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On Finite Element Analysis of Fluid Flows Fully Coupled with Structural
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Abstract:  The solution of fluid flows, modeled using
the Navier-Stokes or Euler equations, fully coupled with
structures/solids is considered. Simultaneous and parti-
tioned solution procedures, used in the solution of the
coupled equations, are briefly discussed, and advantages
and disadvantages of their use are mentioned. In addi-
tion, a simplified stability analysis of the interface equa-
tions is presented, and unconditional stability for certain
choices of time integration schemes is shown. Further-
more, the long-term dynamic stability of fluid-structure
interaction systems is assessed by the use of Lyapunov
characteristic exponents, which allow differentiating be-
tween a chaotic and a regular system behavior. Some
state-of-the-art numerical solutions are also presented to
indicate the type of problems that can now be solved us-
ing currently available techniques.

keyword: Fluid-structure interaction, arbitrary Lag-
rangian-Eulerian formulation, finite element methods,
coupled procedures, Lyapunov characteristic exponent,
dynamic stability.

1 Introduction

The analysis of a coupled multi-physics system is fre-
quently required today to understand (and optimize) the
behavior of the system. In particular, the analysis of
problems that involve fluid flows interacting with solids
or structures is increasingly needed in diverse applica-
tions including biomechanical systems, micromechanical
devices, the optimization and control of brake systems,
pumps, or computer disk readers; to mention just a few.
As a consequence, the development of more effective fi-
nite element methods for the solution of fluid-structure
interaction (FSI) problems is important.

Different strategies have been proposed to solve FSI
problems, and the selection of the most effective ap-
proach strongly depends on the characteristics of the
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problem to be analyzed. Specifically, the mathematical
model employed in the description of the fluid behavior
plays a decisive role in the selection of the most suited
solution procedure. For example, if the fluid is modeled
using the acoustic approximation, a potential formulation
can be used to solve the problem and the degrees of free-
dom of the fluid are reduced to one per node. The fluid
equations can then be coupled to the structural equations
in an effective manner by using the ¢-formulation [Ol-
son and Bathe (1985)] [Bathe (1996)], which results in
a symmetric coefficient matrix for the coupled problem.
Other simultaneous solution procedures for the acoustic
fluid model have also been proposed in [Wang and Bathe
(1997)]. Alternatively, the coupled FSI equations can be
solved using partitioned procedures, see [Park, Felippa
and DeRuntz (1977)]. Additional FSI models are dis-
cussed in [Morand and Ohayon (1995)].

If the fluid is modeled using the Navier-Stokes or Euler
equations, two cases can be distinguished. The first case
occurs when there is a weak interaction between the fluid
and the structure; then the structure and fluid domains
barely deform. The second case occurs when the inter-
action results in a strong coupling between the fluid flow
and the structure, and the fluid and solid domains might
then undergo large deformations.

The main approaches employed in the solution of FSI
problems are the simultaneous (direct) and the parti-
tioned (iterative) solution procedures. In the simultane-
ous solution procedure the fluid and solid equations are
established and solved together. In a partitioned pro-
cedure, each field (fluid and solid) is solved separately
and solution variables (forces, or velocities and displace-
ments at the interface) are passed iteratively from one
field to the other until convergence is achieved (for each
time or load step). It should be pointed out that a full cou-
pling between the media is achieved by using any of the
above-mentioned procedures. Usually, partitioned proce-
dures are preferred when the interaction between the fluid
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and the structure is weak and the simultaneous solution
procedure is employed when there is a strong coupling.

In the next section, the equations that govern the behavior
of fluids modeled using the Navier-Stokes equations and
general structures are considered, together with the con-
ditions that must be satisfied at the fluid-structure inter-
faces. The finite element discretization of the equations
is considered in Section 3. Subsequently, in Section 4,
the partitioned and simultaneous solution procedures are
briefly discussed in the context of FSI problems. In addi-
tion, a simplified numerical stability analysis for the cou-
pled equations at the interface is presented. In Section
5, the long-term stability of systems is addressed and the
calculation of Lyapunov characteristic exponents of FSI
systems discretized using finite element methods is pre-
sented. In Section 6 some examples of application that
demonstrate the current capability of finite element meth-
ods in the solution of fluid-structure interaction problems
are presented and finally in Section 7 the conclusions are
given.

2 Problem Formulation

To model the behavior of solid media the Lagrangian for-
mulation of motion is employed (i.e. particles are fol-
lowed in their movement), whereas, for a fluid flow anal-
ysis the Eulerian formulation is usually used since it is
of interest to know the behavior of the fluid at a particu-
lar position in space. However, when considering a fluid
flow interacting with a solid medium and/or a fluid with
a free surface, the fluid domain changes as a function
of time, and an arbitrary Lagrangian-Eulerian (ALE) de-
scription of motion is needed. The ALE formulation is
a combination of the Eulerian and Lagrangian descrip-
tions, and has been discussed, for instance, in [Donea
(1983)].

We will concentrate in this paper on the analysis of fluid
flows interacting with structures that can deform and un-
dergo large displacements. The fluid flow equations are
modeled using the Navier-Stokes or Euler equations of
motion, and the constitutive relations of the structure are
assumed to be either linear or nonlinear.

2.1 Structural Equations
The Lagrangian equations of motion of the structure are
2
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where p is the density, u is the vector of structural dis-
placements, ¢ is the time, 7 is the Cauchy stress tensor, f2
is the vector of body forces, and (V) represents the diver-
gence operator (in the deformed configuration). Equa-
tions (1) can be linear or nonlinear, depending on the
constitutive relations used for the material in consider-
ation and whether the displacements are small or large
[Bathe(1996)][Atluri(1984)].

The boundary conditions needed to solve Eq. (1) are,

u=ug on S,

T-n="f>
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where S, and S represent the parts of the boundary
with prescribed displacements, uy, and tractions, £, re-
spectively; and n is a unit outward normal vector to the
boundary.

2.2 Fluid Flow Equations

The equations of motion of a compressible Newtonian
fluid flow in the ALE description of motion are
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where p here is the fluid density; /6¢ is the total time
derivative “seen” by a probe moving with the ALE frame;
v is the fluid velocity; ¥ is the velocity of the moving
ALE frame; 7 is the fluid stress tensor; f% represents
the vector of fluid body forces; e is the specific inter-
nal energy; D is the velocity strain (rate-of-strain) tensor,
2D = Vv+(Vv)"; qis the heat flux vector; ¢? is the rate
of heat generated per unit volume; (V-) and (V) represent
the divergence and gradient operators respectively and (-)
indicates internal product. Equation (3) is the momentum
equation and (4) and (5) are the equations of conservation
of mass and energy respectively. Note that in Egs. (3) to
(5), if v = 0, and therefore the ALE frame (or mesh in
a finite element discretization) is not moving, the Eule-
rian formulation is recovered. Furthermore, if ¥ = v, that
is, the ALE frame is moving with the fluid particles, the
Lagrangian formulation of motion is recovered.

The constitutive relations for a Newtonian fluid are

T=[—p +AV-v]I+2uD (6)
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where p is the fluid pressure, I is the identity tensor, y and
A are the first and second coefficients of viscosity. For a
wide variety of conditions the Stokes hypothesis

2
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accurately describes the behavior of the fluid flow and
therefore it is generally used.

The constitutive equations for the heat transfer inside the
body are

q=-kV0 8)

where k is the conductivity tensor (which reduces to a
single value in the case of an isotropic medium), and 0 is
the temperature.

In addition, state equations are needed to solve Egs. (3)
to (5),
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(10)
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Note that in the case of an incompressible fluid, the den-
sity (of each fluid particle) is not a function of time and
Eq. (4) reduces to V-v = 0. Furthermore, Egs. (3) and
(4) are sufficient to solve for the isothermal behavior of
an incompressible fluid flow, and hence the energy equa-
tion (5) need not be considered. However, Egs. (3) to (5)
need to be solved simultaneously when the solution of a
compressible fluid is sought.

The Euler equations of motion are used when the fluid
viscosity is neglected in the model.

The boundary conditions required to solve Egs. (3) to (5)
in the most general case of a compressible fluid are be-
yond the scope of this paper (since different situations
such as supersonic/subsonic flow, viscous/non-viscous
flow have to be considered). The interested reader is re-
ferred to [Bathe, Zhang and Zhang (1997)] in which a
table with different boundary conditions is given.
Moving boundaries, free surfaces, as well as fluid-fluid
interfaces can be considered when employing the ALE
formulation for the fluid flow equations.

In the case of moving boundaries, the condition that must
be satisfied is

[ =P =
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where S; corresponds to the part of the surface with im-
posed displacements #; and #, in the normal and tangen-
tial directions respectively, n and t are unit normal and
tangent vectors to the boundary, and 1 is the boundary
displacement. Note that the second of Eqgs. (11) does not
apply if the fluid is modeled as inviscid.

When a fluid-fluid interface is considered, compatibility
and equilibrium conditions must be satisfied at the in-
terface. The compatibility condition guarantees that the
velocities of the particles at the interface are the same for
both fluids considered (no slip condition) if both fluids
are viscous, or that the normal component of the veloci-
ties to the interface are equal for both fluids (slip condi-
tion) if at least one of the fluids is assumed to be inviscid.
The equilibrium condition at a fluid-fluid interface is

B 1 1
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where T; and Tpare the stress tensors corresponding to
the two interacting fluids, n is a unit normal vector to
the interface surface pointing outward of surface 1, o is
the coefficient of surface tension between the fluids, and
R and R; are the principal radii of curvatures of the in-
terface surface (which are assumed to be positive if the
center of curvature is on the side of the fluid 1 and neg-
ative otherwise). Note that if surface tension effects are
neglected, oo = 0 in Eq. (12).

12)

In case a free surface is considered, Eq. (12) is also ap-
plicable. However, the effect of one fluid (typically air) is
usually included only as a pressure py(i.e. the fluid is as-
sumed to be inviscid). Then, for a free surface, Eq. (12)
is replaced by

1 1
— —T- = J— J—
pon n (Rl + Rz) n
where n here points outward of the free surface, and the

radii of curvature are assumed to be positive if their cen-
ter is on the side of the modeled fluid.

13)

Since only one fluid is now explicitly considered in the
model, Eq. (13) is not sufficient to describe the motion
of the free surface, and an additional equation is needed.
Assume that the surface at a reference time 7y is repre-
sented by the function S(°x,ty) = 0, where x is the vec-
tor of coordinates of the particles that are located on the
free surface at time 9. The following condition must be
satisfied,

8—S—I—(V—fl)-VS:O
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which ensures that the particles that are at the free surface
at time 7 will remain on that surface for all times.

2.3 Interface Between Fluid Flow and Solid

In a problem in which a viscous fluid flow is interacting
with a solid medium, equilibrium and compatibility con-
ditions must be satisfied at the fluid-structure interface.
These conditions are

¥.n=1"n (15)
u (1) = (1)

W (1) =v (1) =¥ (1) (16)
i (1) =¥ (1) =¥ (1

where n is a unit vector normal to the fluid-solid inter-
face, u and i are the displacements of the structure and
the fluid domain (or mesh in a finite element analysis),
respectively, v is the fluid velocity and v the velocity of
the fluid domain, the dot represents a time derivative, and
the superscripts /, S and F denote the interface, and the
solid and fluid media, respectivly.

3 Finite Element Discretization

Equations (1) and (3) to (5) can be discretized using
the finite element procedure (see for example [Bathe
(1996)]). Note that since the fluid flow equations are ex-
pressed using the ALE formulation of motion, the un-
knowns to be calculated include the displacements of the
finite element mesh nodes.

In the following, for simplicity of exposition, the (al-
most) incompressible Navier-Stokes equations will be
considered in the modeling of the fluid flow together with
the equations of a general solid medium discretized using
the displacement or displacement/pressure (u/p) formu-
lations. In addition, thermal effects will not be included.
The equations corresponding to the fluid and solid media
will be coupled and different techniques to solve them
briefly explained.

3.1 Structure/Solid Discretized Equations

The linearized discrete equations of a structure/solid
medium (without dissipation) at time ¢ can be expressed
as follows

M,ii+K,u=R,—F, (17)
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where M, and K, are the mass matrix and tangent stiff-
ness matrix respectively, u here is the vector of incre-
mental nodal point displacements, R,, is the vector of ex-
ternally applied forces and F, contains known terms of
the linearization. If the structural response is linear, then
the same equations are applicable except that F, can be
set equal to zero and, as a consequence, u corresponds to
the vector of total nodal point displacements (not incre-
ments). If a u/p finite element formulation is employed
to discretize the structural equations, then pressures must
be included in u [Bathe(1996)].

3.2 Fluid Flow Discretized Equations

For the ALE fluid flow equations of motion, the lin-
earized Navier-Stokes discrete equations can be repre-
sented by

(18)

where M,, and K, are the mass and tangent coefficient
matrices of the fluid flow, MV andﬁv are tangent mass
and coefficient matrices corresponding to the linearized
ALE terms which couple with the mesh movement, v is
the vector of incremental nodal point velocities, @ and ¥
are the vectors of incremental mesh displacements and
velocities, R, is the vector of discretized externally ap-
plied forces and F, contains known terms from the lin-
earization. Pressure terms were omitted for simplicity.

The nodal point displacements of the mesh are calcu-
lated at FSI interfaces, free surfaces or fluid-fluid inter-
faces, and are prescribed at other moving boundaries.
On the other hand, the displacements of internal mesh
nodes (those that are not on an interface) can be arbitrar-
ily specified with the objective to keep the mesh regular
at all times. Different procedures are used in practice to
calculate the mesh movement. One of the most popular
ways of obtaining the movement of internal fluid nodes
includes solving a Laplace or pseudo-structural equation
for the mesh with boundary conditions given by the dis-
placements of the mesh at interface surfaces or mov-
ing boundaries. This approach is usually efficient if the
fluid mesh does not become too distorted. For problems
in which the fluid domain changes drastically from the
initial condition to some intermediate configuration, the
mesh-updating procedure requires the use of more ad-
vanced techniques such as to allow the mesh nodes to
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slip along interfaces, the use of leader-follower nodes
and mesh repair procedures [Bathe, Zhang and Zhang
(1997)].

3.2 Coupled Fluid Flow and Structural Equations

To solve an FSI problem using finite element methods,
the discrete Eqs. (17) and (18) can be coupled using
the equilibrium and kinematic conditions at the interface,
Egs. (15) and (16), as described in [Rugonyi and Bathe
(2000)].

Using the superscripts I, F, and S to indicate
fluid/structure interface and interior fluid and struc-
ture/solid degrees of freedom respectively, and assuming
that no external forces are applied at the interface, the
equilibrium condition (15) can be expressed as

R 4+RI=0 (19)
and the compatibility condition (16) is

u =&

w =% =V (20)
il =V

where here, following Eqs. (17) and (18), u, @ and
¥ are the increments in the nodal displacements, mesh
displacements and mesh velocities (and clearly the total
nodal displacements, mesh displacements and mesh ve-
locities satisfy the same equations).

The third of conditions (20) is usually difficult to satisfy
and actually not satisfied exactly in general for all time.
However, the condition can be relaxed provided the so-
lution of the (linearized) coupled equations is obtained
with a numerically unconditional stable time integration
scheme. This issue is addressed below.

Since the movement of the interior mesh nodes is a func-
tion of the movement of the interface nodes (or in general
the boundary nodes), it will be assumed, for simplicity of
notation, that the effect of the mesh motion is contained
in the matrices MV and Kv and that the mesh motion is
applied to the interface degrees of freedom only. Separat-
ing the interface degrees of freedom from the degrees of
freedom of the interior nodes, Eq. (18) is now expressed

w4
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where uf corresponds to the vector of increments of in-

ternal fluid particle displacements which are of course
not calculated.

Using Egs. (17), and (19) to (21), the coupled FSI equa-
tions are

AU+BU+CU=G (22)
where
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In order to solve Eq. (22), the time derivatives need to
be discretized. Without loss of generality, after use of
the time integration scheme, the coupled discrete finite
element Eqs. (22) can be written as

K K 077U RS F
KPK/+K/K" | | U | =0 |- |F+F
0 K/ KF] [U” R} 134

(23)

where K represents the linearized coefficient matrix,
U is the vector of incremental nodal point displace-
ments/velocities, R is the vector of discretized externally
applied forces, and the vector F contains known terms
from the linearization and time discretization. Note that
US contains displacements, U” velocities and in U, in
general, either velocities or displacements are considered
(displacements are preferred since they are the primitive
variables).

Equations (23) constitute the fully coupled FSI system
to be solved. Either the simultaneous or the partitioned
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procedures may be used in the solution, depending on the
problem to be analyzed.

It is frequently convenient to discretize an FSI problem
using completely different meshes for each field. Usu-
ally, due to the nature of fluid flows, finer meshes are
needed for the fluid domain (when employing the Navier-
Stokes or Euler equations to model the fluid flow) than
for the discretization of the structure. However, regard-
less of the meshes employed in the discretization of the
fluid and structure, the equilibrium and compatibility
conditions, Eqs. (15) and (16), must be satisfied at the
interface.

To guarantee that equilibrium is satisfied, the forces ex-
erted by the fluid onto the structure can be calculated,
and this information can be used to construct a part of
the fully coupled FSI coefficient matrix that couples with
the velocities (the effect of K/ and K/ but using ve-
locities as state variables). To compute the components
of the mentioned coefficient matrix, first fluid tractions
at the interface f% (s) are calculated, where s represents
the interface surface. From the traction values, structural
nodal forces exerted by the fluid onto the structure are
obtained
T er

F= S (H)" 7. (s) ds
1

(24)

where H® is the structural finite element displacement
interpolation matrix evaluated at the interface [Bathe
(1996)], T indicates transpose, and S; refers to the fluid-
structure interface. Using a Taylor expansion of the force
F we have,

F
F:Fo—l—a—V

™ (25)

where Fy is the “reference” value of F (obtained from
the previous iteration or time/load step), v the vector of
nodal velocity increments and dF/dv can be interpreted
as the above mentioned coefficient matrix that couples
with nodal fluid velocities.

In addition, compatibility conditions must be satisfied
between the fluid and structure at the interface. Since
velocities and displacements at the interface are related
by the time integration scheme, we can express all the
interface degrees of freedom using displacements. Then,
using the interpolation functions of the structure, the de-
grees of freedom corresponding to the fluid can be ex-
pressed as a function of the structural displacements.
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Hence, the fluid displacements (and therefore velocities)
are given in terms of the structural displacements thus
satisfying the compatibility conditions.

As described above, an FSI finite element model con-
sisting of different types and numbers of elements at the
interface, can be considered in a partitioned as well as in
a simultaneous solution procedure.

4 Solution Procedures

As mentioned before, two main procedures can be em-
ployed in the solution of FSI problems: the simultaneous
or direct solution and the partitioned or iterative solution.
Each of them will be considered below.

4.1 Partitioned (or Iterative) Solution Procedure

In the partitioned procedure the response of the coupled
FSI system is calculated using already developed fluid
flow and structural solvers. In this way, modularity is
achieved and the complete system is divided into subsys-
tems (which correspond to the fluid and structure/solid,
although subdivisions of them can also be considered).
This approach allows the solution of large systems.

When employing a partitioned procedure the coefficient
matrix of Eq. (23) is expressed as the sum of an im-
plicit and an explicit part. The explicit part is placed
on the right-hand side of the equilibrium equations and
a predictor (i.e. a known value of the corresponding de-
grees of freedom) is applied to it. The equations are then
solved factorizing only the implicit part of the coefficient
matrix. The idea is to partition the coefficient matrix in
such a way that the solution of one field is separated from
the solution of the other field (with the equations coupled
through right-hand side terms). Iterations between the
field equations are then necessary, at each time or load
step, to guarantee convergence of the FSI solution. Note
that in this manner a fully coupled fluid-structure inter-
action analysis is performed.

In essence, the partitioned procedure can be thought of as
a Gauss-Seidel iterative algorithm but the predictor may
contain linear combinations of past solutions and their
derivatives (see, for example, [Park (1980)], [Park and
Felippa (1980)]).

Different schemes can be considered, depending on
how the coefficient matrix of Eq. (23) is partitioned
and what variables (or combination of variables) are
passed between the fields (i.e. the choice of predic-
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tors). A general description and applications of par-
titioned schemes employed in the solution of coupled
problems can be found in [Park (1980)], [Park and Fe-
lippa (1980)], [Bathe, Zhang and Wang (1995)] [Bathe,
Zhang and Ji (1999)] [Piperno, Farhat and Larrouturou
(1995)] [Farhat, Lesoinne and Maman (1995)].

One of the most widely employed FSI partitioned
schemes (sometimes called the staggered procedure) is
described below.

The first step corresponds to the solution of the ALE fluid
flow equations using the (already known) displacements
and velocities of the interface as boundary conditions.
Once the results are obtained, traction vectors exerted by
the fluid onto the structure are calculated and applied to
the structure as force boundary conditions and the struc-
tural equations are solved. The next step is to solve the
fluid flow equations again; of course, after having used
the calculated structural displacements to update the fluid
domain and mesh and the velocities of the interface. The
procedure is repeated until convergence of the FSI prob-
lem is achieved. In some works the staggered procedure
in time is performed without iterations. However, when
employing such approach caution is required since the
scheme can accumulate significant errors throughout the
time integration. For a general FSI problem, therefore, it-
erations are recommended, although the total cost of the
computations can increase significantly.

The main advantage of partitioned procedures is that al-
ready developed field codes (for the fluid and structure)
can be used, and only the transfer of information between
them need to be programmed. The partitioned proce-
dures are most effective in case the coupling between the
fluid and the structure is weak, since then the response of
each field is not significantly affected. A weak coupling
occurs when the structure is very stiff (as compared to
the fluid) and hence barely deforms. If a problem with
a strong coupling between the fluid and the structure
is analyzed using partitioned procedures, either a large
amount of iterations is required at each load or time step
or a very small time/load step must be employed.

Sometimes, the time resolution of the fluid and structural
response is very different and the use of different time
steps for the solution of the fluid and the structure is de-
sired. A partitioned procedure can be easily modified to
allow such differences in time step, by the use of subcy-
cling [Farhat and Lesoinne (2000)].
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In a dynamic problem, it is important to obtain an un-
conditionally stable numerical scheme in time (for the
linearized problem) such that relatively large time steps
can be employed in the solution procedure. The stability
and accuracy characteristics of different partitioned pro-
cedures that involve the solution of FSI problems was
studied in [Park, Felippa and DeRuntz (1977)] [Park
(1980)] [Park and Felippa (1980)] [Felippa, Park and
Farhat (1998)]. Nevertheless, unconditional stability is
very difficult to prove and achieve (especially when the
Navier-Stokes or Euler equations are used to model the
fluid behavior), and partitioned schemes that are condi-
tionally stable are employed.

4.2 Simultaneous (or Direct) Solution Procedure

In the simultaneous solution procedure, the equations of
motion (23) of the coupled problem are established and
solved all together. This procedure is particularly power-
ful in case the interaction between the fluid and the struc-
ture is very strong (i.e. the structural deformation is im-
portant). Note that if the structure is very stiff compared
to the fluid, a simultaneous solution procedure would not
be effective since an ill-conditioned coefficient matrix
(for the linearized coupled equations) would result.

Of main concern when employing a simultaneous solu-
tion procedure is the number of equations to be solved at
the same time. In engineering applications, where large
models (consisting of many elements) are employed to
accurately characterize the systems under study, com-
puter capacity can become a constraint in the analysis
process. In addition, since the finite element discretized
equations corresponding to the fluid result in a non-
symmetric coefficient matrix (when convective terms
are considered), the complete coupled coefficient ma-
trix must be treated as non-symmetric, which increases
the amount of computations to obtain the solution. Of
course, this increase is not important (relative to the total
amount of computations) in case the number of structural
degrees of freedom is small compared to the fluid degrees
of freedom.

In [Rugonyi and Bathe (2000)] an efficient direct solu-
tion procedure was described, which has the advantage
that the solution of the structural and fluid equations is
not calculated simultaneously. The coupling employed in
the scheme is such that the vector U’ in Eq. (23) contains
displacements (and not velocities), since displacements
are the primitive variables at the interface and their use
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results in a straight-forward coupling of equations. Ef-
ficiency in the solution is achieved by employing a sub-
structuring procedure for the solid equations, condensing
out the internal structural degrees of freedom prior to the
calculation of the solution. In this way, only the degrees
of freedom corresponding to the fluid-structure interface
are still considered in the solution of the fluid flow vari-
ables, but the effect of the structure is fully taken into
account at each iteration of the nonlinear problem. Fur-
thermore, using this procedure, advantage is taken of the
symmetry of the coefficient matrix corresponding to the
solid/structure. Although the condensation procedure in-
creases the bandwidth of the remaining equations, the
procedure is effective in case the structural degrees of
freedom constitute a large fraction of the total number of
degrees of freedom.

4.3 Stability Analysis for the Fluid-Structure Inter-
face

In a dynamic FSI analysis, the selection of appropriate
time integration scheme(s), employed to discretize the
coupled equations, is important. It is desirable, for many
applications, to select an implicit scheme which is uncon-
ditionally stable (for the linearized problem), such that
the limitations in the time step used are not governed by
the numerical stability of the scheme but rather by ac-
curacy considerations (see for example [Bathe (1996)]).
Unconditional stability can be achieved for both struc-
tural and fluid flow problems by selecting appropriate
time integration schemes. However, for the coupled sys-
tem it may not be easily achieved. A straightforward
way of solving the problem seems to be to use the same
time integration scheme for both the structure and the
fluid, but an inherent difficulty is that the structural equa-
tions involve second order derivatives in time, whereas
the fluid equations involve only first order derivatives.
Transforming the n structural second order differential
Egs. (17) into a system of 2 first order differential equa-
tions will dramatically increase the cost of the computa-
tions. Instead, the equations are best coupled allowing
different time integration schemes for the fluid and the
structure.

The stability analysis of the coupled FSI problem is com-
plicated since it involves non-symmetric, non-positive-
definite matrices that result from the finite element dis-
cretization of the Navier-Stokes (or Euler) equations.
Nevertheless, first and second order ordinary differential
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equations in time can be studied to get insight in the nu-
merical stability of the problem.

Consider the following single degree of freedom equa-
tions,

msx.—l—ksx: T 26)
mev+kev=ry

Assuming that Egs. (26) represent the structural and fluid
equations at the interface, coupling the equations results
in,

mgX+mpv+krv+ksx=0 27

It is desirable to solve Eq. (27) in such a way that differ-
ent time integration schemes are used for the variables x
and v (although x = v) but preserving unconditional sta-
bility of the numerical discretization.

Let us assume that the variable x is discretized using the
trapezoidal rule, that is to say,

t+Atx — % t+Atx _ tx) _ iy (28)
At = 4 At 4 ¢ .
t+x:m<t+x_tx)_5tx_tx

and that the variable v is descretized using one of the fol-
lowing time integration schemes:

Trapezoidal rule,

2
ALy — A (H'Atv — ’v) — 1y (29)
Gear’s method,

1 /3 1
Z+Al‘~:_ _Z-I—Al‘ _ 2[ _Z—Al‘ 30

[y (2 voivt g V) (30)

Euler’s backward method,
ey 1 (A — 1) (31)

At

Using the compatibility condition, X = v, and Eqgs. (28)
and (29), (30) or (31), Eq. (27) can be discretized in
time, and the variable to solve for is "+*'x. The resulting
equation can be analyzed for linear stability. Note that
using this procedure, "t % £ +A'y However, this error
is acceptable if the equations result in an unconditionally
stable scheme.

In [Rugonyi and Bathe (2000)] it was shown that the inte-
gration of Eq. (27) is indeed unconditionally stable when
Eq. (28) is used to discretize the variable x and either Eq.
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(29), (30) or (31) is used to discretize the variable v, and
the compatibility condition x = v is used.

From the time integration schemes considered, only the
Gear method (which is second order accurate in time)
and the Euler backward method (which is first order ac-
curate in time) can be recommended in the time dis-
cretization of the fluid flow equations since the trape-
zoidal rule leads to spurious oscillations.

5 Dynamic Stability Analysis of FSI Problems

Consider the following non-dimensional autonomous
nonlinear system

x =f(x) (32)
with initial conditions
X (Zo) = Xp (33)

where X is a vector containing the system’s state vari-
ables and f is a smooth nonlinear function. Let x,(¢) be
the solution of Eqgs. (32) and (33), called the reference
trajectory.

To assess the dynamic stability of the system of equations
with respect to a given reference trajectory, the behavior
of small perturbations, y(z), to the trajectory has to be in-
vestigated. Linearizing Eq. (32) about x,(¢), the equation
for the time evolution of perturbations is obtained,

of
y= 9% y (34)
Xlx(1)

where 0f/0x is the Jacobian matrix of the function f(x).

The system is dynamically stable, with respect to the ref-
erence trajectory, if the real parts of the eigenvalues of
the Jacobian matrix of f(x) are negative at all times. On
the other hand, if any eigenvalue has a positive real part,
the system is unstable, since perturbations grow expo-
nentially fast. In case the maximum real part of the eigen-
values is zero, the stability cannot in general be assessed
using a linearized equation of motion (for the perturba-
tions) and the effects of higher order (nonlinear) terms
need to be taken into account. It is important to mention
that a system can change from being stable to unstable
and vice versa as time evolves.

Associated with the long-term stability of a system,
the one-dimensional Lyapunov characteristic exponent,
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LCE, is a measure of the mean asymptotic diver-
gence/convergence of nearby trajectories in phase space,

0]

X, Yo) = lim — (35)
R T
where ||-|| represents a vector norm, and y an initial per-

turbation vector. The existence of such a limit is given by
the Oseledec multiplicative ergodic theorem [Oseledec
(1968)]. The LCE is used to investigate whether the
asymptotic behavior of a system is chaotic.

A chaotic response is characterized by an aperiodic long-
term dynamic behavior that exhibits sensitivity to initial
conditions. A consequence is that nearby trajectories in
phase space diverge exponentially fast. Therefore the
LCE of a chaotic response is positive and the prediction
of the system behavior becomes impossible after a cer-
tain time 7, [Strogatz (1994)].

[Benettin, Galgani and Strelcyn (1976)] and [Benettin,
Galgani, Giorgilli and Strelcyn (1980)] have presented an
approach for calculating the LCE of maps and discrete
systems of coupled first order differential equations in
time. This procedure is used as a basis to develop below
a numerical technique to evaluate the LCE of solid and
fluid continua discretized using finite element methods.

Considering Eq. (34), and assuming that the Jacobian
matrix of f(x) is not singular at any time, the perturbation
at time ¢ can be expressed as,

y(t) =@ (t,%0) yo (36)

where @ (,1) is a mapping matrix from yy to y(¢), with
the property, for 1y < t; < 13,

y (1) = @ (t2,11) @ (t1,10) Yo (37)

If y(¢) is calculated only at certain discrete time steps, t,
(n=1,2,...), then ® (¢,,1,_1) can be approximated using
Eq. (34) evaluated at x,(t,—) and integrated from time
t,—1 to time ¢,,. Note that Eq. (32) must also be solved in
order to obtain the reference trajectory, X,(t,,—1).

Using a fixed time step At, i.e. t,= g + n At, the following
quantity can be calculated,

(38)

Comparing Eqgs. (35) and (38) it follows that in the limit
of n— oo and At—0, k,, — ¥.
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In addition, using Eq. (37) and defining,

Yi=®(ti,tio1) Fiza
&=yl

~_y»
Yi= g

(39)

with an arbitrary initial perturbation satisfying
lIyoll = IFoll =1 (40)
it follows that

1y (t)|| = dpdn-1 ... dy

Using this result in Eq. (38),

(41)

1 n
ky=— Y Ind; 42
tzn (42)

n =1

Note that in the numerical calculation of k,, it is impor-
tant to normalize the perturbations to avoid an overflow
of the calculated vector y(¢), in particular when an unsta-
ble situation occurs (i.e. d; > 1). In addition, if x lies in
the basin of attraction of an attractor (i.e. a fixed point,
limit cycle, strange or chaotic attractor), then for n— oo,
k, will be independent of the choice of x, and yg, see
[Benettin, Galgani and Strelcyn (1976)]. This means that
we are restricting the analysis to cases in which a small
perturbation to the system does not change completely
the nature of the response. In addition, usually, # is cho-
sen as the time for which transient effects of the system
response have decayed to save on computation time.

From Eq. (34), y(¢) tends to grow more into the direc-
tion of the eigenvector associated with the eigenvalue of
largest real part. Nevertheless, components in other di-
rections are also contained in y(¢), especially at the be-
ginning of the computations.

The numerical procedure described for the calculation of
the LCE can be extended to the case of a continuum sys-
tem discretized using finite elements.

Let us first consider the case of a structure/solid medium.
The displacements and velocities of the nodal degrees of
freedom form the finite element discretized phase space.
Therefore, if @ and ii correspond to perturbations in the
displacements and velocities of the nodal degrees of free-
dom, and u and 0 are the vectors of displacements and ve-
locities of the reference trajectory at time ¢, the linearized
equations for the perturbation can be written as

M, i+K, (u,a)i=0 (43)
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with initial conditions,
- (44)

where M,, and K, are the same matrices as in Eq. (17)
but it is emphasized here that the tangent stiffness matrix
K, changes as a function of time with u and u.

Equation (43) could be easily re-written in the form of
Eq. (34) with y” = (@i @), where the superscript 7 in-
dicates transpose. However, it is more convenient (from a
numerical point of view) to solve directly Eq. (43), using
for instance the Newmark method of time integration.

Then, to calculate k, for each time step, the following
procedure is proposed:

e Given the (normalized) “initial” conditions ii,, and
i1, at each time step, calculate the accelerations
U, that satisfy Eq. (43).

e Discretize Eq.
~ L*
janduy .

(43) in time and solve for
.

e Obtain the norm of the perturbation as

Ak

2
W, H
V2

[
L2

dpy1 = (45)
where L is a characteristic length of the problem
in consideration and V = ®,,,; L is a characteris-
tic velocity, where ®,,, is the maximum frequency
of the finite element model. If instead of choosing
the maximum frequency to calculate V, we choose
a smaller frequency, numerical problems arise that
make k, grow even when the response is not chaotic.
This problem will be discussed in a future paper.

e Normalize the perturbation,

~x s
u u

~ _ Yn4l, £ _ Yn+l1

Uyt = 5o U1 = (46)
dn+l dn+l

e Calculate &, and advance to the next time step.

An important difference with Eq. (34) is that for a con-
tinuum model the perturbations must be compatible with
the problem’s boundary conditions at all times.



On finite element analysis of fluid flows

no vertical velocity

+ h=0.3 mm =z
— }
By — R=2mm
—
T o U OO A
< -
0.1 m

p, [Pa]

1000

Figure 1 : Geometry and boundary conditions considered for the pressure wave propagation problem.
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Figure 2 : Pressure propagation inside the tube (the plot shows the value of pressure at the centerline) for different

times.
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Let us now consider the case of an (almost) incompress-
ible fluid flow in the Eulerian formulation. The (com-
plete) linearized equations for the perturbations are

o) L) )=l
0 M, | |p K, K,,| [P] |0
where M and K are the mass and tangent coefficient ma-
trices for the fluid flow. For an incompressible fluid,
M,,,=0 and K,,,=0. Note that in the case of a fluid flow
modeled using the Eulerian formulation of motion, the
fluid velocities are calculated at certain fixed points in
space and therefore instabilities in space (such as turbu-
lence) will affect the value of the calculated k,, and LCE.

(47)

Equation (47) can be separated into two equations,

M,V +K,,¥+K,,p =0

2 - - 48
M,,p+Kp ¥+ Kp,p=0 4%

where the first equation corresponds to the perturbation
momentum equations and the second one to the conti-
nuity condition for the perturbation. It follows that per-
turbations in velocity and pressure are not completely
arbitrary but are constrained by the continuity equation
and boundary conditions of the perturbation. For ex-
ample, considering specifically the case of an incom-
pressible fluid flow, the velocity perturbation must satisfy
K,,¥ = 0 at all times. The boundary conditions, on the
other hand, prevent the pressure perturbation from grow-
ing arbitrarily.

The procedure to calculate the successive approxima-
tions to the LCE, k,, is analogous to the one described
for the structural equations, takingy” = ( ¥ P ), and
using an appropriate non-dimensionalization in the cal-
culation of d;.

When the fluid flow is modeled using the ALE formula-
tion of motion, the situation is more complex. Some of
the difficulties are mentioned below.

Since the fluid mesh is moving and the fluid flow veloci-
ties are calculated at the mesh nodal points, the obtained
velocities do not correspond to fixed points in space nor
can they be associated with specific fluid particles. A
similar situation occurs with the pressure degrees of free-
dom. The immediate consequence is that if the mesh
points are moving arbitrarily, spurious growth of the per-
turbations may be included in k,,.

Another difficulty is that in addition to perturbations in
velocity and pressure, perturbations in the displacement
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of certain moving boundaries (such as free surfaces and
fluid-structure interfaces) must be considered.

When an FSI problem is solved, the complete linearized
equations for the fluid flow coupled with the structure
must be considered to evaluate the evolution of perturba-
tions. However, if the main interest lies in the analysis
of the behavior of the structural/solid part of the prob-
lem, the evolution of the complete vector of perturba-
tions might be calculated but only the displacements and
velocities of the structural degrees of freedom used in
the calculation of d;. In this way, while the growth/decay
of structural perturbations are considered and specifically
followed, the effects of these perturbations in both the
structural and fluid domain are taken into account. The
difficulties associated with the arbitrary motion of the
mesh are then circumvented, since the structural equa-
tions are only affected by forces exerted at the interface
that are independent of the choice of mesh movement se-
lected. This approach was used in the calculations of the
LCE presented below.

It is important to emphasize that as in the case of Eq.
(34), the convergence to the LCE can be very slow. How-
ever, trends in the behavior of the perturbation norm d; as
a function of time can be used to assess the stability of the
system response.

6 Example Problems

In this section we consider the solution of some FSI prob-
lems to indicate the current state of analysis capabili-
ties. Further solutions of FSI problems in which the fluid
is modeled by the Navier-Stokes equations and full it-
erations at each time step are performed can be found,
for example, in [Moore, Donovan and Powers (1999)]
[Tang, Yang, Huang and Ku (1999)] [Wang, Giorges,
Park (1999)].

6.1 Pressure Wave Propagationin a Tube

In this first example, a pressure wave propagating in-
side an axisymmetric tube is considered. A sketch of the
problem is shown in Fig. 1. Initially, the tube is filled
with a viscous slightly compressible fluid at rest, and at
time ¢ = 0 a pressure step is applied at the tube inlet (the
tube outlet is maintained at zero pressure). As a con-
sequence, a pressure wave develops and starts to travel
along and deform the tube as it advances. Figure 2 shows
the pressure at the tube centerline for different instants of
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Figure 3 : Collapsible channel problem. a) Geometry and boundary conditions considered, b) Calculated mid-point

membrane displacement as a function of time.

time, and it can be observed that the wave moves at an
approximately constant propagation speed.

Assuming that the fluid inside the tube is inviscid and in-
compressible, that the pressure is constant across the tube
cross-section and that it is only a function of the value of
the transverse area, a simple one-dimensional model of
the problem can be obtained [Pedley (1980)]. Under the
mentioned assumptions, the pressure wave speed, c, is
found to be

| En
€= 2RpF

where h and R are the undeformed tube thickness and

(49)

radius respectively, and Eq. (49) is the Moens-Korteweg
wave speed equation.

Using Eq. (49) for this problem, a wave speed ¢ = 3.87
m/s is obtained. For the finite element model, the wave
speed (see Fig. 2) is approximately ¢ = 3.48 m/s, and
therefore about 10% lower. This difference however can
be explained by the simplified assumptions in the analyt-
ical model.

6.2 Collapsible Channel

The two-dimensional channel shown in Fig. 3 is con-
sidered. Part of the upper wall is replaced by a segment
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Figure 4 : Successive approximations of the collapsible
channel problem LCE as a function of time.

(the collapsible membrane) that can displace both hori-
zontally and vertically and has a pressure applied on it.
Another part of the upper wall is replaced by a segment
that can only displace horizontally. Initially the chan-
nel is filled with a viscous fluid at rest and at time ¢t = 0
a pressure difference between inlet and outlet, equal to
3.255 Pa, is applied. The mid-point displacement of the
collapsible membrane as a function of time is also shown
in Fig. 3, and it can be seen that a limit cycle is devel-
oped.

For the case of a limit cycle behavior, the LCE is zero,
since all trajectories in the phase space converge to the
limit cycle and remain in it. Figure 4 shows the values
of k, (as defined in Eq. (38)) as a function of time. Note
that at r &~ 10 sec there is a positive jump in the value
of k, corresponding to the growth of the oscillation am-
plitude leading to a limit cycle behavior (compare with
the membrane mid-point displacements of Fig. 3). How-
ever, as expected, the amplitude of &, starts to gradually
decrease exponentially afterwards (once the limit cycle
response is established). In addition, since only the per-
turbed displacements of the membrane were taken into
account in the calculation of &, (because ®,,,, is so large
that the velocity terms are negligible in the expression of
the perturbation norm, Eq. (45)), the value of the system
LCE corresponds to the maximum asymptotic value of
ky.
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Table 1 : Comparison between calculated and measured
temperatures in different locations of the lamp.

. Temperature ° F .
Location ADNI i Measured Difference
DRL Housing 253 245.8 2.9%
DRL Lens 211 206.1 2.4 %
Signal Housing 256 237.4 7.8 %
Signal Lens 156.5 166.1 5.8 %

The calculation of the value of &, at each time step in-
volves an amount of computations approximately equiv-
alent to an additional iteration step for each time step.
Therefore, for this particular example, the calculations
require about 20 - 25% of extra computations.

6.3 Fuel Pump

Figure 5 shows the layout of the fuel pump analyzed.
A cam rotation moves the bottom diaphragm through a
cyclic vertical motion, which pumps fuel to the system.
The spring-loaded valves are modeled as structural com-
ponents, and open and close driven by the pressure differ-
ences and fluid flow, see Fig. 6. The amount of mass flow
as a function of the cam rotation was of primary interest
in this analysis, and Fig. 7 shows a comparison of the
results computed with ADINA, obtained by an outside
party with the capabilities described in [Bathe, Zhang,
and Ji (1999)], and laboratory measured data.

6.4 Analysis of Lamps

The coupled three-dimensional FSI analysis of lamps in-
volves small structural displacements but the complete
analysis is highly nonlinear due to the thermal effects
and coupling. A typical model of a lamp, shown in Fig.
8, consists of the lens, reflector, bulb and filament, and
the fluid (air) assumed to be an incompressible medium.
An important part of the analysis is the specular radiation
between the components.

Figure 9 gives some computed results and test data and
Table 1 lists more comparisons. The computed and
experimental results were made available by [Moore,
Donovan and Powers (1999)].
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Figure S : Fuel pump system considered.

Figure 6 : Pressure difference and velocity field of the fuel inside the pump at a given instant, calculated using
ADINA.
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7 Conclusions

Finite element methods are extensively used in engineer-
ing practice to obtain the response of fluid flows and
structures, and therefore it is natural to use them to solve
FSI problems as well.

Among the solution procedures available for FSI prob-
lems, partitioned procedures are very attractive since al-
ready developed finite element codes for the fluid flow
and structure can be employed. However, still, the ex-
change of information between the fluid and structural
models need to be programmed and the data processing
can be costly when different meshes and time steps have
to be considered (since information from the discretiza-
tion of both fields is needed simultaneously). Although
powerful, partitioned procedures are not very effective
in the solution of FSI problems in which the structure is
very flexible and a strong coupling between the fluid and
structure results.

Simultaneous procedures, on the other hand, require the
coupling and solution of all equations together. The pro-
cedures can be enhanced in their effectiveness by using
internal condensation of the structural degrees of free-
dom prior to the solution. These methods are most effec-
tive in cases in which there is a strong coupling between
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Figure 8 : Lamp model considered.

the fluid and the structure.

Significant advances have been made in the last few years
in the solution of FSI problems, and today very difficult
and complex coupled problems can be solved. However,
new advances are needed in the characterization of fluid-
structure interaction problems. In particular, for certain
applications it is important to assess which kind of sys-
tem response is observed. This can be achieved by cal-
culating the system’s response LCE, as presented in this
paper. The calculation of the LCE of a continuum sys-
tem as part of a finite element calculation opens a new
and broad range of possibilities in the study and under-
standing of such systems.
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