within a small constant factor
of the control spacing f (x). The smaller the constant,
the better conformed the control spacing f (x). Thus, we
define the conformity of a mesh as following.

Definition 2.3 [Conformity] Let x be a vertex of mesh
M; let N(x) be its nearest neighbor value derived from M.

We call c(x) = min(N(x)
f (x) ;

f (x)
N(x)) the conformity of vertex x.

Then the conformity of a mesh M is defined as following.

100 Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

Definition 2.4 [γ-Well-Conformed Mesh] A mesh is γ-
well-conformed if every vertex of the mesh has confor-
mity at least γ.

In this paper, we consider the following problem. Given
a domain Ω and an α-Lipschitz spacing function f (x),
construct a well-shaped mesh M that conforms well to
f (x).

2.2 Sphere Packing Methods

At a high level, the sphere-packing method fills an in-
put domain with a set of spheres whose centers provide
a good vertex set for a high quality Delaunay mesh. It
can be used to generate meshes for various quality con-
ditions.

Shimada and Gossard (1995) developed a sphere-
packing method called bubble mesh to generate triangu-
lar meshes for two and three dimensions. Their packing
scheme is based on the simulation of particles that in-
teract with each other under repulsive/attractive forces.
Here particle is typically a sphere with radius propor-
tional to the control spacing at its center for isotropic
meshing. They first define a proximity-based force
among the spheres, and then find a stable configuration
by moving, inserting, or deleting spheres. However, their
method does not provide any theoretical bound on the
time of the algorithm nor the quality of meshes that the
algorithm generates.

Miller, Talmor, Teng, and Walkington (1995, 1998) de-
signed a sphere-packing based meshing method which
combines two well-known methods: quadtree and De-
launay triangulation. First, the algorithm applies a bal-
anced quadtree refinement to approximate the spacing
function f (x). Second, it over-samples a set of points
in the domain to define a set of overlapping spheres.
Then, it computes a maximal independent set (MIS) of
non-overlapping spheres to obtain a sphere packing. Fi-
nally, it computes the Delaunay triangulation of the cen-
ters of these spheres. Notice that, to generate high qual-
ity meshes, it needs very dense sample points initially;
on the other hand, dense sample implies high complexity
of the algorithm.

Let B(x;r) denote the sphere centered at point x with ra-
dius r. Suppose f (x) is the desired element size function.
Miller, Talmor, Teng, and Walkington (1995, 1998) intro-
duced the following definition to capture the quality of a
sphere packing.

Definition 2.5 [β-Packing] A set S of spheres is a β-
packing with centers P of Ω with respect to a spacing
function f (x) if

1 For each point p of P, B(p; f (p)=2)2 S;

2 The interiors of any two spheres s1 and s2 in S do not
overlap; and

3 For each point q 2 Ω, there is a sphere in S that over-
laps with B(q;β f (q)=2).

The following structure theorem by Miller, Talmor, and
Teng (1998) states that β-sphere packing implies a well-
shaped mesh.

Theorem 2.1 For any positive constant β, there exists
a constant ρ depending only on β such that if f (x) is a
spacing function of Lipschitz constant 1 over a domain
Ω and S is a β-packing with respect to f (x), then the
Delaunay triangulation M of the centers of S is a ρ well-
shaped mesh; in addition, for each point p in Ω, NM(p)=
Θ(f (p)), where the constant in Θ depends only on β.

3 Biting to Generate Mesh

Li, Teng, and Üngör (2000) present a new scheme, called
the biting method, which combines the strengths of ad-
vancing front and sphere packing. It uses advancing front
to generate a quality sphere packing rather than the mesh
itself. The Delaunay triangulation of the centers of the
spheres is then used to define the final mesh. They show
that the biting method constructs a well-shaped Delau-
nay mesh whose size is optimal up to a constant factor. In
this paper, we show that biting squares instead of spheres
will also generate well-shaped meshes. Moreover, we
show that the time complexity of the new algorithm is
O(n logn), where n is the number of the mesh vertices
generated. Furthermore, the square biting method can
be easily extended to three dimensions. When post re-
finement or coarsening is needed, our algorithm can also
refine or coarsen the previous generated mesh.

3.1 Biting Scheme

The basic idea of the biting method is to use the advanc-
ing front method to construct a well-spaced vertex set
with respect to the spacing function. The input domain
boundary is set as the initial advancing front. The bit-
ing method selects a vertex of the advancing front, and

To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 101

Figure 1 : The initial PSLG domain with a hole inside.

Figure 2 : Biting only on the vertices of the polygon.

removes a square centered at it from the remaining inte-
rior domain. The removed square is called the biting-
square. That vertex is added as a new mesh vertex,
and the boundary between the union of biting-squares
and the remaining interior domain defines the new front.
The above steps are repeated until the advancing front is
empty. The Delaunay triangulation of the biting centers
is the final mesh. The following Figures 1, 2, 3, 4, 5 give
a snapshot of the biting scheme. The input is a PSLG
domain with a hole inside. Notice that the biting-squares
centered at interior points are aligned with axis.

Let Π(x;r) be a square centered at point x with edge
length 2r. Note that the orientation of a square is not
denoted here. Let B(x;r) be a sphere centered at point x
with radius r. A biting-square at a point x is Π(x;cb f (x)),
where cb is a constant that will be decided later.

Usually, the advancing front is represented as a circu-
lar list of already placed mesh vertices. In our method,
we always choose the next Steiner point on the front it-
self, i.e., the front itself is a subset of a feasible region
to select new mesh vertices. Consequently, it is easier to

the first bite on boundary

Figure 3 : The first bite of a non-original vertex.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

Figure 4 : Biting a layer of the boundary.

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

Figure 5 : Biting a layer in the interior of the domain.

102 Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

choose the next mesh vertex than classic advancing front
methods. Observe that the packing-sphere will never ap-
pear in our biting method. We only remove the biting-
squares from the domain. We will prove that the centers
of all biting-squares define a sphere packing by carefully
choosing the sizes of the packing-spheres. The following
is a formal description of the biting-square method.

Algorithm: BITING SQUARE

1. [Initial Front:] Let the boundary of the domain be
the initial front; see Figure 1;

2. [Vertex Protection:] Bite all the input vertices by
removing their biting squares from the interior of
the domain; see Figure 2. The orientation of the
square is decided by the two incident edges of the
vertex. See Figure 7. Update the advancing front
after removing the biting-square.

3. [Edge Protection:] Bite squares centered on the in-
put boundary: choose a vertex x on the front and
remove its biting-square; see Figures 3 and 4. The
biting-square is aligned with the boundary edge.
See Figure 6. Update the advancing front.

Repeat until all initial input boundaries are bitten.

4. [Interior Biting:] Choose a vertex x on the front
and remove its biting-square; see Figures 5. The
biting-square is aligned with the axes. Update the
advancing front.

Repeat until the advancing front is empty.

5. [Delaunay Triangulation:] Construct the Delau-
nay triangulation of the biting centers as the final
mesh.

Notice that, after every biting, the intersection points of
current biting-square with previous biting-squares are the
candidates of biting centers later. Hence for protecting
the boundary, we align the biting-square centered at a
boundary vertex along the boundary. Thus the intro-
duced new candidate biting points are not too close to
the boundary compared with its control spacing require-
ment. See Figure 6 for illustrations of boundary biting
alignments.

However, it is impossible to align all bitings with the
boundary edges. For example, for an input vertex v that

p q

biting order of squares

2p

r

middle point

pq
q

0 1 1 2

boundary

Figure 6 : The biting centered at vertices of input bound-
ary.

biting square

boundary boundary
α

v

x
u u21

q

p

(a)

boundary boundary
α

biting square

p

1 2

v

u u
x

q

(b)

Figure 7 : The orientation of the biting-square: (a) if
135o � α� 225o, one side of the biting-square is aligned
with vx. (b) if α < 135o or α � 225o, then the diagonal
edge of the biting-square is aligned with vx.

is incident by two non-perpendicular boundary edges vu1

and vu2, it is impossible to align the biting-square cen-
tered at v with vu1 and vu2. Let line vx be the line that
divides the angle \u1vu2 into equal half. We use the
following criteria to select the orientation of the biting-
square centered at v. If the angle \u1vu2 � 135o, or the
angle\u1vu2 � 225o, the diagonal of the biting-square is
then aligned with vx. Otherwise, 135o � \u1vu2 � 225o,
then one side of the biting-square is aligned with vx. See
Figure 7 for the orientation illustrations. By a simple
geometry computation, the above orientation maximizes
the angle formed by the boundary edges and intersected
side edge of the biting-square, i.e., the angle \vpq in the
Figures.

To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 103

c h(x)

c h(x)

 p

 b

biting square

packing circle

Figure 8 : The biting-squares and packing-spheres cen-
tered at point x.

4 Quality Guarantee of Biting

In this section we show that the biting-square method
generates well-shaped meshes. Moreover, the mesh size
is within a constant factor of the optimal. For the first
statement we prove that the points placed by the biting
method are well-spaced, i.e., they are centers of a β-
packing with respect to a 1-Lipschitz spacing function.
The size optimality then follows from the fact that the
spacing function is well-conformed.

4.1 β-Sphere Packing

For each mesh vertex generated by the biting scheme,
we define a packing-sphere centered at it. Observe that
the biting-squares generated by the biting scheme overlap
among themselves. Therefore, the packing-sphere of a
mesh vertex is chosen to be smaller than its biting-square.
Let us focus on a particular point x. From the specifica-
tion of the biting scheme, the biting-square centered at x
is Π(x;cb f (x)), where cb < 1 is a positive constant. We
now choose another positive constant cp < cb, and de-
fine the packing-sphere at x to be B(x;cp f (x)). See Fig-
ure 8 for an illustration of biting-square and the packing-
sphere defined at a mesh vertex. The following lemma
proved by Li, Teng, and Üngör (2000) implies the rela-
tion that need to be satisfied by the biting constant cb and
the packing constant cp.

Lemma 4.1 [Li, Teng, and Üngör (2000)] Assume that
spacing function f (x) is α-Lipschitz, and jjx� yjj �

2γ
1�αγ min(f (x); f (y)), where αγ < 1. Then the interior of
two spheres B(x;γ f (x)) and B(y;γ f (y)) do not overlap.

Thus the biting-square Π(x;cb f (x)) is like a protecting
square of x: it prevents any point whose packing-sphere
potentially overlaps with that of point x from being cho-
sen. Notice that the biting scheme works for any control
spacing function f (x) with Lipschitz condition. Our first
goal is to show that the biting scheme generates a good
sphere packing. Let Sb be the set of biting-squares gen-
erated by the biting scheme, and Sp be the set of corre-
sponding packing-spheres defined as above. Lemma 4.1
implies that if the biting constant satisfies that cb � 2cp

1�αcp

and αcp < 1, then the interior of any two packing-spheres
do not overlap. Which is stated by the following lemma.

Lemma 4.2 [NO OVERLAP] If the packing constant sat-
isfies cp =

cb
2+αcb

, then there is no overlap among the
packing-spheres Sp.

PROOF. Let’s consider any two packing-spheres
B(x;cp f (x)) and B(y;cp f (y)) defined by two biting
vertices x and y. Observe that either x is bitten before
y, or y is bitten before x, which is implied by the biting
scheme. In other words, either x is outside of the biting-
square centered at y or y is outside of the biting-square
centered at x. This simple observation implies that
jjx� yjj � cb min(f (x); f (y)). From cp = cb

2+αcb
, we

have cb =
2cp

1�αcp
and αcp =

αcb
2+αcb

< 1. The lemma then
follows from Lemma 4.1. 2

In other words, the packing-spheres defined at the cen-
ters of all bitten squares satisfy the first two conditions of
sphere packing. It remains to show that for any point y in
the domain, there is a sphere from Sp that intersects the
sphere which is β factor of the packing-sphere centered
at y, where β is a constant.

Lemma 4.3 [NO LARGE GAP] For any point y 2 Ω,
there is a sphere in Sp that overlaps with B(y;βcp f (y)),

where β= 2
p

2�1+
p

2αcb

1�
p

2αcb
. In other words, there is no large

gap at y.

PROOF. The biting scheme guarantees that point y in the
domain Ω is covered by at least one biting-square of Sb.
Let Π(x;cb f (x)) be the biting-square that covers y. Then
jjy� xjj � p

2cb f (x). Because spacing function f (x) is
α-Lipschitz, f (y)� (1�

p
2αcb) f (x). Noting that cp =

104 Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

2cb=(2+αcb), we have

βcp f (y)+cp f (x)

= 2
p

2�1+
p

2αcb

1�
p

2αcb
cp f (y)+cp f (x)

= cb
2+αcb

(2
p

2�1+
p

2αcb

1�
p

2αcb
f (y)+ f (x))

� cb
2+αcb

(2
p

2�1+
p

2αcb

1�p2αcb
(1�

p
2αcb) f (x)+ f (x))

= cb
2+αcb

((2
p

2�1+
p

2αcb) f (x)+ f (x))

=
p

2cb f (x)

� jjx�yjj:

Hence for point y, there is a sphere in Sp that overlaps
with the sphere B(y;βcp f (y)). In other words, there is no
large gap at y. 2

Consequently, we know that the biting method implicitly
generates a β-sphere packing. From the β-packing defini-
tion 2.5, Sp is β-packing with respect to spacing function
2cp f (x). We summarize it by the following theorem.

Theorem 4.4 [β-SPHERE PACKING] The set of spheres

Sp is a β = 2
p

2�1+
p

2αcb

1�
p

2αcb
-packing with respect to the

spacing function 2cb
2+αcb

f (x).

Then it follows from Theorems 2.1 and 4.4 that the De-
launay triangulation of the centers of Sp is a well-shaped
mesh, i.e., the radius-edge ratio of each of its elements is
bounded from above by a constant.

Theorem 4.5 [WELL-SHAPED MESH] The square bit-
ing method generates meshes whose radius-edge ratio is
bounded from above by a constant.

4.2 The Spacing Conformity and the Size Guarantee

In this section, we show that the nearest neighbor value of
any point x in the domain is related to the control spacing
function f (x) by a constant factor. This relation enables
us to show that the biting scheme generates a mesh whose
size is within a constant factor of any competing mesh.

Recall that the required spacing function f (x) is α-
Lipschitz. Let ce = 2

p
2cb=(1�

p
2αcb). We define

sphere B(x;ce f (x)) as the extension sphere of the biting-
square. From Lemma 4.1, we know that the two biting-
squares Π(x;cb f (x)) and Π(y;cb f (y)) do not intersect if
jjx� yjj � ce f (x) and

p
2αcb < 1. In other words, there

y

x z

c h(z)b

c h(x)b

(a)

x

biting square at xbiting square at z

z
c h(x)b

c h(x) e

(b)

Figure 9 : The biting-squares and packing-spheres. (a) a
point y is covered by at least two biting-squares, (b) for
any biting-square Π(x;cb f (x)), there must exist a biting-
square centered at z, such that z is contained inside the
sphere B(x;ce f (x)), where ce = 2

p
2cb=(1�

p
2αcb).

is at least one other mesh vertex generated inside the
sphere B(x;ce f (x)) other than x. It implies that the near-
est neighbor value N(x) can not be too large. We have
the following lemma to bound the nearest neighbor value
N(x).

Lemma 4.6 For each vertex x of the mesh generated by
the biting-square method, N(x) satisfies that

cb(1�
p

2αcb) f (x)� N(x)� 2
p

2cb

1�p2αcb
f (x): (1)

PROOF. We first show that the nearest neighbor value
N(x) is not too small. Let y be its nearest mesh vertex.
First, if vertex y is not contained inside the interior of the
biting-square Π(x;cb f (x)), then N(x) � cb f (x). If y is
inside square Π(x;cb f (x)), then vertex y must be bitten
before x. We have

cb f (y)� jjy�xjj �
p

2cb f (x):

To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 105

Because f (x) is α-Lipschitz, f (y) � (1�p2αcb) f (x).
Hence,

N(x) = jjy�xjj � cb(1�
p

2αcb) f (x):

We then show that the nearest mesh vertex y can not be
too far away. By Lemma 4.1, if y is not contained inside
the sphere B(x;ce f (x)), the biting-square centered at y
does not overlap with that of x. Hence, the boundary of
Π(x;cb f (x)) is not covered by any other biting-squares.
See Figure 9 (c). The lemma then follows from property
that every point in the domain is covered by at least one
biting-square. In other words, N(x)� ce f (x). 2

The above lemma implies that the generated mesh con-
forms well to the given control spacing f (x).

Theorem 4.7 The mesh generated by the biting method

has min(cb(1�
p

2αcb);
1�
p

2αcb

2
p

2cb
) conformity to the con-

trol spacing.

We now show that the nearest neighbor value of each
non-mesh point in the domain is also linearly related to
its control spacing value.

Lemma 4.8 Assume point y 2 Ω is not a mesh vertex.
Then N(y) defined by the mesh generated by the biting
method satisfies

cb f (y)

2+2
p

2αcb
� N(y)� (3

p
2�2αcb)cb f (y)

(1�p2αcb)2
: (2)

PROOF. First, there is at least one biting-square, say
Π(x;cb f (x)), that covers point y. As proved by the pre-
vious lemma, we know that there is at least one mesh
vertex z other than x that is inside sphere B(x;ce f (x)).
See Figure 9 (c). Then jjz� yjj � jjz� xjj+ jjx� yjj �
ce f (x) +

p
2cb f (x) = (ce +

p
2cb) f (x). So the nearest

neighbor value at y satisfies

N(y)� max(jjx�yjj; jjz�yjj)� (ce+
p

2cb) f (x):

Then the inequality f (y) � f (x) � αjjx� yjj � (1 �p
2αcb) f (x) implies that

N(y)� (
p

2cb+ce) f (y)=(1�
p

2αcb):

We then show that the nearest neighbor value N(y) is also
not too large. Recall that point y is covered by biting-
squares. There are two cases: the first case is that only

one biting-square contains y, and the second case is that
two or more biting-squares contain y.

In the first case, let us assume that y is covered by biting-
square Π(x;cb f (x)). Thus jjy�zjj> cb f (z) holds for any
other mesh vertex z, i.e., y 62 Π(z;cb f (z)). Because f (x)
is α-Lipschitz,

f (y)� f (z)+αjjy� zjj � (α+1=cb)jjy� zjj:

Then for any mesh vertex z, if y 62 Π(z;cb f (z)), then
jjy� zjj � cb

1+αcb
f (y). Therefore, by the definition of the

nearest neighbor function, N(y)� minz 6=x(jjy� zjj). This
implies that

N(y)� cb

1+αcb
f (y):

In the second case, assume that biting-squares
Π(x;cb f (x)) and Π(z;cb f (z)) contain y. See Fig-
ure 9 (b). Further assume that Π(x;cb f (x)) is bitten
before Π(z;cb f (z)). Hence jjx� zjj � cb f (x). Because
f (x) is α-Lipschitz and y 2 Π(x;cb f (x)), we have
f (y)� (1+

p
2αcb) f (x). By the triangle inequality,

max(jjy�xjj; jjy� zjj)
� 1

2 jjx� zjj
� cb=2 f (x)

� cb=(2+2
p

2αcb) f (y):

Therefore, the second smallest distance from y to the set
of mesh vertices whose biting-squares contain y is at least
cb=(2+ 2αcb) f (y). In addition, from the analysis of the
first case, the smallest distance from y to the set of mesh
vertices whose biting-squares do not contain y is at least
cb=(1+αcb) f (y). Thus,

N(y)� cb=(2+2
p

2αcb) f (y):

Consequently,

cb

2+2
p

2αcb
f (y)� N(y)�

p
2cb+ce

1�p2αcb
f (y);

and the lemma follows from ce = 2
p

2cb=(1�
p

2αcb).
2

Some tedious manipulation yields that the number of the
mesh vertices of a well-shaped triangular mesh is linearly
related to the integral of 1=N(y)2 over all y 2 Ω. See the

106 Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

results by Miller, Talmor, Teng, and Walkington (1998).
The N() function deduced from the mesh generated by
the biting method is within a constant factor of f (x) im-
plies the following theorem. Notice that the constant de-
pends on the quality of the competing mesh.

Theorem 4.9 Size of the mesh generated by the biting
method is within a constant factor of any well-shaped
mesh that conforms well to the given control spacing
function f (x).

4.3 The Radius-edge Ratio of the Mesh

Theorem 4.5 shows that the biting scheme generates
well-shaped meshes. However, the constant bound on
the radius-edge ratio so derived may be too small. In this
section, we provide a better analysis of the bound of the
radius-edge ratio of all mesh elements.

Our analysis is mainly concentrated on two-dimensional
domain. In our analysis, as by Li, Teng, and Üngör
(2000), we divide the triangle elements into two subsets:
the first subset contains all elements whose circumcen-
ters are inside the domain and the second subset contains
all other elements. Our aim is to derive a direct analysis
on the radius-edge ratio of all mesh elements generated.
We first study the triangles in the first subset.

Lemma 4.10 Let 4pqr be a triangle of the first subset.
Let l be the length of the shortest edge of 4pqr; R be the
radius of the circumcircle C of 4pqr. Then the radius-
edge ratio of 4pqr satisfies

R
l
�

p
2

1�2
p

2αcb
: (3)

PROOF. Let c be the circumcenter of 4pqr. Assume
that c is covered by biting-square Π(x;cb f (x)). Then
jjc� xjj � p

2cb f (x). Because the mesh is a Delaunay
triangulation, x is not in the interior of circumcircle of
4pqr, i.e., jjx� cjj � R. Thus f (x) � R=(

p
2cb). Be-

cause f (x) is α-Lipschitz, f (c)� f (x)�αjjc�xjj. Also
because jjc�xjj � p

2cb f (x), we have

f (c)� (1�
p

2αcb) f (x)� (1�
p

2αcb)R=(
p

2cb):

Without loss of generality, assume edge pq is the short-
est edge of the triangle, i.e., jjp� qjj= l. Also assume
that Π(q;cb f (p)) is bitten before Π(q;cb f (q)), which

x

c

p
1 boundary segment p

2

1

u v

x

x
1

3

Figure 10 : A triangle x1x2x3 of the second subset.
The circumcenter c is separated from x1x2x3 by segment
p1 p2.

implies that l � cb f (p). Because f (x) is α-Lipschitz,
f (c) � f (p) + αR � l=cb + αR. Using f (c) � (1�p

2αcb)R=(
p

2cb), we have

(1�
p

2αcb)R=(
p

2cb)� f (c)� (l+αcbR)=cb:

The lemma then follows. 2

We now study the triangle elements in the second subset.
Consider a triangle4x1x2x3 from the second subset. Let C
be its circumcircle. Let c be the center of C ; R be the ra-
dius of C . Assume vertices p1 and p2 are the two closest
mesh vertices on a boundary that separates 4x1x2x3 and c.
Here, we also assume that p1 p2 is the closest boundary
segment to 4x1x2x3. Note that p1 and/or p2 may be one
of the vertices of triangle 4x1x2x3. See Figure 10 for an
example.

From the Delaunay triangulation property, we know that
there is no mesh vertex inside the circumcircle C . It
implies that biting-squares centered at p1 and p2 should
cover the segment p1 p2. Let r be the intersection point
of Π(p1;cb f (p1)) with Π(p2;cb f (p2)) that is inside the
domain. It is simple to show that angle\p1xip2 is obtuse
for i = 1;2;3. Observe that \p1xip2 � \p1rp2. There-
fore, angle\p1rp2 is also obtuse. Without loss of gener-
ality, assume that p1 is bitten before p2.

From the biting scheme, we know that only the following
biting scenarios are possible. Vertex p2 is on the intersec-
tion of biting-square Π(p1;cb f (p1)) with the boundary
segment containing p1 p2, as illustrated by Figure 11 (a)
and (b). Or vertex p2 is on the intersection of biting-
square Π(p3;cb f (p3)) with the boundary segment con-
taining p1p2 and biting-squares centered at p1 and p2

To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 107

p
1
p 2

p
1
p 2

(a) (b)

1

r

p p
2 3p p

α

1
p2boundary

(c) (d)

p

α

1

p2

boundary

p

α

1

p2

bo
un

da
ry

(e) (f)

Figure 11 : The configurations of adjacent biting cen-
tered at vertices of input boundary. Cases (a): the spac-
ing at p2 is less than that of p1; (b): the spacing at p2

is larger than that of p1; (c): p2 is the intersection of
Π(p3;cb f (p3)) with the boundary segment; (d): p1 is in-
put vertex, and the input angle at p1 is larger than 135o.
(e) and (f): p1 is input vertex, and the input angle at p1 is
less than 135o.

overlaps, as illustrated by Figure 11 (c). Or vertex p1

is an input corner vertex, and p2 is the intersection point
of biting-square Π(p1;cb f (p1)) with the boundary seg-
ment containing p1 p2, which is illustrated by Figure 11
(d), (e) and (f).

Recall that the angle \p1rp2 is obtuse if segment p1p2

separates a triangle 4x1x2x3 and its circumcenter. By
checking all possible configurations of p1 and p2, only
case (c) is possible to produce an obtuse angle p1rp2.
See Figure 11. It then remains to study the situation il-
lustrated by the Figure 11 (c).

Lemma 4.11 The radius-edge ratio of any generated
Delaunay triangle whose circumcenter is not inside the
domain is at least R=l � t2�2t+2

6t2�8t+2 , where t = αcb.

c

p
1 boundary segment p

2

u v

r

y

x1

Figure 12 : The example of two biting vertices p1 and
p2 on a boundary segment that separates a triangle and
its circumcenter.

PROOF. We assume that the spacing at vertex p1 is less
than that of p2. We first show that length of p1 p2

is within a small constant factor of f (p1). Because
two biting-squares overlap, then Lemma 4.1 implies that
jjp1� p2jj� 2cb

1�αcb
f (p1). The above Figure 12 illustrates

the proof that follows. Let r be the intersection point of
biting-squares centered at p1 and p2, which is in the in-
terior of the domain. Observe that r must be inside the
circumcircle of triangle 5x1x2x3, as shown in the Fig-
ure 12. Otherwise, the vertices of triangle 5x1x2x3 can
not be generated by biting. Let hr be the distance of point
r to boundary segment p1p2. We have hr = cb f (p1).
Recall that the angle \p1rp2 is obtuse. Then it is sim-
ple to show that jjp1� p2jj � 2hr. For convenience, let
E = jjp1� p2jj=2. Then hr � (1�αcb)E and hr < E.

We then show that the circumradius R of triangle4x1x2x3

is not too large. Observe that the circumcircle of 4x1x2x3

does not contain vertices p1 and p2 inside. Some tedious
computation yields that R � (h2

r + E2)=(2hr). For the
sake of easy presentation, let t = αcb. Because hr � (1�
αcb)E and hr < E, we then have

R� t2�2t+2
2�2t

E:

It remains to show that the shortest edge of triangle
5x1x2x3 is not too short. Assume that the shortest
edge is x1x3 and vertex x1 is bitten before x3. Then
the length l of this shortest edge satisfies l � cb f (x1) �
cb(f (p1)�αjjx1� p1jj). From \p1x1 p2 is obtuse, we
have jjp2� p1jj> jjx1� p1jj. It follows that

l � cb f (p1)� tjjp1� p2jj � (1�3t)E:

108 Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

Then we are in the position to claim that the radius-edge
ratio of triangle4x1x2x3 is bounded from above by a con-
stant, i.e.,

R=l � t2�2t+2
6t2�8t +2

:

The similar proof follows when the spacing at vertex p1

is not less than that of p2. 2

Consequently, we know that the meshes generated by bit-
ing scheme have small radius-edge ratio. Notice that, the
bound of the radius-edge ratio for triangles whose cir-
cumcenters are not inside the domain can be improved
by the following observation. After biting the squares
centered at p1 and p2, the region left in the circumcircle
of5x1x2x3 is too small to fill three bitings centered at x1,
x2 ad x3. It implies that p1 and p2 are the vertices of the
triangle5x1x2x3.

4.4 Numerical Robustness

To construct the Delaunay triangulation of the biting cen-
ters, we often need to check if all edges are locally De-
launay. Let’s consider an edge pq of the mesh, and let
r, s be two mesh vertices that form two triangles pqr and
pqs with edge pq. Edge pq is locally Delaunay, if the cir-
cumcircle of triangle pqr does not contain vertex s inside.
The operation to check if an edge pq is locally Delaunay
is often called in-circle test. Due to the roundoff error,
the in-circle test is not always consistent, which in turn
will cause the Delaunay kernel to result in a non-valid
triangulation. Several solutions have been investigated
to overcome these problems; see George and Borouchaki
(1998). They either slightly perturb all points, or intro-
duce a threshold value in comparisons, or perform exact
computations by using the integer-type coordinate sys-
tem. To address this problem, we propose a new method
that generates high quality mesh by combining it with
our biting method.

Let ϕ be a positive constant less than 1. Assume pq is
the current edge to be checked, and 5pqr, 5pqs are the
two incident triangles. Let B(cr;Rr), and B(cs;Rs) be the
circumcircles of5pqr,5pqs respectively. We call them
the ϕ-circumcircles of the triangles. For convenience, let
ατ(x) = jjx� cjj=R, where c, R are the center and ra-
dius of the circumcircle of an element τ. See George
and Borouchaki (1998). Then the following definition is
introduced by Li, Teng, and Üngör (1999).

ϕR
R

p

r s

q

Figure 13 : The shared edge pq of two triangles pqr and
pqs are ϕ-locally Delaunay. The dashed circles are the
circumcircle and ϕ-circumcircle of triangle 5pqs. And
the solid circles are the circumcircle and ϕ-circumcircle
of triangle 5pqr. Notice that the edge pq is not locally
Delaunay under classic Delaunay definition.

Definition 4.1 [ϕ-LOCALLY-DELAUNAY] Edge pq is
called ϕ-locally-Delaunay if r is not in the interior of
circle B(cs;ϕRs), and s is not in the interior of circle
B(cr;ϕRr), i.e., α5pqs(r)� ϕ, and, α5pqr(s)� ϕ.

The above Figure 13 gives an example of edge pq that
is ϕ-locally Delaunay. Then we define the ϕ-Delaunay
mesh as following.

Definition 4.2 [ϕ-DELAUNAY] A mesh is called ϕ-
Delaunay, if all edges are ϕ-locally-Delaunay. In other
words, the ϕ-circumcircle of each triangle is empty.

Hence the traditional Delaunay triangulation is 1-
Delaunay under this definition. To make a mesh ϕ-
Delaunay, we check each edge of the mesh, if it does not
satisfy the ϕ-local-Delaunay property, we flip the edge.
Notice that, there may have many ϕ-Delaunay triangula-
tions for a given point set. Recall that the Delaunay trian-
gulation of any two-dimensional point set maximizes the
minimum angle among all possible triangulations. How-
ever, the ϕ-Delaunay triangulation of an arbitrary two-
dimensional point set can not guarantee that the mini-
mum angle is within a constant factor of the minimum
angle generated by the Delaunay triangulation. The next
theorem shows that any ϕ-Delaunay triangulation of any
point set generated by the biting method is a well-shaped
mesh.

To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 109

Theorem 4.12 [WELL-SHAPED ϕ-DELAUNAY] Let M
be a ϕ-Delaunay triangulation of the point set generated
by biting domain Ω according to an α-Lipschitz spacing
f (x) using biting constant cb. Then the radius-edge ratio
of the mesh is at most a constant that depends on α;cb;ϕ.

PROOF. We show it for the triangles whose circumcenters
are inside the domain. We will prove that

R=l �
p

2

(1�p2αcb)ϕ�
p

2αcb
:

Let c be the circumcenter of 4pqr; let R be the circumra-
dius of 4pqr. Assume that the circumcenter c is covered
by biting-square Π(x;cb f (x)). Noticed that jjx�cjj �ϕR
because of the ϕ-Delaunay triangulation property. Simi-
lar to Lemma 4.10, we have

f (c)� (1�
p

2αcb)ϕR=(
p

2cb);

and

f (c)� l=cb+αR:

Then the theorem follows, if ϕ �
p

2αcb

1�
p

2αcb
and αcb <p

2=4.

When the circumcenter is not inside the domain, the anal-
ysis is similar to the proof that the Delaunay triangulation
of the generated vertices has small radius-edge ratio. The
details of the proofs are omitted here. 2

5 The Complexity of Biting

In this section, we show that the time complexity of bit-
ing square scheme is O(n logn), where n is the number
of the output vertices.

We assume that the advancing front is represented by
linked list of edges. The list of edges are in counterclock-
wise direction and there is no self-intersection among
edges. Each advancing front edge has pointers to the two
vertices and the two edges that are incident to it. In ad-
dition, each vertex on advancing front has pointers to the
two edges that are incident to it. For the sake of easy pre-
sentation, we will use (st;ed; pe;se) to denote the four
pointers of an edge, where st and ed are the source and
destination vertex respectively; pe and se are the pre-
vious and successive edge respectively. In addition, we
use (pe;se) to denote the two pointers of a vertex, where

pe and se are the previous and successive incident edges
of this vertex. For example, the advancing front of the
domain illustrated in Figure 14 (a) is represented by the
linked edges v1v, vv5, v5v4, v4v3, v3v2 and v2v1. Edge vv5

is represented by (v;v5;v1v;v5v4). Vertex v has pointers
to two edges v1v and vv5.

We then analyze the time complexity of the algorithm
by studying the complexity of every stage of the biting.
Observe that, there are no intersections among biting-
squares centered on input vertices, because the constant
cb < 1=2 and the spacing function f (x) is no more than
the local feature size function lfs(x). Therefore, to re-
move the biting-square centered at an input vertex v, we
only need update the two incident edges of the vertex v
for constructing the new advancing front. For example,
after removing the biting-square Π(v;cb f (v)) from the
domain illustrated by Figure 14 (a), the new advancing
front is updated as follows. Two new edges pq and qr
are created. The edge v1v is modified to (v1; p;v2v1; pq),
i.e., the destination vertex is set to p and the successive
edge is set to pq. Edge vv5 is modified similarly. Ob-
serve that we do not need to modify other edges to con-
struct the new advancing front. It implies that we can bite
the square centered at each input vertex at constant time.
The similar arguments hold for the biting of vertices on
the input boundaries. See the following Figure 14 for an
illustration of removing a biting square and update the
advancing front. In both cases, the new advancing front
can be updated in constant time.

We then study how to bite the squares centered at interior
points efficiently. The following observation is important
to speed up the algorithm. The orientation of the biting-
squares does not affect the theoretical bounds of the qual-
ities of the generated mesh. Recall that we always align
the biting-squares centered at interior points with the axis
in the biting scheme. Notice that the major cost of biting
an interior point x lies in computing the intersections of
the biting-square Π(x;cb f (x)) with the previous advanc-
ing front, as well as in constructing the new advancing
front. We prove that these can be done in O(logn) time,
where n is the number of vertices of advancing front be-
fore biting point x.

Then we first show how to find the edges of previous
advancing front that intersect the current biting-square
Π(x;cb f (x)). Notice that we can find all intersected
edges if we find all vertices of current advancing front
that are inside the biting-square Π(x;cb f (x)). Recall

110 Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

����
����
����
����
����
����
����

����
����
����
����
����
����
��������

��

�
�
�
�

v

v

v v

v

v

p q
r

1

2 3

4

5

(a)

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��
��
��
��

��
��
��
������

�
�
�
�

v

v

v v

v

v

1

2 3

4

5

t

u

s
qp

r

(b)

Figure 14 : Remove biting-squares centered at a vertex:
case (a): the vertex is an input vertex; case (b): the vertex
is on a boundary segment. We use the solid points (such
as v1, v2) to denote the vertices of previous advancing
front and use the shaded points (such as p;q of the left
figure) to denote the new vertices in the updated advanc-
ing front. For the left figure, the new advancing front
after Π(v;cb f (v)) is removed is polygon pqrv5v4v3v2v1.
Here, the points p;q;r are the vertices generated due to
removing of the biting-square Π(v;cb f (v)). For the right
figure, the new advancing front after Π(r;cb f (r)) is re-
moved is pqstuv5v4v3v2v1.

�
�
�
�
�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��
��
��
��

��
��
��
��

�
�
�
�

f
v

v
v

v v
v

v

v
1

v
v v

v

v2 v3

45

6

8 9

17

18

19
20

21

v v7 v10
v12

v11

v13 v14

15 16

a b c d
e

v

A configuration before the biting-square centered at v is removed.

�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��
��
��
��
��

��
��
��
��
��

f

v v
v

v

v

6

17

18

19

v v7 v10
v12

v11

v13 v14

15 16

a b c d
e

The remaining domain defined by the new advancing fronts.

Figure 15 : Remove the biting-square centered at a ver-
tex v: We use the solid points to denote the vertices of
previous advancing front and use the shaded points to de-
note the newly introduced vertices in the new advancing
fronts.

that square Π(x;cb f (x)) is aligned with axis. Hence, the
question reduces to report all vertices of the advancing
front that are inside a coordinates-aligned square.

Notice that there is no any order requirement for interior
bitings to guarantee the theoretical bound on the radius-
edge ratio of the mesh. Therefore, we can bite special
vertex in current advancing front if it can speed up the
algorithm. For example, if we select the vertex with the
largest y value, then we can use the priority search tree to
report all points in a three-sided rectangle (the top side of
the rectangle is open). As showed in McCreight (1985),
the priority search tree can be built in O(n logn) time,

the report time is O(logn+k), and the space requirement
is O(n). Here k is the number of points to be reported.
More importantly, the priority search tree can be updated
in O(logn) time per deletion of a vertex and per insertion
of a vertex. Let’s first assume that there is only a constant
number of vertices of the advancing front that are inside
the biting-square to be reported. The proof is given later
in this section. Then we can compute all edges in the

To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 111

current advancing front that intersect with the edges of
Π(x;cb f (x)). Hence only a constant number of queries
from the priority search tree is necessary for constructing
the new advancing front after biting x. Recall that each
query costs O(logn) time. However, we have to update
the priority search tree also. Notice that there is only a
constant number of new intersection points introduced.
And there is only a constant number of vertices that are
covered by the biting square need to be deleted from the
current advancing front. Therefore, there is only a con-
stant number of deletions and insertions that are needed
to update the priority search tree. This can be done in
O(logn) time also.

Observe that for updating the new advancing front, just
finding the intersection points and all segments that form
the advancing front is not sufficient. We have to connect
the segments, for example, by linked lists to form the
polygonal boundaries of the remaining domain. We show
that the new advancing front can be re-linked in constant
time after all segments had been computed.

Assume that we want to bite vertex v, and had com-
puted all edges in current advancing fronts which inter-
sect with the edges of Π(v;cb f (v)). For the sake of easy
presentation, we first assume that the current advancing
front is represented by one polygon P . Assume that each
edge has one unique index. And the indices of edges
are numbered in monotonically increasing counterclock-
wise order. Let ei, 1 � i � m be the edges of the poly-
gon P that intersect the sides of biting-square centered
at v; let vi, 1 � i � m be the corresponding intersection
points. If one edge e intersects the biting-square twice,
we can view the edge e as two imaginary edges such that
each one intersects the biting-square once. Notice that
m is bounded from above by a constant by Lemma 5.2.
Then in constant time, we can sort the intersected edges
fei j 1 � j � mg in increasing order according to their
indices. Furthermore, we sort the intersection points vi,
1 � i� m, by counterclockwise order on the four edges
of Π(v;cb f (v)). This can also be done in constant time.
Let evi be the sorted result.

For example, let’s see what all above discussion means
by studying the biting of the domain illustrated in Fig-
ure 15 (a). The advancing front is represented by poly-
gon vv1v2 : : :v19v20v21. Edge vivi+1 has index i. Here
let v0 denote v. Recall that the priority search tree will
return all vertices inside the biting-square centered at v,
i.e., v1, v2, v3, v4, v5, v8, v9, v20 and v21. By checking the

two incident edges of each vertex that is inside the biting-
square, we could find all edges that intersect the biting-
square. Edges v5v6, v7v8, v9v10 and v18v19 intersect the
biting-square Π(v;cb f (v)). The intersection points are a,
b,c, d, e and f .

Then we show how to construct the new advancing front
by just using these intersection points and the corre-
sponding edges.

Procedure: UPDATING THE ADVANCING

FRONTS

1. Select an intersected edge going toward the outside
of biting-square Π(v;cb f (v)), let’s say edge E1. We
then have the corresponding intersection point u1.

2. Search the intersected edges list of the current ad-
vancing front to get the edge E2 that is ordered im-
mediately after the edge that is found in previous
step. This can also be done in constant time. We
also have the corresponding intersection point u2

produced by E2.

3. If there is no intersection point between the two in-
tersection points u1 and u2, we then connect u1 and
u2 along the biting-square to create new edge(s).
The new edge(s), together with all edges between
edge E1 and E2 of current advancing front form a
new polygonal advancing front.

Notice that if u1 and u2 are on two different sides of
the biting-square, we need create more than one new
edges to connect u1 and u2 along the biting-square.

4. If there are intersection points between u1 and u2, let
x be the intersection point on the biting-square that
is ordered immediately before u2. Let E be the edge
that produces x. Then we create a new edge by con-
necting x to u2 along the side of the biting-square.
Then we link the new edge to be the previous edge
of edge e, and to be the successive edge of edge E2.

5. Repeat the above steps 2-4 until intersection point
u1 is checked again.

6. Repeat the above steps 1-5 until all intersection
points are checked.

Let’s see what the method means by studying the do-
main illustrated in Figure 15 (a). Assume that we first

112 Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

select the intersected edge v5v6 as the edge that is going
toward the outside of biting-square, i.e., E1 = v5v6. We
then have the corresponding intersection point u1 = a.
We then find intersected edge v7v8 that is ordered imme-
diately after the edge E1, i.e., E2 = v7v8. We also have
the corresponding intersection point u2 = b. Notice that
there is no intersection point between the two intersec-
tion points a and b. We then connect a and b along the
biting-square to create a new edge ba. The new edge ba,
together with modified edges v5v6, v6v7 and v7v8, forms a
new advancing front. Then we find another outgoing in-
tersected edge v9v10. Similarly, we will create a new edge
dc, and set edge dc as the successive edge of edge v18d
and as the previous edge of edge av10. In other words,
only three edges are need to be modified to form the new
polygon cv10v11 : : :v17v18d. At last, we will link points f
and e and create polygon f ev19 as a new advancing front.
See Figure 15 (b) for the updated advancing fronts.

Thus, if the intersected points are known, we can then
update the advancing front in constant time. Notice that
all considered edges in this round are all from the same
old polygon. Hence the ordering of the edges in new
polygon is still monotonically increased. When more
than one polygons form the advancing fronts, the same
scheme will also correctly construct the new advancing
fronts if we assume that there are no holes in the domain.
If there are holes in the input domain, we can add some
artificial edges to cut the domain into a collection of sub-
domains without holes. Notice that if there are h holes
in the original domain, then we need at least h artificial
edges to cut it. The following lemma concludes the above
results.

Lemma 5.1 If the intersected edges is known, we can
bite the square centered at interior point v in constant
time.

Notice that, until now, we did not show that there is only
a constant number of edges that intersect with the biting-
square centered at v. We also did not show that there
is only a constant number of vertices that are inside the
biting-square Π(v;cb f (v)). The remaining of this section
is devoted to solve these questions. We first show that
only constant number of biting vertices are inside square
Π(v;c f (v)) for any constant c satisfies that

p
2αc < 1.

Lemma 5.2 There are at most constant biting vertices in
any square Π(x;c f (x)), where

p
2αc < 1.

PROOF. Let y1, y2, � � � , yk be the k biting vertices in
square Π(x;c f (x)). The fact that yi is inside Π(x;c f (x))
implies that

f (yi)� f (x)�αjjyi�xjj � (1�
p

2αc) f (x);

and

f (yi)� (1+
p

2αc) f (x):

Then packing-sphere B(yi;cp f (yi)) is contained inside
the square Π(x;c f (x) + cp f (yi)). In other words, all
packing-spheres are contained in a square Π(x;c f (x)+
(1+

p
2αc)cp f (x)). Recall that all packing-spheres do

not overlap. Then an area argument implies that

k

∑
i=1

π(cp f (yi))
2 � 4(c f (x)+(1+

p
2αc)cp f (x))2:

It implies that k � 4
π(

1+
p

2αc+c=cp

1�
p

2αc
)2. Notice that cp is

a constant that depends on α and cb. Then the lemma
follows. 2

We then show that only constant number of edges of cur-
rent advancing front can intersect with a biting-square
centered at a vertex v. Notice that after the boundary
segments are bitten, all edges of the advancing front
are the edges of previous biting-squares. Let’s consider
an intersected edge e, which is the side edge of biting-
square centered at vertex u. Therefore the edge e in-
tersects with current biting-square Π(v;cb f (v)) implies
that biting-squares Π(v;cb f (v)) and Π(u;cb f (u)) inter-

sect. Thus, we have jju� vjj � 2
p

2cb

1�
p

2αcb
f (v). In other

words, all vertices whose incident edges will possibly in-
tersect with biting-square Π(v;cb f (v)) is inside sphere

B(v; 2
p

2cb

1�
p

2αcb
f (v)). Then a simple application of above

lemma 5.2 yields that there is only constant number of
vertices whose biting-squares intersect with Π(v;cb f (v)).

Notice that, here we need
p

2α 2
p

2cb

1�
p

2αcb
< 1. In other

words, the biting constant cb satisfies that αcb <
1

4+
p

2
.

It remains to show that there is only constant number
of vertices that are inside the biting-square centered at
v. Notice that the vertices of advancing front are the
corner vertices of previous biting-squares or the inter-
section points by previous biting-squares. In the first
case, let’s assume that Π(u;cb f (u)) has one corner points
inside Π(v;cb f (v)). Then Π(u;cb f (u)) intersects with
Π(v;cb f (v)). In the second case, let’s assume that point

To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 113

x is inside Π(v;cb f (v)), and it is the intersection point
of previous biting-squares centered at u1 and u2. Then
these two previous biting-squares intersect Π(v;cb f (v)),
Otherwise vertex x could not be inside Π(v;cb f (v)). In
both cases, we know that all inside vertices are from
the biting-squares that intersect Π(v;cb f (v)). As dis-
cussed in previous paragraph, we know that there is
only a constant number of bitten vertices whose biting-
squares intersect with Π(v;cb f (v)). Thereofore, these
biting-squares will only generate constant number of in-
tersection points. Thus there is only constant number
of vertices of current advancing front that are inside
Π(v;cb f (v)).

Therefore, for every biting, we only need to spend
O(logn) time to update the new advancing front and the
priority search tree, where n is the total number of the
vertices in previous advancing front. Then we have the
following theorem.

Theorem 5.3 The biting vertices can be computed in
O(N logN) time, where N is the total number of vertices
generated.

6 Experimental Result

In this section, we give some experimental results to
show that the biting method generates well-shaped and
well-conformed mesh in two dimensions. The input do-
main is a 9 by 9 square. The spacing function used is
same as that by George and Borouchaki (1998). In other
words, if point has coordinates (x;y), then its control
spacing value is defined as following.

f (x;y) =

8>>><
>>>:

1�0:95 y
2 if y � 2

0:05�20
y�2
2:5 if 2 < y� 4:5

0:2
y�4:5

2:5 if 4:5 < y� 7
0:2+0:8(y�7

4)4 if 7 < y� 9

In Figure 16, we show two meshes generated by our
biting method: Figure (a) is generated by setting biting
constant cb = 0:5; Figure (b) is from cb = 0:7. There
are 6728 mesh vertices, and the minimal angle is about
13o for mesh showed by Figure 16 (a); there are 3435
mesh vertices, and the minimal angle is about 7o for mesh
showed by Figure 16 (b). The quality of the mesh gen-
erated by the biting method is illustrated in the Figure
17. Although the theoretic bound for the biting con-
stant is about 0:33, we found that by setting cb = 0:5

(a) biting by cb = 0:5 (b) biting by cb = 0:7

Figure 16 : Meshes generated by the biting method.

(even cb = 0:7), it also generates well-shaped and well-
conformed mesh. We also found that the angle distribu-
tions of two biting instances are almost same. The con-
formity of the mesh vertices is almost same as the biting
constant, which matches our guess about the conformity.

7 Conclusion

In this paper, we present a variation of the biting method,
which combines the merits of the advancing front and
the sphere packing methods. It is as simple and as prac-
tical as the advancing front methods. It is efficient in
time complexity and is simple and straightforward to be
extended to three dimensions. The biting scheme is theo-
retically efficient than the classic advancing front method
because it explicitly maintains the set of candidates for
new mesh vertices, and it does not have to handle the
case when fronts meet each other or one front meets it-
self. The new scheme resolves this difficulty that occurs
at the end of the standard advancing front method. The
size of the generated mesh is within a constant factor of
the optimal.

Note that the biting square method can be extended to
generate three-dimensional meshes: by replacing the
biting-square as the biting-cube. Unlike the biting sphere
method that has to use complicated method to protect the
boundary, the boundary faces and edges are protected
easily by biting cube in three dimensions, because the
biting-cube naturally pushes the intersection points away
from the boundary. The complete prove of the quality
of the mesh is omitted here. Recall that for the gener-
ated tetrahedron element whose circumcenter is inside
the domain, we have the similar theoretical bound on the
radius-edge ratio as two-dimensional counterpart. How-
ever when the circumcenter is not inside the domain, the
proof is much more complicated. Notice that, we can al-

114 Copyright c
 2001 Tech Science Press CMES, vol.2, no.1, pp.97-115, 2001

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

18

20
The angle quality of the mesh generated by biting

angles

pe
rc

en
ta

ge

bite c=0.5
bite c=0.7

Angle distribution of the meshes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60
The spacing conformity of the mesh generated by biting

conformity

pe
rc

en
ta

ge

bite c=0.5
bite c=0.7

Vertex conformity distribution of the meshes

Figure 17 : The qualities of the meshes generated by the biting method.

ways apply the boundary protection method as Delaunay
refinement Shewchuk (1998) to improve the radius-edge
ratio of this kind of tetrahedra.

Furthermore, the biting method can also be used to con-
duct the refinement and coarsening of a mesh. The
key observation is that the biting scheme generates a
sequence of biting-squares such that the center of a
later square is not contained inside any previous biting-
squares. Assume that we are given a mesh M and a new
spacing function f (x). For each mesh vertex v, the biting-
square centered at v is defined as Π(v;cb f (v)). The ori-
entation of the biting-square is defined as in the biting
scheme. Notice that for refinement, the set of biting-
squares defined on mesh vertices of M may not cover
the entire domain. Then we bite the remaining pieces
of domain by the biting method and the Delaunay trian-
gulation of all mesh vertices and new introduced bitten
vertices is the final mesh. For coarsening a mesh M, the
biting-squares defined on original mesh vertices may not
be ordered such that the center of each later biting-square
is not contained inside previous biting-squares. How-
ever, we can remove the biting-squares whose centers are
contained inside other squares using a similar approach
to MIS method, or we can apply the topological sorting
method to extract a sequence of biting-squares from M.
Then the Delaunay triangulation is constructed as the fi-
nal mesh.

References

Babuška, I.; Aziz, A. K. (1976): On the angle condition
in the finite element method. SIAM J. Numer. Anal., vol.
13(2), pp. 214–226.

Bern, M.; Eppstein, D.; Gilbert, J. R. (1990): Prov-
ably good mesh generation. . In the 31st Annual Sympo-
sium on Foundations of Computer Science, IEEE, pages
231–241, 1990.

Blacker, T. D. (1991): Paving: a new approach to auto-
mated quadrilateral mesh generation. Int. Jour. for Nu-
merical Methods in Eng, vol. 32, pp. 811–847.

Chew, L. P. (1997): Guaranteed-quality delaunay mesh-
ing in 3d (short version). . In 13th ACM Sym. on Comp.
Geometry, pages 391–393, 1997.

George, P.-L.; Borouchaki, H. (1998): Delaunay
Triangulations and Meshing. HERMES.

Li, X. Y. (2000): Sliver-free Three Dimensional Delau-
nay Mesh Generation. PhD thesis, University of Illinois
at Urbana-Champaign, 2000.

Li, X. Y.; Teng, S. H. (1998): Dynamic load balanc-
ing for parallel adaptive mesh refinement. . In 5th In-
ternational Symposium on Solving Irregularly Structured
Problems in Parallel, pages 144–155, Berkeley, 1998.

To Generate Good Triangular Meshes, Conforming to Control Spacing Requirements 115

Li, X. Y.; Teng, S. H.; Üngör, A. (1999): Biting el-
lipse to generate anisotropic mesh. . In 8th International
Meshing Roundtable, 1999.

Li, X. Y.; Teng, S. H.; Üngör, A. (2000): Biting: ad-
vancing front meets sphere packing. Int. Jour. for Nu-
merical Methods in Eng, vol. 49, no. 1-2, pp. 61–81.

Lohrer, R. (1996): Progress in grid generation via the
advancing front technique. Engineering with Computers,
vol. 12, pp. 186–210.

Lohrer, R.; Parikh, P. (1988): Three dimensional grid
generation by the advancing-front method. Int. J. Numer.
Meth. Fluids, vol. 8, pp. 1135–1149.

McCreight, E. M. (1985): Priority search trees. SIAM
Journal on Computing, vol. 14, pp. 257–270.

Miller, G. L.; Talmor, D.; Teng, S. H. (1998): Optimal
coarsening of unstructured meshes. Journal of Algo-
rithms. invited and accepted to a special issue for SODA
97.

Miller, G. L.; Talmor, D.; Teng, S. H.; Walkington, N.
(1995): A delaunay based numerical method for three
dimensions: generation, formulation, and partition. . In
Proc. 27th Annu. ACM Sympos. Theory Comput., pages
683–692, 1995.

Miller, G. L.; Talmor, D.; Teng, S. H.; Walkington, N.
(1998): On the radius–edge condition in the control vol-
ume method. SIAM J. on Numerical Analysis. accepted
and to appear.

Mitchell, S. A.; Vavasis, S. A. (1992): Quality mesh
generation in three dimensions. . In ACM Symposium on
Computational Geometry, pages 212–221, 1992.

Ruppert, J. (1992): A new and simple algorithm
for quality 2-dimensional mesh generation. . In Third
Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 83–92, 1992.

Shewchuk, J. R. (1998): Tetrahedral mesh generation
by delaunay refinement. . In 14th Annual ACM Sympo-
sium on Computational Geometry, pages 86–95, 1998.

Shimada, K.; Gossard, D. C. (1995): Bubble mesh:
automated triangular meshing of non-manifold geometry
by sphere-packing. . In third Symp. on Solid Modeling
and Appl., pages 409–419, 1995.

Strang, G.; Fix, G. J. (1973): An Analysis of the Finite
Element Method. Prentice-Hall.

