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Nonlinear Analysis of Pin-Jointed Assemblies with Buckling and Unilateral
Members

K.Yu. Volokh1

Abstract: A computational framework is described for
modeling pin-jointed structures comprising unilateral ca-
ble members and slender struts. The deep postbuckling
behavior of struts is considered by means of ‘elastica’
analytical approximation. Prestressing is allowed. The
proposed approach is incorporated into equilibrium path
following procedures and illustrated in numerical exam-
ples.
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1 Introduction

Pin-jointed assemblies with buckling and unilateral
members are used for modeling various structural frame-
works at different length scales: cable nets, tensegrity
systems, space trusses at the macroscale; cytoskeletal
structures at the mesoscale [Ingber (1993,1998)]. Tra-
ditionally, analysis of pin-jointed assemblies is based on
the assumption that all structural members are ideal struts
resisting tension and compression linearly in accordance
with Hooke’s law. Such framework is used for both lin-
ear and nonlinear analyses, where strains are small and
displacements may be large as, for example, in case of
cable nets [Krishna (1978); Buchholt (1985); Szabo and
Kollar (1984); Volokh (1999)]. This approach, however,
is unable to treat possible local buckling of individual
compressed members or ‘switching off’ of cable mem-
bers. Mentioned ‘irregularities’ of structural behavior
are of interest for space structures [Kondo and Atluri
(1985); Tanaka et al. (1985)] and cytoskeletons of liv-
ing cells [Coughlin and Stamenovich (1997); Volokh et
al. (2000)].
In principle the local buckling of compressed members
may be treated by considering these members partitioned
into beam elements. This approach is time consuming
and computationally disadvantageous because of ill con-
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ditioning induced by the sub-partitioning and necessity
of additional branching during the equilibrium path fol-
lowing. Kondoh and Atluri (1985) proposed to directly
consider the postbuckling of struts by using the ‘elastica’
solution. They used power series to approximate ellip-
tic integrals involved in this solution. These authors ex-
plicitly derived tangent stiffness and accounted for the
postbuckling of 10-15% chord shortening. Volokh et al.
(2000) used a different strategy for the local postbuck-
ling. They fitted the implicit ‘elastica’ solution by poly-
nomials and used the obtained analytical expressions in
the subsequent numerical analysis. Within this frame-
work the 100% chord shortening, or the postbuckling
bending into a ring, is available. The main drawback,
however, was the necessity to fit every strut member by
polynomials independently. No general polynomial ap-
proximation was derived.
An explicit and universal, independent of material and
geometrical properties of individual struts, polynomial
solution of the ‘elastica’ problem is given in this note.
This solution allows for 100% chord shortening in the
postbuckling range of compressed members. This solu-
tion together with the proposed treatment of unilateral re-
sponse of cables and possible initial prestressing is used
for computational formulation and nonlinear numerical
analysis of pin-jointed assemblies with buckling and uni-
lateral members.

2 Formulation

2.1 Kinematics

Axial force p and chord elongation ∆ are main conjugate
variables. It is important to realize that the chord elonga-
tion is not necessarily the real member elongation. The
chord elongation takes the form:

∆ � l � L (1)
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(2)

L � 
 � X j � Xs � 2 � � X j 	 1 � Xs 	 1 � 2 � � X j 	 2 � Xs 	 2 � 2 (3)

where L and l are the initial (reference) and final (cur-
rent) chord lengths of a member respectively; u and X
are nodal displacements and coordinates respectively.

To consider a two-dimensional problem it is necessary to
drop the last term under the roots in Eqs.2 and 3. To this
end, there is no essential difference between 2D and 3D
problems in principle. This is in contrast to frameworks
with rigid joints where the 3D problem is significantly
more complicated because of kinematics.

2.2 Constitutive relation for struts

In order to derive the desirable relation for the buckling
strut it is necessary first to express explicitly the ‘elas-
tica’ solution for a hinged strut. The solution of the post-
buckling or ‘elastica’ problem for a clamped-free col-
umn (Fig1.a) may be written as follows [Timoshenko and
Gere (1961)]:
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where α is the edge slope; L/2 is the initial length of the
straight column and l/2 is its ‘vertical length’ after buck-
ling; K and E are complete elliptic integrals of the first
and second kind correspondingly; EI is a bending stiff-
ness. This result may also be interpreted as the solution
of the buckling problem of the hinged column shown in

Figure 1 : ‘Elastica’ problem (a) and its extention to the
hinged strut (b).

Fig1.b. In the latter case l is the column chord length
after buckling.

In order to establish the postbuckling relation between
the axial force p and chord elongation ∆ � l � L it is nec-
essary to exclude the edge slope α from Eqs.4 and 5. Un-
fortunately, an exact analytical solution of this problem is
not available. An approximate polynomial solution, how-
ever, may be obtained. In order to find this solution, Eq.4
is rewritten in the following form:

p ��� p
pcr
� 1 � � 4

π2 K2 � 1 (6)

where p � is a ‘relative’ axial force; pcr � π2EI � L2 is an
absolute magnitude of the critical buckling load for the
hinged column. It was taken into account that compres-
sion is negative in sign. The relative force is zero where
the axial load is the buckling load: p � � π2EI � L2. Ex-
cluding the

axial force from Eq.5 with the help of Eq.4 and introduc-
ing the chord elongation, Eq.5 takes the following form:

ε � ∆
L
� 2 � E

K � 1 � (7)

It is remarkable that right hand sides of Eqs.6 and 7 are
not problem specific, that is they do not depend on ge-
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Figure 2 : Postbuckling bending into a ring.

ometrical and physical properties of the considered col-
umn. The latter prompts an idea to relate p � and ε by tab-
ulating the right hand sides of Eqs.6 and 7 for arguments
of elliptic integrals pointwisely and then to fit the tab-
ulated relation by polynomials. In order to accomplish
this plan, it is necessary first to determine the range of
the elliptic integrals argument where the tabulation will
take place. It is evident that the postbuckling begins with
α � m � 0. To obtain the second limit of the argument
range, we restrict our consideration to the column buck-
ling into a ring as shown in Fig.2. In this case the follow-
ing equation is solved:

l
L
� 2

E � m �
K � m ��� 1 � 0 �

Its appropriate solution is m � 0 � 826 � α � 130 � 69 � .
The tabulated relation p ��� ε for m  "! 0 # 0 � 826$ is shown
in Fig.3. The bold line depicts 1001 points where the tab-
ulation has been carried out. To produce the polynomial

fit, the command ‘Fit’ of Mathematica [Wolfram (1999)]
was used. The standard least squares fit underlies this
Mathematica procedure. Various polynomial expressions
are available and even low order polynomials provide
very good fit to the tabulated data (Fig.3). These poly-
nomials take the form:

p � �&%' ( 0 � 302976ε � 0 � 80794ε2

0 � 580876ε ) 0 � 146604ε2 ) 0 � 731706ε3

0 � 470935ε � 0 � 530524ε2 � 0 � 477617ε3 � 0 � 65546ε4

(8)

Though the second order polynomial is very close to ex-
act data and the third order polynomial visually coincides
with the exact data the choice of the fourth order polyno-
mial is most accurate, the reason for that is left to the first
numerical example (Section 4).

Now p � ∆ relation may be written as follows (Fig.4):

p � β
EA
L

∆ )*� 1 � β � π2EI
L2

%+++++++' +++++++(
� 1 ) 0 � 470935 , ∆ - ∆cr

L .� 0 � 530524 , ∆ - ∆cr
L . 2 �� 0 � 477617 , ∆ - ∆cr
L . 3

� 0 � 65546 , ∆ - ∆cr
L . 4

/ +++++++0+++++++1
(9)

β �32 1 # i f ∆ 4 � ∆cr
0 # i f ∆ 5 � ∆cr

;∆cr � π2EI
EAL

(10)

2.3 Constitutive relation for cables

The following relation represents a cable member
(Fig.5):

p � β
EA
L

∆ (11)

β � 2 1 # if ∆ 4 0
0 # if ∆ 5 0

(12)

Thus cables are ‘switched off’ under compression.

2.4 Pre-stressing

Some pin-jointed assemblies, such as tensegrity systems
or cable nets, are initially pre-stressed. In this case it is
suitable to distinguish between the reference configura-
tion and the member configuration at rest. The latter is
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Figure 3: Second, third, and fourth order polynomial fits.

Bold line is the exact data. Third and fourth order

polynomials visually coincide with the exact data.
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Figure 3 : Second, third, and fourth order polynomial
fits. Bold line is the exact data. Third and fourth order
polynomials visually coincide with the exact data.

Figure 4 : Constitutive law for struts.

the ‘natural’ configuration where no elongations corre-
spond to zero axial forces. The constitutive relations of
Sections 2.2 and 2.3 were defined in such natural con-
figuration. Let a member length be designated L in the
natural configuration and L in the reference configura-
tion. Then the initial elongation is: ∆0 7 L 8 L. The full
elongation is: ∆ 7 l 8 L 7 l 8 L 9 ∆0 77 ∆ 9 ∆0 : Thus it is necessary to replace member elonga-
tions and lengths in Eqs.9-12 with account of the differ-
ence between the natural and reference configurations:

∆ ; ∆ 7 ∆ 9 ∆0; L ; L 7 L 8 ∆0 (13)

The initial elongation ∆0 shifts constitutive relations
along ∆-axis. This elongation is easily obtained when the
member length at rest is known. The reference length can
not be arbitrary; it should provide equilibrium of the axial
forces produced by the initial elongations at the reference
state. The reference length or the initial elongation may
be found in the reverse order where the admissible initial
axial force p0 is given. In order to find the initial elon-
gation ∆0 corresponding to the given p0 it is necessary to
substitute from Eq.13 into Eq.9 or Eq.11 and then to set:
p 7 p0; ∆ 7 0 < ∆ 7 ∆0; L 7 L 8 ∆0. It is assumed that the
elongation with respect to the reference configuration is
zero. The thus obtained equation is to be solved for ∆0.
In the case of linear elasticity, for example, we obtain:
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Figure 5 : Constitutive law for cables.

∆0 = p0L
EA = p0L

EA > p0 ?
2.5 Governing equations

In order to formulate governing equations column matri-
ces of member forces p, elongations ∆ and switch func-
tions β are introduced as well as column matrices of
nodal displacements u and ‘dead’ external nodal forces
q:

p =A@ p1 B ?C?D? pn E T ; ∆ =F@ ∆1 B ?D?D? ∆n E T ;β =F@ β1 B ?D?C? βn E T

u =A@ u1 B ?D?C? um E T ; q =F@ q1 B ?D?D? qm E T
where n is a number of structural members and m is a
number of nodal degrees of freedom. Kinematic and con-
stitutive relations take the form:

∆ = ∆ G u H (14)

p = p G ∆ B β H (15)

Equilibrium equations consistent with the adopted kine-
matics may be derived from the principle of virtual dis-
placements:

qT δu = pT δ∆ (16)

Using kinematic equation 14 we obtain:

δ∆ = Bδu (17)

where

B = ∂∆
∂u

; Bi j = ∂∆i

∂u j
(18)

is an n by m kinematic matrix.

Substituting Eq.17 into Eq.16 and dropping virtual dis-
placements we obtain equilibrium equations:

BT p = q (19)

Eqs.14, 15 and 19 form a closed system of governing
equations. To solve these equations numerically the tan-
gent stiffness is usually desirable:

K = ∂ I BT p J
∂u = BT CB > D (20)

where

C = ∂p
∂∆

; D = ∂ I BT p J
∂u KKKKK p L const

(21)

Here C is the tangent constitutive modular matrix; D is
called geometric stiffness matrix.

An alternative way to derive basic relations is to intro-
duce the strain energy:

Ψ = n

∑
i L 1 M pi G ∆ H d∆i (22)

We obtain in this case:

p = ∂Ψ
∂∆

; I BT p J = ∂Ψ
∂u

; K = ∂2Ψ
∂u∂u

(23)
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3 Equilibrium path following

3.1 Basic procedures

To follow the equilibrium path of the given structure in
its state space it is useful to introduce a column matrix of
the unbalanced nodal forces:

g O BT p P λq O 0 (24)

K O ∂g
∂u

; q OQP ∂g
∂λ

(25)

It is assumed that the external load is initially fixed (q)
and then changes proportionally to parameter λ. A vari-
ety of approaches exist for solving Eq.24 with account
of Eqs.14 and 15: Crisfield (1991, 1997); Fujii and
Okazawa (1997); Keller (1992); Kouhia and Mikkola
(1989); Magnusson and Svensson (1998); Riks (1998);
Seydel (1994); Sophianopoulos and Michaltsos (2001);
Wriggers (1995).

The basic procedure for tracing a monotonically chang-
ing equilibrium path is Newton-Raphson algorithm:

Box 1

1. Input: a point on the equilibrium path
(u R λ R g R K).

2. Load increment: λ S λ T dλ and updating
g.

3. Computation: du OQP K U 1g.

4. Updating: u S u T du and g, K.

5. Go to step 2 if the convergence criterion is
satisfied or return to step 3 otherwise.

his algorithm is unable to treat turning points where the
equilibrium path does not exist for growing parameter λ.
Arc-length continuation is well suited in the latter case:

Box 2

1. Input: a point on the equilibrium path
(u R λ R g R K).

2. Arc-length increment: ds.

3. Predictor (initial guess): y O K U 1q; dλ O
ds VXW yT y T 1; du O dλy.

4. Updating: u S u T du; λ S λ T dλ; g, K.

5. Corrector:δv O K U 1q;δw OYP K U 1g;δλ OP[Z duT δw \]V^Z duT δv \ ; δu O δw T δλ δv.

6. Updating:du S du T δu;u S u T du;dλ S
dλ T δλ; λ S λ T dλ; g, K.

7. Go to step 2 if the convergence criterion is
satisfied or return to step 5 otherwise.

It may be seen from Box 2, that arc-length parameter ds
controls the advance along the equilibrium path and any
turning point is readily treated. In contrast to Newton-
Raphson procedure (Box 1) the first and subsequent it-
erations are distinguished and called predictor and cor-
rector steps accordingly. A wide variety of predictors
and correctors have been proposed in the literature. It
is possible, for example, to find the corrector by apply-
ing Newton-Raphson procedure to some augmented sys-
tem of nonlinear equations, which include Eq.24 together
with some arc-length constraint. Such an approach is
called ‘consistent’ by some authors. In this sense, the
algorithm given in Box 2 is ‘inconsistent’. However, we
found it to be very efficient in computations. The latter is
the most important criterion for the practical numerical
analysis.

The arc-length continuation algorithm should be slightly
modified to allow for branch switching. Particularly, the
predictor guess y should be close to the branch emanat-
ing from the bifurcation point while dλ may be set zero.
There are two main strategies to define y. The first one
is to pinpoint the equilibrium point and to find y as the
singular vector of K at this point. The main drawback
of this strategy is the necessity to deal with ill condition-
ing of matrix K as the bifurcation point is approached.
The second strategy is to define y as the eigenvector cor-
responding to the smallest eigenvalue of K without pin-
pointing the bifurcation point. In any case the scaling
parameter for obtained y should be fitted by trials-errors.

Finally, the stability of the considered path is defined by
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positive definiteness of the tangent stiffness matrix K.

3.2 Modifications

The key feature of the proposed formulation for buck-
ling struts and unilateral cables is discontinuity of tan-
gents to the nonlinear map defined by governing equa-
tions. Indeed, partial derivatives ∂gi _ ∂u j suffer jumps
along the equilibrium path because of the accepted con-
stitutive equations 9-12. To treat these jumps numerically
the following strategy may be used:
Box 3

1. Input: a point on the equilibrium path
(u ` λ ` g ` β ` K).

2. Advance by dλ or ds along the equilibrium
path: steps 2-5 (Box 1) or 2-7 (Box 2).

3. Compute: βnew in accordance with Eqs.10
and 12.

4. If βnew a β, then: return to 2; else: con-
tinue.

5. Switch: β a βnew.

6. Advance dλ or ds along the equilibrium
path: steps 2-5 (Box 1) or 2-7 (Box 2).

7. Compute: βnew in accordance with Eqs.10
and 12.

8. If β a βnew, then: return to 2; else: con-
tinue.

9. Reverse the direction: dλ bdc 2dλ or ds bc 2dsand advance along the path.

Here β is a vector of control and it does not change dur-
ing an incremental step. In other words, the idea is to
properly switch constitutive equations, if necessary, after
every incremental advance along the equilibrium path. It
may happen, however, that after switching the increment
leads to the values of βthat are different from the ini-
tial ones. This means that the solution is on the ‘forbid-
den’ branches of constitutive curves, for example: βi a 1,
while ∆i e c ∆cr. In this case, it is necessary to return on
the ‘admissible’ branch by reversing the direction of the
advance without switching β again.

Actually, every switching of β is an implicit branch
switching. However, in contrast to the explicit branch-

ing, the emanating path is defined analytically and it is
easily accessible! The ‘corner’ points where ∆i a c ∆cr
for struts and ∆i a 0 for cables may be called hidden bi-
furcation points.

4 Numerical examples

Table 1 : Elastica’s shorteningf
P(kg) 56.34 59.01 63.955 71.78 84.27 104.59

(cm)∆
f

Exact 0.60 2.38 5.18 8.80 13.02 17.54
‘2’ 0.88 2.98 5.70 8.87 12.7 17.51
‘3’ 0.52 2.20 5.14 8.88 13.02 17.48
‘4’ 0.61 2.39 5.18 8.78 13.03 17.52

4.1 Elastica

The hinged strut shown in Fig.1b is examined with differ-
ent polynomial approximations of the postbuckling range
(Eq.8). The following geometrical and elastic parameters
were used for the equilibrium path tracing: L a 20cm;
A a 1 g 0 h 3cm2; E a 106 kg _ cm2. The strut shortenings
obtained by using the described numerical procedures
are shown in rows 3-5 of Tab.1 for the second, third,
and fourth order polynomials correspondingly. The ex-
act solution extracted from Timoshenko and Gere (1961)
is given in row 2. The fourth order polynomial better fits
the initial postbuckling range.

4.2 Two-member truss

Britvec (1973) examples of the two-member truss are
considered: Figs.6-8. All members possess the same
characteristics:L=15 in; A a 1 g 1 _ 16 in2; Pcr a 29 lb. In
the first and second loading cases, shown in Figs.6 and
7, the same truss is loaded vertically and its equilibrium
path is traced till the point where the full snap-through
occurs. The buckling of the left strut only is considered
in Fig.6, while the buckling of both struts is considered
in Fig.7. Slightly different truss is considered in the third
loading case (Fig.8): both struts are allowed for buckling,
though only one really buckles, and equilibrium path is
traced till the point where the upper strut becomes verti-
cal.

The initial postbuckling behavior in all considered cases
is in accordance with the analytical predictions of Britvec
(1973). There are interesting features of the deep post-
buckling behavior, which cannot be predicted analyti-
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Figure 6 : Two-member truss. Equilibrium path: case 1.

Figure 7 : Two-member truss. Equilibrium path: case 2.
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Figure 8 : Two-member truss. Equilibrium path: case 3.

cally. In the first loading case (Fig.6) the whole structure
is unstable immediately after buckling of the left strut.
However, the overall state becomes stable after passing
the (local) limit point on the equilibrium path. Thus the
truss with one buckled member is stable and can bear
the increasing load. The stability is lost when the right
strut becomes horizontal and the left strut is bent into a
ring. The whole loading diagram looks like the compli-
cated snap-through diagram. In the second loading case
(Fig.7) the structure is unstable during the whole snap-
through with two buckled members. This instability also
includes the initial postbuckling range where the absolute
magnitude of the vertical displacement increases with the
increase of the load till the first (local) limit point. Two
secondary branches emanating from the points shown in
Fig.7 correspond to nonzero horizontal displacements of
the node, that is the symmetry of the loaded configuration
of the truss breaks. These secondary branches are unsta-
ble as well. In the third loading case (Fig.8) the whole
equilibrium path is stable.

Figure 8 : Two-member truss. Equilibrium path: case 3.

4.3 Cable net

The pre-stressed cable net is loaded vertically as shown
in Fig.9. This net comprises 29 members of the cross-
section areaA j 0 k 012πcm2and elasticity modulus E j
106kg l cm2. Pre-stressing forces are given in Fig.10. The
net deforms symmetrically. Members 2 and 29 ‘switch
off’ at load λ j 1 k 02kg. Adjacent members 5 and 26
‘switch off’ at load λ j 4 k 47kg. The deformed configura-
tion together with the member forces is shown in Fig.10
at load λ j 20kg. It is important to underline that all de-
formation process is stable despite of ‘switching off’ of
the adjacent cables. This fact corresponds to qualitative
results of Volokh and Vilnay (2000).

4.4 Tensegrity ring

The pre-stressed tensegrity ring shown in Fig.11 may be
used for modeling cytoskeletal structures of living cells.
This ring comprises six nonintersecting struts (members
1-6) and twelve cables (members 7-18). The member
properties are extracted from biological data (see Volokh
et. al, 2000, for references): Ec j 2 k 6GPa m Ac j 18nm2,
Es j 1 k 2GPa m As j 190nm2 mon EI p s j 2 k 15 q 10 r 23 Nm2.
Subscript ‘s’ means strut and ‘c’ means cable. The length
of struts is Ls j 3µm at rest and corresponding buck-
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structure is unstable during the whole snap-through with

two buckled members. This instability also includes the

initial postbuckling range where the absolute magnitude of

the vertical displacement increases with the increase of the

load till the first (local) limit point. Two secondary branches

emanating from the points shown in Fig.7 correspond to

nonzero horizontal displacements of the node, that is the

symmetry of the loaded configuration of the truss breaks.
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loading case (Fig.8) the whole equilibrium path is stable.

Figure 8: Two-member truss. Equilibrium path: case 3.

Figure 8: Two-member truss. Equilibrium path: case 3.

Figure 9: Plane cable net.

Figure 9 : Plane cable net.

ling force is pcr t 23 u 578 pN. Cables are initially pre-
stressed to pc t 3pN. Consequently, the initial axial
force in struts is ps twv 2pc cos75 xyu The initial elongation
and the reference length for struts are ∆s t psLs z|{ EsAs }
and Ls t Ls ~ ∆scorrespondingly. The reference length,
the initial elongation, and the length at rest for cables
are Lc t 0 u 5Ls � 2 v�� 3, ∆c t pc � Lc z�{ EcAc ~ pc } , Lc t
Lc v ∆c correspondingly. The ring is ‘twisted’ by two
loads λ applied perpendicular to strut 1 as shown in
Fig.11.

The equilibrium path of this structure is traced up to load
λ t 45 pN. The displacement of the node of intersec-
tion of members 1,12,13 in the direction of the applied
force is given in Fig.12. The brief loading history is
the following one. The pre-stressed ring is stable when
λ t 0 pN. Cable 18 ‘switches off’ when λ t 3 u 5 pN.
Stability holds. Struts 2,3,4,5 buckle at λ t 43 u 957 pN.
The load decreases and the equilibrium path is unsta-
ble up to λ t 43 u 8657 pN where stability returns and the
load increases. Strut 6 buckles at λ t 44 u 4207 pN and
the equilibrium path decreases unstably up to the point
λ t 44 u 0185 pN. Passing this point the equilibrium path

increases up to λ t 45 pN in a stable way.

5 Closure

A novel formulation for the analysis of pin-jointed as-
semblies with buckling and unilateral members has been
proposed. The postbuckling behavior of slender struts is
described by the highly accurate polynomial approxima-
tion of the solution of ‘elastica’ problem. Constitutive
relations for structural members comprise two segments:
before buckling and after buckling for strut-like mem-
bers; and tension and compression for cable-like mem-
bers. These constitutive relations are incorporated into
the general path following procedures. The computa-
tional strategy of equilibrium analysis is discussed and
the role of implicit branch switching is underlined. Nu-
merical examples demonstrated efficiency and reliability
of considered computational schemes.
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Figure 10: Deformed configuration of the plane cable net at

20kgλ = .

4.3 Cable net

The pre-stressed cable net is loaded vertically as shown in

Fig.9. This net comprises 29 members of the cross-section

area 2 20.01A cmπ= and elasticity modulus 6 210 /E kg cm= .

Pre-stressing forces are given in Fig.10. The net deforms

symmetrically. Members 2 and 29 ‘switch off’ at load

1.02 kgλ = . Adjacent members 5 and 26 ‘switch off’ at

load 4.47 kgλ = . The deformed configuration together

with the member forces is shown in Fig.10 at load

20 kgλ = . It is important to underline that all deformation

process is stable despite of ‘switching off’ of the adjacent

cables. This fact corresponds to qualitative results of Volokh

and Vilnay (2000).

4.4 Tensegrity ring

The pre-stressed tensegrity ring shown in Fig.11 may be

used for modeling cytoskeletal structures of living cells.

This ring comprises six nonintersecting struts (members 1-

6) and twelve cables (members 7-18). The member

properties are extracted from biological data (see Volokh et.

al, 2000, for references): 22.6 , 18c cE GPa A nm= = ,

( )2 23 2
1.2 , 190 , 2.15 10s s s

E GPa A nm EI Nm−= = = ⋅ .

Subscript ‘s’ means strut and ‘c’ means cable. The length of

struts is 3sL mµ=  at rest and corresponding buckling force

is 23.578crp pN= . Cables are initially pre-stressed to

3cp pN= . Consequently, the initial axial force in struts is

Figure 11: Tensegrity ring.

Figure 11: External force versus displacement in its

direction at the node of intersection of members 1,12,13 of

the tensegrity ring.

2 cos 75s cp p= − � . The initial elongation and the reference

length for struts are ( )/s s s s sp L E A∆ =  and

s s sL L= + ∆ correspondingly. The reference length, the

initial elongation, and the length at rest for cables are

0.5 2 3c sL L= − , ( )/c c c c c cp L E A p∆ = ⋅ + , c c cL L= − ∆

Figure 10 : Deformed configuration of the plane cable
net at λ � 20kg.
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