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Three-dimensional Numerical Simulation of Unsteady Marangoni Convection in
the CZ Method using GSMAC-FEM

Haruhiko Kohno, Takahiko Tanahashi1

Abstract: Three-dimensional (3D) unsteady numeri-
cal simulations are carried out by means of the finite
element method (FEM) with the generalized simplified
marker and cell (GSMAC) method in silicon melt with
a non-deformable free surface with Prandtl number Pr =
1:8534�10�2, Marangoni number Ma = 0:0�6:2067�
102, Grashof number Gr = 7:1104� 106, and the aspect
ratio As = 1.0 in the Czochralski (CZ) method. The flow
state becomes unstable earlier by increasing the abso-
lute value of the thermal coefficient of surface tension
in the range of σT = 0:0� 1:5� 10�5N/mK. Although
the velocity distribution in the circumferential direction
is isotropy in any direction first, its magnitude becomes
periodic and has the wavelength equal to 1/8 of the cir-
cumference. Then the wavelength doubles, and the flow
pattern becomes finally asymmetrical. Moreover, the os-
cillation of the velocity distribution is observed just under
the single crystal, and the amplitude is found to depend
on the value of σT . After imposing the vertical magnetic
field more than 0.05T to the melt from 50s, the flow pat-
tern becomes restored to symmetry. But the instability
remains under the single crystal and it indicates that the
influence of Marangoni convection can not be neglected
in the crystal growing process.
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1 Introduction

CZ method is a widely adopted crystal growth technique
whose product is superior in mechanical strength and is
becoming a promising technique to realize large caliber
single crystals of semiconductors from the melt. The
product is manly used as an integrated circuit which is
in a television, a video, a machine for measurement or
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control and so on. For the coming information society,
the importance of the material base is acquiring.

It is well known that three kinds of convection: the
compulsory convection, the natural convection, and
Marangoni convection [Schwabe and Scharmann (1979);
Sumiji, Nakamura, Omura, and Hibiya (2000)] are gen-
erated in fluid in the CZ process. It is necessary for
the production of good quality single crystal that the
flow is well stirred with the structure kept axisymmet-
rical and moderate near the interface between a single
crystal and melt by controlling these kinds of convec-
tion. The compulsory convection occurs by the exter-
nal force when the crucible or the grown single crystal
rotates constantly. The natural convection in fluid and
Marangoni convection on the free surface are both gen-
erated when the gradient of temperature exists at each
place. The former is driven by the buoyancy and the lat-
ter is done by the gradient of surface tension. Although
Marangoni convection is observed remarkably under mi-
crogravity, its behavior is usually hidden in fluid un-
der normal gravity because of the influence of the nat-
ural convection. Some experiments and numerical sim-
ulations dealing with Marangoni convection under mi-
crogravity have been done so far [Nakamura, Hibiya,
Kakimoto, Imaishi, Nishizawa, Hirata, Mukai, Yoda, and
Morita (1998); Imaishi, Yasuhiro, Sato, and Yoda (1999);
Zeng, Mizuseki, Higashino, and Kawazoe (1999)]. The
magnitude of surface tension depends on temperature,
concentration, and electric potential, and it is difficult to
investigate the effect of each element to the surface ten-
sion separately and get reliable experimental data. This
is one reason why the effects of Marangoni convection
have rarely described in the CZ method even today. Some
CZ process experiments are performed with the oxidized
contamination left on the free surface intentionally to re-
move the effects of Marangoni convection [Lee and Chun
(1997)]. But in the real process, the effect of the surface
tension is essential because the temperature difference
and the partial difference of the oxygen concentration on
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the free surface can not be neglected [Azami, Nakamura,
Hibiya, and Mukai (2000)]. So it is important to intro-
duce Marangoni convection into the numerical simula-
tion to make a precise analysis of the CZ method even if
some approximations are needed for that.

In the present study, we perform a series of three-
dimensional numerical simulations with the parameter
of Marangoni convection changed within a small range
in adiabatic silicon melt with flat free surface. Surface
tension is assumed to depend on only temperature, and
so the effect of concentration is not taken into consider-
ation. Moreover, the vertical magnetic field is imposed
after 50s, and the comparison between Marangoni con-
vection and a slip condition is made after that. However,
in this paper, discussions are restricted to the state with
the single crystal and the crucible static. The rotational
effects of them will be reported in another forthcoming
paper. The purpose of this paper is to clarify the influence
which Marangoni convection gives to the flow structure
and the interface between a single crystal and melt, and
the behavior that the effects will be damped by imposing
the vertical magnetic field.

2 List of symbols

B0 applied magnetic flux density
Cp specific heat
D rate of strain tensor
g gravitational acceleration
I unit tensor
J current density
n unit normal vector
p pressure
s unit vector which points to the

direction of the surface tension
t time
t1, t2 unit vectors on the tangential plane,

which cross with the normal vector vertically
on the free surface

t(n) stress vector
tσ surface tension vector
T temperature
T stress tensor
v velocity
α thermal diffusivity
β coefficient of cubical expansion
φ scalar potential
µ coefficient of viscosity

ν kinematic viscosity
ρ density
σ surface tension
σm electric conductivity
σT thermal coefficient of surface tension
Σ;∂Σ closed area and closed curve, respectively
∇?;∇== normal component and tangential plane

component of the nabla operator, respectively

3 The theory of surface tension

The surface tension vector is defined in the following
equation:

tσ = lim
Σ!0

1
Σ

I
∂Σ

σsdl (1)

With the surface divergence theorem, the surface tension
vector is described as follows:

tσ = ∇==σ�σ
�

∇== �n
�

n (2)

The equation (2) can be proved by the surface divergence
theorem. First of all, we describe the surface nabla oper-
ator.

Step 1: The nabla operator is resolved into the normal
component and the tangential plane component which
are described in the following equations:

∇ = ∇?+∇== (3)

∇? = n(n �∇) (4)

∇== = t1 (t1 �∇)+ t2 (t2 �∇) (5)

Step 2: Second, we prove the surface divergence theorem
with the surface nabla operator. The round integral which
goes around the closed curve ∂Σis changed by the Stokes’
theorem into the following equation:
I

∂Σ
σsdl =

I
∂Σ

dl�σn =
Z

Σ
(n�∇)�σndΣ (6)

(n�∇)�σn = σf(n�∇)�ng+fn� (∇σ)g�n (7)

Substitution of the equations (3) , (4), and (5) into the
equation (7) leads the following equation:

(n�∇)�σn = ∇==σ�σn
�

∇== �n
�

(8)

Thus, the equation (2) is obtained by substituting the
equation (6) and (8) into the equation (1).

tσ = lim
Σ!0

1
Σ

Z
Σ

�
∇==σ�σn

�
∇== �n

�	
dΣ

= ∇==σ�σn
�

∇== �n
�

(9)



Three-dimensional Numerical Simulation of Unsteady Marangoni Convection 157

Figure 1 : Two-phase model

The surface tension vector is included in the equation of
the boundary condition which causes Marangoni convec-
tion. Fig.1 shows a two-phase model which is divided
into two areas: Fluid 1 and Fluid 2, by the free surface.
In this study the calculation is conducted only in the area
of Fluid 1. The boundary condition of the free surface is
given by the following equation:

h
t(n)

i1

2
= tσ = ∇==σ�σ

�
∇== �n

�
n (10)

The equation (10) means that the jump of the stress vec-
tor on the free surface is equal to the surface tension
vector. The stress vector is described as follows by the
Cauchy’s basic law:

t(n) = n �T (11)

Besides, the stress tensor is expressed in the follow-
ing constitutive equation by the Navier-Poisson’s law in
terms of the incompressible fluid:

T = �pI+2µD (12)

Then the following equation is obtained by substituting
the equation (11), (12) into the equation (10).

[n � (�pI+2µD)]12 = ∇==σ�σ
�

∇== �n
�

n (13)

The left-hand term in the equation (13) can be expanded
with the attached letter notation as follows:
�
�pni +µ

�
∂u j

∂xi
+

∂ui

∂x j

�
n j

�1

2

= �plni = µi

�
∂u j

∂xi
+

∂ui

∂u j

�
1

n j

= �pni +µ
∂u j

∂xi
n j +µ

∂ui

∂n
(14)

Here the pressure and the velocity in Fluid 2 are both
assumed to be 0. The first term on the right-hand side in

Figure 2 : Mathematical model in the CZ method.

the equation (13) can be changed into the following form
by applying the chain rule.

∇==σ =

�
∂σ
∂T

�
∇==T (15)

Here the thermal coefficient of surface tension σT is de-
fined in the following equation:

σT =
∂σ
∂T

(16)

Moreover, the second term on the right-hand side in the
equation (13) can be omitted by the postulate in which
the free surface is flat and non-deformable. Therefore the
following equation is lead by substituting the equation
(14), (15), and (16) into the equation (13).

pni�µ
∂ui

∂n
= �σT ∇==T +µ

∂u j

∂xi
n j (17)

After taking the surface integral of the equation (17), the
second term on the right-hand side is eliminated by ap-
plying the Gauss’ theorem in terms of the incompressible
fluid.
ZZ

Γ

�
pni �µ

∂ui

∂n

�
dΓ =�

ZZ
Γ

σT ∇==T dΓ (18)

The equation (18) is called a boundary integral term and
adopted as an equation which gives a boundary condition
of the FEM.

4 Mathematical model

A schematic diagram and a mathematical model of the
silicon melt in the CZ method are shown in Fig.2.

The melt depth and the crucible radius are divided into
26 and 29 elements each, and the whole node and ele-
ment numbers are 38259 and 36192, respectively. The
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Table 1 : Size of crucible and boundary condition parameters

Crucible Radius [m ] Rc 2:50�10�2

Crystal Radius [m ] Rs 8:97�10�3

Melt Depth [m ] H 2:50�10�2

Crystal / Melt Interface Temp. [K ] Ts 1685.0
Crucible Wall Temp. [K ] Tw 1745.0
Central Temp. at the Bottom [K ] Tc 1705.0
Magnetic Flux Density [T ] B0 0.01 - 0.1

Table 2 : Physical properties of silicon melt

Melt Density [kg/m3 ] ρ 2:33�103

Kinematic Viscosity [m2/s ] ν 4:30�10�7

Thermal Coeff. of Surface Tension [N/mK ] σT �1:00�10�5�0:00
Thermal Diffusivity [m2/s ] α 2:32�10�5

Electric Conductivity [S/m ] σm 1:06�106

Specific Heat [J/kgK ] Cp 1:00�103

Coefficient of Cubical Expansion [l/K ] β 1:43�10�4

hexahedron elements are used, and the elements near the
boundary layer are divided smaller in order to make an
accurate calculation. The liquid with a flat free surface
maintains a cylindrical shape and the temperature of the
side wall, the bottom wall, and the interface between the
crystal and the melt are constant. The slope of the tem-
perature is constant linearly from the side (Tw) to the cen-
ter (Tc) at the bottom wall. The thermophysical proper-
ties of the silicon melt are assumed to be constant except
for the thermal coefficient of surface tension σT . The top
liquid surface is assumed to be adiabatic. This approx-
imation is grounded on the fact that the temperature of
the inert gas around the crucible is close to the one of the
melt.

At the initial stage, the liquid is at rest with the constant
temperature Ts. At t = 0s, the temperature of the side wall
and the bottom wall is instantaneously raised and kept at
Twand Tc while the interface between the crystal and the
melt is maintained at Ts. The computation has been done
by using the Cartesian coordinates system with a non-
uniform grid.

A set of boundary condition parameters and physical
properties of silicon melt are listed in Tab. 1 and Tab.
2.

5 The governing equations

The governing equations in the velocity, temperature, and
magnetic fields are described with boundary conditions
as follows:

Continuity equation :

∇ �v = 0 (19)

Navier-Stokes equation:

ρ
�

∂v
∂t

+v �∇v
�

=�∇p+µ∇2v�ρβg(T �Ts)+J�B0 (20)

Energy equation:

∂T
∂t

+v �∇T = α∇2T +
1

ρσmCp
J2 (21) (21)

Ohm’s law:

J = σm (�∇φ+v�B0) (22)

Principle of conservation of charge:

∇ �J = 0 (23)
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Boundary conditions:

at r = Rc v = 0;T = Tw

at z = 0 v = 0;T = Tc�Tw

at z = H (24)

0 � r � Rs v = 0;T = Ts

Rs < r < Rc pni�µ
∂ui

∂n
= �σT ∇==T

+µ
∂u j

∂xi
n j(free surface)

“r” stands for the distance from the center axis in the
equation (24). The Boussinesq approximation is applied
in the equation (20) on the ground that the temperature
difference between the crucible and the crystal is not
so large. The non-dimensional parameters are defined
with the following scaling lists: an aspect ratio As =
H=Rc, Prandtl number Pr = ν=α, Marangoni number Ma
= jσT j∆T H=(ρνα), Grashof number Gr = β∆TgH3=ν2.

6 Numerical method

The governing equations with the boundary conditions
are solved by the FEM with the GSMAC method [Tana-
hashi, Okanaga, and Saito (1990); Tanahashi, Oki, and
Henjes (1993)]. The GSMAC method is an application of
the HSMAC scheme to the finite element method, so the
numerical procedure is based on the projection method in
which the fields of pressure and velocity are obtained by
solving the Poisson’s equation simultaneously. GSMAC-
FEM satisfies three important elements of calculation:
accuracy, universality, and economy.

First the time marching method is adopted in which the
Navier-Stokes equation (20) is discretized explicitly on
the velocity v and implicitly on the pressure p.

vn+1�vn

∆t
=�

1
ρ

∇pn+1� (vn �∇)vn +ν∇2vn

�βg(T n�Ts)+
1
ρ

Jn�Bn
0 (25)

The pressure pn+1is separated into two parts by using the
correcting value pc.

pn+1 = pn + pc (26)

Then the equation (25) is separated into two parts of the

equations (27) and (28) by using the predictor velocity ṽ.

ṽ�vn

∆t
= �

1
ρ

∇pn � (vn �∇)vn+ν∇2vn

�βg(T n�Ts)+
1
ρ

Jn�Bn
0 (27)

vn+1� ṽ
∆t

=�
1
ρ

∇pc (28)

The continuity equation is true at all times as far as fluid
keeps incompressible. Thus the equation (19) can be dis-
cretized as follows with the next time step n+1:

∇ �vn+1 = 0 (29)

Taking the divergence of the equation (28) considering
the equation (29), the following equation is obtained.

∇ �
ṽ
∆t

=
1
ρ

∇2 pc (30)

The equation (30) is the Poisson’s equation in terms of
velocity and pressure. To solve these physical quantities
simultaneously, the correcting velocity potential φp is de-
fined in the following equation:

φp = pc∆t (31)

Then the equation (30) and the next time step values
of velocity and pressure are expressed in the following
forms by using φp, respectively:

1
ρ

∇2φp = ∇ � ṽ (32)

pn+1 = pn +
φp

∆t
(33)

vn+1 = ṽ�
1
ρ

∇φp (34)

The computation of the equations (32) - (34) is iterated
until the value on the left-hand side of the equation (29)
is below the criterion 1:0� 10�3 in the computational
space. The max iteration number is set 1000 in this study.

Second the equation (22) of the Ohm’s law is discretized
explicitly on the velocity v and implicitly on the scalar
potential φ.

Jn+1 = σm
�
�∇φn+1 +vn+1�B0

�
(35)

The calculation of the equation (35) is conducted after
solving the velocity field. Thus the velocity vector vn+1
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(a) t=10s (b) t=30s (c) t=50s

(d) t=10s (e) t=30s (f) t=50s

(g) t=10s (j) t=10s (h) t=30s (k) t=30s (i) t=50s (l) t=50s

Figure 3 : Projected velocity and contour lines of temperature on the vertical plane (a) - (c) and (g) - (i), respectively
at y=0.00m and the horizontal cut (d) - (f) and (j) - (l) at z=2:47�10�2 with σT = �1:0�10�5N/mK.

has already been obtained by this time. The scalar poten-
tial φn+1 is separated into two parts by using the correct-
ing value φc.

φn+1 = φn +φc (36)

Then the equation (35) is separated into two parts of the
equation (37) and (38) by using the predictor current den-
sity J̃.

Jn+1 = J̃�σm∇φc (37)

J̃ = σm
�
�∇φn +vn+1�B0

�
(38)

The principle of conservation of charge is always true just
like the continuity equation in the velocity field. Thus the
equation (23) can be discretized as follows with the next
time step n+1:

∇ �Jn+1 = 0 (39)

The divergence of the equation (37) in the help of the
equation (39) leads to the following Poisson equation
again:

σm∇2φc = ∇ � J̃ (40)

The next time step values of current density and scalar
potential are obtained by the iteration of the equations
(36), (37), and (40). This process is continued until the
value of the left-hand side of the equation (39) is below
the criterion 1:0� 10�2 in the computational space. The
max iteration number is set 500 in this study.

Third the energy equation (21) is discretized explicitly as
follows:

T n+1�T n

∆t

=�
�
vn+1 �∇

�
T n +α∇2T n +

1
ρσmCp

�
Jn+1�2

(41)



Three-dimensional Numerical Simulation of Unsteady Marangoni Convection 161

Figure 4 : Velocity and temperature distribuations near the interface with the parameter σT at y = 0.00m and
z=2:47�10�2m.
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Figure 5 : Time Evolution of velocity with the parameter σT at r = 0.00m and z = 1:25�10�2m.

The next time step value of temperature is thus obtained
by solving the equation (41) directly.

The time step width ∆t is chosen 5�10�4s, and the com-
putation is done until 70s.

7 Results

A comparison with experimental results is carried out to
check the validation of this code. In this case, a liquid
bridge with Ma = 28275, Pr = 7, and Gr = 240.95 is
adopted as a mathematical model. The periodic oscil-
latory frequency f = 1.594 1/s is obtained, which is com-
parable with f = 1.357 1/s ( way up ) and f = 1.318 1/s (
way down ) [Frank and Schwabe (1997)]. This value is
also close to other numerical result f = 1.226 1/s on the
same condition [Zeng, Mizuseki, Higashino, and Kawa-
zoe (1999)].

The magnitude of surface tension depends on tempera-
ture. When the temperature is high on part of free sur-
face, the surface tension becomes small. But if the tem-
perature is low, the surface tension becomes large. Thus
the magnitude of surface tension is small near the cru-
cible and large near the interface between the single crys-
tal and the melt in this study, and it causes the surface
tension driven flow.

The flow structures with σT = �1:0� 10�5 N/mK show
axisymmetry on the vertical plane at 10s and 30s in Fig.

3 (a), (b). However, the structures are different at each
time in terms of the horizontal cut near the free surface.
Although the velocity distribution is isotropy at 10s in
Fig.3 (d), it becomes symmetrical at 30s and has 8 modes
(see Fig. 3 (e)). Moreover, at 50s, the axisymmetrical
structure is lost on the vertical plane (see Fig. 3 (c)).
At this stage, the velocity vectors point to the azimuthal
direction near the center of the radius on the horizontal
cut and the mode number decreases to 4 as shown in Fig.
3 (f). These behaviors of the velocity field are reflected
in contour lines of temperature in Fig. (g) - (l). Although
Fig. 3 (g) and (h) show the axisymmetrical structure, the
pattern becomes asymmetrical at 50s as shown in Fig.
3 (i). On the horizontal cut, the shape of contour lines
is a complete circle at 10s in Fig.3 (j). But it changes
into 8-fold symmetrical structure at 30s, and finally 4-
fold asymmetrical one as shown in Fig. 3 (k), (l).

The magnitude of velocity goes down largely under the
interface between the single crystal and the melt at any
σT as shown in Fig. 4 (a). When σT is 0.0N/mK, i.e.
the slip condition is applied, the magnitude of the ve-
locity is relatively small and stable. But as the absolute
value of the coefficient increases, the oscillation of veloc-
ity under the interface is observed and its amplitude also
grows larger. This oscillatory behavior is considered a
kind of instability generated by the crash of the flow with
high velocity and the postulate of the non-slip condition
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(a) t=50s (b) t=50s (c) t=50s (d) t=50s

(e)

(f)



164 Copyright c
 2001 Tech Science Press CMES, vol.2, no.2, pp.155-170, 2001

(g)

(h)

Figure 6 : Comparison of prjected velocity and contour lines of temperature between a slip condition(a),(b) and
Marangoni convection (c),(d) with σT =�1:0�10�5m and their circumferential distributions between a slip condi-
tion (e), (f) and Marangoni covection (g), (h) at r = 4:62�10�3m, z=1:25�10�2.
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on the solid-melt interface. Of course, this phenomenon
will have a harmful effect on good quality single crystal
because of the lack of material uniformity. The reason
why the magnitude of velocity drastically goes up near
the brim of the single crystal is that the flow is acceler-
ated by the large gradient of surface tension. Although
high temperature is traveled from the crucible to the cen-
ter of the melt on the free surface by the convection, the
temperature of the single crystal is kept Ts. So the local
and steep gradient of the surface tension is caused by this
large difference of temperature.

In comparison with the velocity field, the difference of
the distributions depending on σT under the interface is
not so clear in the temperature field as shown in Fig. 4
(b). Moreover, the oscillatory behavior is not observed so
clearly and the distributions are relatively smooth. The
largest gradient near the brim of the single crystal is con-
firmed in σT =�5:0�10�6 N/m in this study.

Fig.5 shows the time evolution of the magnitude of ve-
locity with the parameter σT at the center of the melt.
The reason why the magnitude of velocity greatly in-
creases at each condition within 5s is that the melt is
quiescent at 0s and the driving forces of the natural con-
vection and Marangoni convection are the maximum at
this stage because the temperature difference between the
melt and the crucible is the maximum at the initial condi-
tion. In this study the direction of the natural convection
and Marangoni convection is the same near the free sur-
face. So the generation of Marangoni convection encour-
ages the natural convection, and the magnitude of veloc-
ity becomes larger as the increase of the absolute value
of σT as proved in the equation (24). Fig. 5 also shows
that there is an oscillation of the magnitude of the veloc-
ity at the center of the melt in each σT after the constant
increase. This oscillatory behavior means the instability
of the flow condition and occurs earlier as the increase of
the absolute value of σT .

Fig. 6 shows the comparison of velocity and temperature
distributions between a slip condition and Marangoni
convection at the central height of the melt. On a slip
condition, 4 symmetrical modes are observed in both ve-
locity and temperature fields at 50s (see Fig. 6 (a), (b)).
This is also confirmed from the circumferential distribu-
tions as shown in Fig. 6 (e), (f). The wavelengths of
the magnitude of velocity and temperature correspond to
1/4 and 1/8 of the circumference respectively at 10s, and
the amplitudes become larger as time passes. Finally, the

(a) (c)

(b) (d)
Figure 7 : Projected velocity and contour lines of tem-
perature with σT = �1:0� 10�5N/mK, B0 = 0.05T on a
vertical plane (a), (c) at y =0.00 and a horizontal cut (b),
(d) at z = 2:47�10�2m, respectively.

wavelengths of both velocity and temperature fields be-
come 1/4 of the circumference at 50s. There are two rea-
sons why the temperature goes down with time in Fig.
6 (f). First, both temperature and surface tension gra-
dients become smaller by the decrease of temperature
difference. This brings about a decline of the convec-
tion intensity related with the magnitude of the buoyancy
and the Marangoni effect. Second, the effect of the cold
temperature area is transformed gradually to the central
height of the melt. However, in the case considering the
effect of Marangoni convection, it is found that the flow
pattern becomes asymmetrical at 50s in Fig. 6 (c), (d). In
Fig. 6 (g), (h), the wavelengths of the magnitude of both
velocity and temperature are equal to 1/8 of the circum-
ference at 10s. Then the wavelengths double in each field
at 30s, and finally the periodic nature is destroyed at 50s.
In Fig. 6 (h), it is observed that the temperature distribu-
tion is divided into two areas, i.e. low and high areas at
50s, and the difference between two areas is much larger
than the amplitude of 10s or 30s. These phenomena show
the onset of turbulent flow.

Fig. 7 shows the velocity and temperature distributions
considering the effect of Marangoni convection at 70s
with the vertical magnetic field B0 = 0.05T. By imposing
the vertical magnetic field, the Lorentz force is generated
in the opposite direction of the flow at the top and bottom
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Figure 8 : Comparison of the circumferential velocity distributions between a slip condition (a) and (b) at r =
4:62�10�3m, z = 1:25�10�2m with the parameter B0.
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(a)

(b)
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(c)

(d)

Figure 9 : Comparison of velocity and temperature distributions near the interface between a slip condition (a), (b)
and Marangoni convection (c), (d) with σT = �1:0� 10�5N/mK, respecitvely with the parameter B0 at y =0.00m
and z = 2:47�10�2m.
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of the melt, and it restrains the intensity of the convec-
tion. On the other hand the Lorentz force does not work
to the flow whose direction is parallel to the center axis.
Thus the flow moves up and down mainly on the vertical
plane as shown in Fig. 7 (a), (c). As a result, the flow
pattern becomes restored to axisymmetry on the vertical
plane (see Fig. 7 (a), (c)) and isotropy on the horizontal
cut (see Fig. 7 (b), (d)) just as it does at 10s in Fig. 3 (a),
(d), (g), (j).

Fig. 8 shows the comparison of the circumferen-
tial velocity distributions between a slip condition and
Marangoni convection at 70s with the parameter B0. In
both conditions, the magnitude of the velocity fluctuates
in B0 = 0.01T. This means the value is not enough for
cooling down the melt condition. Although the fluctu-
ation is almost periodic on a slip condition, it becomes
non-periodic by adding the Marangoni effect. On the
other hand the magnitude of the velocity becomes con-
stant in the cases of B0 = 0.05T, 0.1T. This means the
flow is well controlled by the magnetic force. However it
is necessary that the melt should be fully stirred to realize
the good quality products. So the case of B0 =0.05T is
superior to the one of B0 = 0.1T in this study.

Fig. 9 shows the comparison of velocity and temperature
distributions near the interface between a slip condition
and Marangoni convection with the parameter B0. On
a slip condition, the velocity distributions near the inter-
face between the single crystal and the melt are stable,
and the gradient becomes smaller and smoother as B0 in-
creases as shown in Fig. 9 (a). However, the instability
of the velocity distributions near the interface shown in
Fig. 4 (a) still remains in the case considering the effect
of Marangoni convection (see Fig. 9 (c)) even though the
whole flow pattern keeps symmetrical structure as shown
in Fig. 7 by imposing the vertical magnetic field. Al-
though this instability is a little restrained by increasing
the magnitude of B0, the oscillation near the single crys-
tal does not disappear. In contrast with the velocity dis-
tributions, the temperature distributionsnear the interface
are relatively smoother and there are little differences be-
tween a slip condition and Marangoni convection. As
the Lorentz force works in the opposite direction of the
flow near the free surface, the convection of temperature
also restrains by imposing strong magnetic field. Thus
the smallest gradient of temperature is observed on both
conditions when B0 = 0.1T is imposed (see Fig. 9 (b),
(d)).

8 Conclusions

3D unsteady numerical simulations of the CZ method
considering the effect of Marangoni convection are car-
ried out by means of the GSMAC-FEM. In this study
the direction of the natural convection and Marangoni
convection is the same near the free surface. So the
flow becomes more dynamic by considering the effect
of Marangoni convection than a slip condition because
of the increase of Reynolds number, and the flow struc-
ture becomes asymmetrical in the early stage. In the
circumferential direction, the distributions of the mag-
nitude of both velocity and temperature show periodic
motions whose wavelengths are equal to 1/8 of the cir-
cumference at 10s. Then the wavelengths double, and
the distributions become finally non-periodic at 50s. As
the absolute value of σT increases in the range of 0:0�
1:5� 10�5N/mK, the instability of the melt is observed
earlier. Moreover, it is found that Marangoni convec-
tion causes the oscillatory behavior of the magnitude
of velocity just under the single crystal. Although the
flow structure keeps symmetrical by imposing the verti-
cal magnetic field more than B0 = 0.05T at 70s, the insta-
ble motion still remains under the single crystal. Thus,
it is confirmed that the effect of Marangoni convection is
essential in the CZ process.
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