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SGBEM-FEM Alternating Method for Analyzing 3D Non-planar Cracks and
Their Growth in Structural Components1
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Abstract: An efficient and highly accurate, Symmet-
ric Galerkin Boundary Element Method - Finite Element
Method - based alternating method, for the analysis of
three-dimensional non-planar cracks, and their growth, in
structural components of complicated geometries, is pro-
posed. The crack is modeled by the symmetric Galerkin
boundary element method, as a distribution of displace-
ment discontinuities, as if in an infinite medium. The
finite element method is used to perform the stress anal-
ysis for the uncracked body only. The solution for the
structural component, containing the crack, is obtained
in an iteration procedure, which alternates between FEM
solution for the uncracked body, and the SGBEM solu-
tion for the crack in an infinite body. Numerical proce-
dures, and the attendant Java code, are developed for the
evaluation of stress intensity factors, and fatigue crack
growth modeling. Examples for non-planar cracks in in-
finite media, and for planar cracks in finite bodies, as well
as their growth under fatigue, demonstrate the accuracy
of the method.

keyword: SGBEM, FEM, alternating, 3D non-planar
crack.

1 Introduction

The calculation of fracture mechanics parameters (such
as the stress intensity factors of Mode I, II and III), for
arbitrary three-dimensional surface and internal cracks,
remains an important task in the structural integrity as-
sessment and damage tolerance analysis [Atluri (1997)].
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tions to the mechanics of fatigue are seminal and monumental.
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The finite element method (FEM) and the boundary ele-
ment method (BEM) were used in earlier years, success-
fully for this purpose.

The finite element procedures for fracture mechanics
analysis are well established. The use of energetic
methods and in particular the equivalent domain inte-
gral method [Nikishkov and Atluri (1987); Shivakumar
and Raju (1992)] allows one to obtain fracture mechan-
ics parameters with acceptable accuracy. Unfortunately,
a serious difficulty in applying the finite element method
to the analysis of three-dimensional cracks, lies in the
mesh generation. The human labor cost is extremely high
for creating appropriate meshes for arbitrary non-planar
cracks in structural components of arbitrary geometry.

In the boundary element method for linear problems, the
mesh should be generated only for the boundary of the
structure, and for the crack surface. Consequently, it is
simpler to create a boundary element mesh, in compar-
ison to a finite element mesh for a body with a crack.
However, for a surface crack, it is necessary to main-
tain mesh compatibility between the mesh on the crack
surface, and that on the boundary of the structure. If
it is necessary to analyze cracks of different sizes, both
the crack-surface mesh and the mesh for the surface of
the structure, should be modified. The traditional (col-
location) boundary element method has certain features,
which makes it suitable for the solution of crack prob-
lems. Recent publications on the dual boundary ele-
ment method [Cisilino and Aliabadi (1999)] can serve
as an example of application of traditional BEM to linear
and non-linear fracture mechanics problems. Despite its
well understood advantages for some problems, the tra-
ditional BEM has still some features that makes it less at-
tractive for use in fatigue-growth analysis of non-planar
cracks. Among them it is possible to mention the non-
symmetrical matrix of the equation system, and the hy-
persingular kernels contained in the traditional integral
relations.
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An approach combining the traditional hypersingu-
lar boundary element method, and the finite element
method, is used by Keat, Annigeri and Cleary (1988) for
the solution of two- and three-dimensional fracture me-
chanics problems. Based on the superposition principle,
the authors employ a direct method for creating a sys-
tem of equations for the fracture mechanics problem. An
obvious disadvantage of this approach is the large size
of the matrices that characterize the interaction between
the finite element and the boundary element global matri-
ces, and consequently the large solution times on a digital
computer.

The symmetric Galerkin boundary element method
(SGBEM) [Bonnet, Maier and Polizzotto (1998)], is a
way of satisfying the boundary integral equations of elas-
ticity in a Galerkin weak form, as opposed to the method
of collocations that is generally used to satisfy the inte-
gral equations in the traditional BEM. The SGBEM helps
to overcome some drawbacks of the traditional bound-
ary element approach. The SGBEM is characterized by
weakly singular kernels. After a special transformation,
which removes the singularity from kernels, the bound-
ary element matrices can be integrated with the use of
usual Gaussian quadrature rule.

In this paper, the SGBEM-FEM alternating method, for
the analysis of non-planar cracks in finite bodies, is pre-
sented. The method alternates between the FEM solution
for an uncracked structural component of a finite geom-
etry, and the SGBEM solution for a crack in an infinite
body. The crack is modeled as a distribution of displace-
ment discontinuities. The crack surface is descretized by
quadratic eight-noded boundary elements. Quarter-point
singular elements are placed near the crack front. With
the use of the proposed procedure the stress intensity fac-
tors for planar and non-planar cracks in infinite media,
and for embedded and surface cracks in finite bodies, are
calculated. A comparison of the results with the pub-
lished solutions shows that the SGBEM-FEM alternating
method is very efficient and highly accurate for analyzing
non-planar cracks. A numerical procedure for analyzing
the fatigue crack growth of nonplanar cracks is also de-
veloped. The direction and magnitude of crack advance
are based on the direction and magnitude of the J-integral
vector. Results for nonplanar fatigue crack growth of an
inclined elliptical precrack are provided.

The present paper for treating non-planar cracks of arbi-
trary geometry, in finite-sized structural components of

arbitrary geometry, represents a further refinement of the
Shwartz-Neumann alternating technique developed over
the years [Atluri (1997); Nishioka and Atluri (1983),
and Vijaykumar and Atluri (1981)]. In these earlier pa-
pers, only cracks of (part)-elliptical geometries were con-
sidered; and the alternating was between the analytical
solution for an elliptical crack in an infinite body [Vi-
jaykumar and Atluri (1981)] and the finite element so-
lution for an uncracked finite body. In that sense, the
Vijaykumar and Atluri (1981) solution of the earlier al-
ternating method, is now replaced by the SGBEM solu-
tion for a non-planar crack of arbitrary geometry, in the
present paper. The next logical step in this series of de-
velopments is to replace the finite element solution for
the uncracked finite body, with a meshless local Petrov-
Galerkin (MLPG) solution for the uncracked finite body
[Atluri and Zhu (1998); Kim and Atluri (2000), and Lin
and Atluri (2000)]. This will be forthcoming.

2 Symmetric Galerkin Boundary Element Method

2.1 Governing integral equations

Figure 1 : Crack as displacement discontinuity in an in-
finite body.

Consider an infinite three-dimensional body containing a
non-planar crack of arbitrary geometry as shown in Fig.
1. A distributed load is applied at the crack surface. The
crack can be described by a distribution of displacement
discontinuity, with components ui � uS �

i � uS �
i (i= 1...3),

where S � and S � are two crack surfaces.
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The following weakly-singular boundary integral equa-
tion is valid for the crack [Bonnet, Maier and Polizzotto
(1998); Xu and Ortiz (1993); Li and Mear (1998), Li,
Mear and Xiao (1998)]:

�
	
S

	
S

Dαu �i � z  Cαiβ j � ξ � z  Dβu j � ξ  dS � ξ  dS � z 
� 	

S

u �i � z  tidS � z  (1)

Here S � S � is one of crack surfaces; ui are displacement
discontinuities for the crack surface; u �i are the compo-
nents of a continuous test function; and ti are crack face
tractions.

The two-point weakly singular kernel is given by the fol-
lowing expression:

Cαiβ j � ζ  �
µ

4π � 1 � ν � r � � 1 � ν  δiαδ jβ � 2νδiβδ jα � δijδαβ � ζiζ j
r2 δαβ�

ζ � ξ � z
r2 � ζ  � ζiζi

(2)

where ν is Poisson’s ratio and µ is the shear modulus.
A tangential operator Dα is defined as follows:

Dα
� 1

J � ∂
∂η1

∂xα
∂η2

� ∂
∂η2

∂xα
∂η1 �

J ��� s � t �
s � ∂x � ∂η1 � t � ∂x � ∂η2

(3)

where η1 � η2 are the surface coordinates on the crack
surface, and s � t are vectors in the plane that is tangent to
the crack surface.

2.2 Displacement and stress fields

The displacement field around the crack can be deter-
mined, with the use of Somigliana’s identity:

up � x  � ��	
S

ni � ξ  Sp
i j � ξ � x  u j � ξ  dS � ξ  (4)

Stresses are determined by the expression:

σkl � x  � � 	
S

EklpqeiqmSp
i j � ξ � x  Dmu j � ξ  dS � ξ  (5)

Here Eklpq is the elasticity tensor; eiqm is the permutation
symbol and Sp

i j is the stress fundamental solution:

Sp
i j � ζ  (6)� 1

8π � 1 � ν  r2 � � 1 � 2ν 
r � ζpδi j � ζiδp j � ζ jδpi  � 3ζpζiζ j

r3 �
2.3 Discretization of the integral equation

We assume that the crack is partitioned into boundary
elements. Displacement discontinuities and tractions are
defined at element nodes, and are interpolated inside the
elements with the use of shape functions Na:

ui
� Na � η1 � η2  uia

ti � Na � η1 � η2  tia (7)

where i = 1,2,3 is the global coordinate subscript; a is the
node number; η1 � η2 are element local coordinates. With
the use of a parametric representation of displacement
discontinuities and tractions, we can rewrite the integral
equation (1) in the following discretized form:

��	
S

	
S

Cαiβ jDαNa � z  DβNb � ξ  dS � ξ  dS � z  ujb
� 	

S

NaNqdS � z  tiq
(8)

or in the following matrix-vector form:

Kia jbu jb
� Haqtiq (9)

The global equation system is composed of the element
matrices:

kmn
ia jb

� � 	
Sm

	
Sn

Cαiβ jDαNa � z  DβNb � ξ  dS � ξ  dS � z  (10)

hm
aq
� 	

Sm

NaNqdS � z  (11)
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The mth hyper-line (corresponding to degrees of freedom
of one boundary element) of the global equation system
is written as:

∑
n

kmn
ia jbu jb  hm

aqtiq (12)

Figure 2 : Boundary element with a local coordinate sys-
tem.

The tangential operator Dα is applied twice to element
shape functions in Eq. (10). Consider the computation of
the expression DαNa for a boundary element, as shown
in Fig. 2. Vectors s and t which are tangent to the lines of
constant value of the local coordinates η1 ! η2 are equal
to:

s  �" ∂x1

∂η1

∂x2

∂η1

∂x3

∂η1 # ! t  �" ∂x1

∂η2

∂x2

∂η2

∂x3

∂η2 # (13)

Assuming that the coordinate interpolation is performed
with the same shape functions as used for displacement
interpolation, the partial derivatives of the global coordi-
nates in respect to local coordinates can be easily calcu-
lated in the following way:

∂xi

∂η j
 ∂Na

∂η j
xia (14)

where a is the node number. The Jacobian J is equal
to the length of a vector g, which is a vector product of
vectors s and t:

g1  ∂x2

∂η1

∂x3

∂η2 $ ∂x3

∂η1

∂x2

∂η2

g2  ∂x3

∂η1

∂x1

∂η2 $ ∂x1

∂η1

∂x3

∂η2
(15)

g3  ∂x1

∂η1

∂x2

∂η2 $ ∂x2

∂η1

∂x1

∂η2

J % η1 ! η2 &  (' g ') +* g2
1 , g2

2 , g2
3 (16)

The derivatives of the shape functions with respect to
the local coordinates are found explicitly, since the shape
functions are expressed in terms of local coordinates.

2.4 Integration of element matrices

A typical integral of a matrix entry, for the combination
of boundary elements n and m, can be written in the fol-
lowing form:

Inm  .-
Sn

-
Sm

f % x ! x̃ & dSxdSx̃  
1-

0

1-
0

1-
0

1-
0

F % x % η1 ! η2 & ! x̃ % η̃1 ! η̃2 &/& dη1dη2dη̃1dη̃2 (17)

Taking into account that area elements can be presented
in the form:

dS % x &  J % x & dη1dη2
dS % x̃ &  J % x̃ & dη̃1dη̃2

(18)

and that the determinant of Jacobi matrix is contained
in the expression for the tangential operator Dα the inte-
grand can be written as follows:

F  $ Cαiβ j % Na 0 1xα 0 2 $ Na 0 2xα 0 1 &21 Nb 0 1x̃β 0 2 $ Nb 0 2x̃β 0 1 3 (19)

Na 0 i  ∂Na

∂ηi
! Nb 0 i  ∂Nb

∂η̃i
(20)

xa 0 i  ∂xa

∂ηi
! x̃b 0 i  ∂x̃b

∂η̃i
(21)

The integral Inm can be estimated using the Gaussian in-
tegration rule:
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Inm 4 ∑
i

∑
j
∑
k

∑
l

F 5 η1i 6 η2 j 6 η̃1k 6 η̃2l 7 wiw jwkwl (22)

where η1i 6 η2 j are abscissas of the Gaussian integration
rule and wiw j are correspondent weights. While such
an integration procedure is appropriate for a specific pair
of elements, which have no common points, it can not
provide sufficient accuracy for other elements, which are
coincident or have one edge or one vertex in common.

An efficient approach to double area integration of
weakly singular kernels is presented in References [An-
dra (1998); Erichsen and Sauter (1998] for triangular
boundary elements. The approach is based on coordi-
nate transformations, which produce such a transforma-
tion Jacobian that it cancels the weak singularity of the
kernel. We developed the corresponding integration ap-
proach for special cases of pairs of quadrilateral elements
shown in Fig. 3; then we discovered that a convenient
form of this integration was published independently by
Frangi, Novati, Springhetti and Rovizzi (2000). For co-
incident elements and for elements with common edge or
common vertex, the four-dimensional integration domain
0 8 η1 6 η2 6 η̃1 6 η̃2 8 1 is divided into several integration
subdomains. In each subdomain, a special coordinate
transformation is introduced, which cancels the singular-
ity. The integral Inm for a special case is computed as a
sum of subdomain integrals:

Inm 4 19
0

19
0

19
0

19
0

s

∑
i : 1

F 5 x 5 ηi
1 6 ηi

2 7;6 x̃ 5 η̃i
1 6 η̃i

2 7<7 Jidωdξ1dξ2dξ3

(23)

where s is the number of integration subdomains,
ηi

1 6 ηi
2 6 η̃i

1 6 η̃i
2

are local coordinates in subdomain i,
which are expressed through integration variables
0 8 ω 6 ξ1 6 ξ2 6 ξ3 8 1 and Ji is the subdomain transfor-
mation Jacobian. For the three special integration cases,
the variables in Eq. (23) can be expressed as follows.

Coincident elements

Number of subdomains s = 8.

i η̃i
1 η̃i

2 ηi
1 ηi

2
1 v3 v4 v1 = v3 v2 = v4

2 v3 v2 = v4 v1 = v3 v4

3 v1 = v3 v2 = v4 v3 v4

4 v1 = v3 v4 v3 v2 = v4

5 v4 v3 v2 = v4 v1 = v3

6 v2 = v4 v3 v4 v1 = v3

7 v2 = v4 v1 = v3 v4 v3

8 v4 v1 = v3 v2 = v4 v3

v1 4 ω
v2 4 ξ1ω
v3 4 ξ2 5 1 > ω 7
v4 4 ξ3 5 1 > ξ1ω 7
Ji 4 ω 5 1 > ω 7 5 1 > ξ1ω 7

Elements with a common edge

Number of subdomains s = 6.

i η̃i
1 η̃i

2 ηi
1 ηi

2
1 v4 v2 v1 = v4 v3

2 v5 v1 v5 = v2 v3

3 v5 v3 v5 = v2 v1

4 v1 = v4 v2 v4 v3

5 v5 = v2 v1 v5 v3

6 v5 = v2 v3 v5 v1

v1 4 ω
v2 4 ξ1ω
v3 4 ξ2ω
v4 4 ξ3 5 1 > ω 7
v5 4 ξ3 5 1 > ξ1ω 7
J1 4 J4 4 ω2 5 1 > ω 7
J2 4 J3 4 J5 4 J6 4 ω2 5 1 > ξ1ω 7

Elements with a common vertex

Number of subdomains s = 4.
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Fig. 4.  Superposition principle: solution for a finite body with a crack can be obtained as a sum
of solution for a finite uncracked body and of solution for a crack in an infinite body.

Figure 3 : Singular cases of integration for a pair of boundary elements: (a) coincident elements, (b) elements with
a common edge and (c) elements with a common vertex.

i η̃i
1 η̃i

2 ηi
1 ηi

1
1 v1 v2 v3 v4

2 v2 v1 v3 v4

3 v2 v3 v1 v4

4 v2 v3 v4 v1

v1 @ ω
v2 @ ξ1ω
v3 @ ξ2ω
v4 @ ξ3ω

Ji @ ω3

The numerical integration inside each subdomain is per-
formed using the usual Gaussian quadrature integration
rule (22), since all the integrals after the appropriate
transformations are nonsingular.

3 Alternating Method

Using jointly the symmetric Galerkin boundary element
method for modeling an arbitrary non-planar crack in an
infinite body, and the finite element method for an un-
cracked finite body, in fracture mechanics problems, al-
lows us to employ advantages of both methods. The fi-
nite element method is a robust method for elastic and
elastic-plastic problems. It can easily incorporate various
types of boundary conditions. The finite element method
is widely used in industry. There are commercial prepro-
cessor programs, which are capable of transforming any
CAD model into a finite element model.

The boundary element method is most suitable for mod-
eling cracks in infinite bodies. The displacement dis-

continuity approach provides for a simple modeling of
the crack. Only one surface of the crack should be dis-
cretized. The independence of the crack model and the
finite element model of the body allows to easily change
the crack model in order to simulate crack growth under
monotonic or cyclic loading.

The solution for a finite body with a crack is obtained as
a superposition of two models:

1. finite element model for a finite body under external
loading, without a crack;

2. an infinite body with a crack modeled by the sym-
metric Galerkin boundary element method.

Illustration of the superposition principle is presented in
Fig. 4. For a correct superposition corresponding to the
solution for a finite body with a crack, fictitious forces
on the boundary of the finite element model should be
found in order to compensate for the stresses caused by
the presence of a crack in an infinite body. While this can
be done with a direct procedure, the alternating method
[Atluri (1997)] provides for a more efficient solution,
without assembling the joint SGBEM-FEM matrix.

The SGBEM-FEM alternating method alternates be-
tween the finite element solution for an uncracked body
and the displacement discontinuity method solution for a
crack in an infinite body. Using an iteration procedure,
artificial tractions at the boundary of the finite element-
modeled body and at the crack surface, are found.

The basic steps of the SGBEM-FEM alternating iteration
procedure are as follows:
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Figure 4 : Superposition principle: solution for a finite body with a crack can be obtained as a sum of the solution
for a finite uncracked body and of the solution for a crack in an infinite body.

1. Using FEM, obtain the stresses at the location of the
crack in a finite uncracked body subjected to given
boundary conditions.

2. Using SGBEM, solve the problem of a crack, the
faces of which subjected to tractions, as found from
FEM analysis of the uncracked body.

3. Determine the residual forces at the outer bound-
aries of the finite body, from displacement disconti-
nuities at the crack surface.

4. Using FEM, solve a problem for a finite uncracked
body under residual forces from SGBEM analysis.

5. Obtain the stresses at the location of the crack cor-
responding to FEM solution.

6. Repeat Steps (2)-(5) until the residual load is small
enough.

7. By summing all the appropriate contributions, com-
pute the total solution for a finite body with the
crack.

In a matrix notation, the FEM and SGBEM global equa-
tion systems look similar:

A
KFEM BDC uFEM EGFHC P E (24)

A
KBEM BIC uBEM EJFKC T E (25)

where [KFEM], [KBEM ] are the finite element global stiff-
ness matrix and the boundary element global equation
matrix; C uFEM E , C uBEM E are nodal displacement vectors
of the finite element model of the uncracked body and
of the boundary element model of the crack surface; C P E
is the external load of the finite element model, and C T E
are tractions of the boundary element crack model. After
the solution of the global equation system, the stresses
in the finite element method are computed inside finite
elements using the elasticity matrix [D] and the displace-
ment differentiation matrix [B]:

C σFEM EJF A
D B A BBIC uFEM E (26)

The stresses due to displacement discontinuities at the
crack surface in the boundary element method are calcu-
lated by integration over the crack surface using Eq. (5).
This relation in general can be written as:

C σBEM EJFKC σ L C uBEM ENM)E (27)

The finite element surface residuals C Ψ E , and crack face
boundary element tractions [T ], are estimated through a
similar integration:

C Ψ EOFQP
S

A
NFEM B A nBDC σBEM E dS (28)
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S
T TJU.V

S W NBEM X W n X S σFEM T dS (29)

where [NFEM], [NBEM ] are the finite element and bound-
ary element shape functions, and [n] are normal vec-
tors to the finite element surface or to the crack surface.
Boundary element stresses are used to calculate the fi-
nite element residual vector, and vice versa, finite ele-
ment stresses are involved in the calculation of crack sur-
face tractions. The above SGBEM-FEM alternating pro-
cedure can be presented as follows:

S
u Y 0 ZFEM TJU S

0 TS
Ψ Y 0 Z TJU S

P TS
u Y 0 ZBEM TJU S

0 T
do iterationsS

∆u Y i ZFEM T[U W KFEM X]\ 1
S
Ψ Y i ^ 1 Z TS

u Y i ZFEM TJU S
u Y i ^ 1 Z

FEM T`_ S ∆u Y i ZFEM TS
∆σ Y i ZFEM T[U WDX W B X S ∆u Y i ZFEM TS
∆T Y i Z TJU.a

S W NBEM X W nX S ∆σ Y i ZFEM T dSS
∆u Y i ZBEM TGU W KBEM X \ 1

S
∆T Y i Z TS

u Y i ZBEM T[U S
u Y i ^ 1 Z

BEM T`_ S ∆u Y i ZBEM TS
∆σ Y i ZBEM TJU S

∆σ b S ∆u Y i ZBEM Tdc)TS
Ψ Y i Z TJU a

S W NFEM X W nX S ∆σ Y i ZBEM T dS

while efeΨ Y i Z efehgiefeP efekj ε

(30)

4 Calculation of fracture mechanics parameters

In the linear elastic case, the fracture mechanics parame-
ters (stress intensity factors KI, KII and KIII) can be easily
determined by using asymptotic formulae for displace-
ments in the vicinity of the crack front:

KI U Eb 1 l ν2 c u3

4 m 2r g π
KII U Eb 1 l ν2 c u2

4 m 2r g π (31)

KIII U Eb 1 _ ν c u1

4 m 2r g π
where KI, KII and KIII are the stress intensity factors; E
is the elasticity modulus; ν is the Poisson’s ratio; r is the

distance from the point to the crack front and u1, u2 and
u3 are components of the displacement discontinuities at
points at the crack surface in a local crack front coordi-
nate system shown in Fig. 5. The axis x1 of the crack
front coordinate system is parallel to the crack front, and
the axis x3 is normal to the crack surface.

Figure 5 : Local crack front coordinate system

23

x

x

x

Fig. 5.  Local crack front coordinate system.

η1

η2

η2=1

η2=0.5

η2=0L/4

L

Fig. 6.  Singular quarter-point boundary element.Figure 6 : Singular quarter-point boundary element.

Boundary elements with proper modeling of square-root
stress singularity should be used at the crack front, in or-
der to obtain values of the stress intensity factors with
good precision. A convenient form of the boundary ele-
ment with stress singularity is an 8-noded element, with
two midside nodes shifted towards the crack front by one
quarter of the side length as shown in Fig. 6. The val-
ues of KI, KII and KIII can be determined directly at the
quarter point nodes of boundary elements. It is also pos-
sible to determine the stress intensity factors by using the
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displacement discontinuities at the quarter-point node lo-
cated at L n 4 of the side and at the corner node, which has
distance L along the element side from the crack front.

The following procedure for the stress intensity factor
calculation is used in current work:
Obtain the displacement discontinuities uG

i in the global
coordinate system for the quarter-point node and for the
corner node of a singular crack front element;

Extrapolate uG
i oqp r to the crack front, using values at the

quarter-point node (L n 4) and at the corner node (L). Here
r is the distance along line normal to the crack front and
uG

i are components of displacement discontinuities in the
global coordinate system.

Transform the extrapolated displacement discontinuities
from the global coordinate system to the crack front coor-
dinate system, ui r αi juG

i where αi j are direction cosines
of the transformation.

Calculate the stress intensity factors using the equation
(31).

5 Modeling of Fatigue Crack Growth

SGBEM-FEM alternating method is very suitable for
modeling of fatigue crack growth. Since the boundary
element model and the finite element model are indepen-
dent, only the boundary element model (= crack model)
should be modified during crack growth modeling.

The crack-front advancement is performed by adding an-
other element layer to the existing crack model. To ad-
vance a point at the front of a nonplanar crack it is nec-
essary to know the direction of crack growth and the
amount of crack growth. The J-integral [Cherepanov
(1979)] is chosen here as a criterion for fatigue crack
growth. According to the J-integral crack growth crite-
rion:

(a) Crack grows in the direction of vector ∆ sJ as shown
in Fig. 7;

(b) Crack growth rate is determined by magnitude of
∆J.

In an elastic-plain-strain case, the ranges of J-integral
components are expressed through ranges of the stress
intensity factors KI, KII and KIII:

Figure 7 : J-integral components for the crack front
point. Crack growth direction is a direction of J-vector.

∆J1 r 1 t ν2

E u ∆K2
I v ∆K2

II wxv 1 v ν
E

∆K2
III

∆J2 r t 2
1 t ν2

E
∆KI∆KII (32)

∆J r(y ∆J2
1 v ∆J2

2

The crack growth angle α is determined by the direction
of ∆ sJ vector:

tgα r ∆J2

∆J1
(33)

It is worth noting that the ∆ sJ vector is normal to the crack
front. Hence a point at the crack front moves in the plane
normal to the crack front at the angle α from the plane
which is tangential to the crack surface.

Typically, material fatigue crack growth models (such as
Paris, Forman or NASGRO models) express the func-
tional relationship for crack growth rate through the
range of the effective stress intensity factor ∆Keff :

da
dN r f u ∆Keff w (34)

where da/dN is the crack growth per cycle and ∆K r
Kmax t Kmin. The range of the effective stress intensity
factor ∆Keff is related to the range ∆ by the energy equiv-
alence principle:

∆K2
eff r ∆JE

1 t ν2 (35)
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Modeling of fatigue crack growth is performed by finite
increments. At each increment the maximum crack ad-
vance is specified as ∆amax. The crack advance for a par-
ticular point at the crack front is calculated as follows:

∆a { ∆amax | da } dN ~| da } dN ~ max
(36)

We use the following procedure for the advancement of
the front of a nonplanar crack:

1. Using SGBEM-FEM alternating method, solve the
problem for the current crack configuration and de-
termine ranges for the stress intensity factors KI, KII
and KIII for the element corner nodes located at the
crack front.

2. For each corner node determine the crack front co-
ordinate system by averaging the coordinate axis
vectors determined at the corner point of two neigh-
boring boundary elements.

3. For each corner node, calculate the crack advance
∆a using Equation (36) and the crack growth an-
gle according to Equation (33). Move each corner
node in the local crack front coordinate system and
then transform the movement to the global coordi-
nate system.

4. Find the locations of crack front midside nodes,
using cubic spline interpolations for corner nodes
from several neighboring elements.

5. Shift the quarter-point nodes of the previous crack
front elements to midside position. Put quarter-
point nodes on element sides normal to the crack
front.

After terminating the crack growth procedure, the total
number of cycles N is calculated as a sum of ∆Ni at crack
growth increments.

6 Numerical Results

The above-presented algorithm of the SGBEM-FEM al-
ternating method has been implemented as a Java code
DDFEAM. The Java language has been selected, because
of its numerous attractive features: object-oriented na-
ture, simplicity, reliability and portability. The slower

speed of Java, in comparison to C and Fortran, is usually
considered to be main obstacle in a wider use of Java
for the development of computationally intensive codes.
However, at present, Java Virtual Machines, which are
used for the execution of Java code, include Just-In-
Time compiler and provide reasonable speed for typical
multiply-add operations used in computationally inten-
sive routines. A comparison of finite element codes writ-
ten in C and Java [Nikishkov (2000)] shows that in many
cases Java can provide roughly the same performance as
the C language. In the worst case, Java is about two times
slower than C (this ratio is typical for iterative solvers of
equation systems). Our experience indicates that a man-
ual code tuning is more important for Java than for other
computer languages. Currently the Java compiler practi-
cally does not have actual means for code optimization.
Because of this, it is necessary to identify code segments,
which consume major computing time and to optimize
them manually. In our experience, a manual tuning of the
integration routine, for a pair of boundary elements with
multiple enclosed loops, produced a ten-times speedup
on a Windows computer system. While manual tuning
requires some additional efforts, we found that the use
of Java leads to an overall development time reduction,
because of easier programming and debugging in com-
parison to other languages.

The developed Java SGBEM-FEM alternating code
DDFEAM is applied to the solution of crack problems
in infinite and finite bodies. Below we demonstrate the
accuracy of the numerical procedure, first for planar and
non-planar cracks in infinite media where only SGBEM
part of the code is used. Then we present solutions for
internal and surface cracks in finite bodies. Finally, an
example of fatigue crack growth from an inclined ellipti-
cal precrack is given.

In all examples, 8-noded quadrilateral boundary ele-
ments are used for crack surface discretization. Gaus-
sian integration rule, with three points in each of the four
directions is employed for computing boundary element
matrices for regular and singular cases. Quarter-point
singular elements are placed at the crack front. Finite
element models consist of 20-noded brick-type finite el-
ements.
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Figure 8 : Penny-shaped crack under uniform tension.

6.1 Penny-shaped crack under tensile and shear load-
ing

The schematic of the problem for a penny-shaped circu-
lar crack under tensile loading along x3 and shear load-
ing along x1 is shown in Fig. 8. Exact solution for the
problem is given by Sneddon (1946) and Kassir and Sih
(1966):

KI � 2σ � a
π

KII � 4τcosβ�
2 � ν � � a

π

KIII � � 4τ
�
1 � ν � sinβ�
2 � ν � � a

π

where a is the crack radius, σ is the applied remote
stress, τ is the applied shear stress; ν is the Pois-
son’s ratio; β is an angle from the direction of shear
force on the crack plane. Two meshes consisting of
12 and 20 quadratic elements are used (see Fig. 9).
Results for the stress intensity factors normalized as
KI � � 2σ � a � π ��� KII � � 2τ � a � π � and KIII � � 2τ � a � π � are
presented in Fig. 10 for the value of Poisson’s ratio ν
= 0.3. Both meshes provide accurate results. The mesh
of 20 elements gives values of the stress intensity factors
with an error about 0.3% .
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Fig. 9.  Meshes for a penny-shaped crack: (a) 12 quadratic elements, (b) 20 quadratic elements.
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Fig. 10.  Stress intensity factors KI, KII and KIII for a penny-shaped crack.
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Figure 9 : Meshes for a penny-shaped crack: (a) 12
quadratic elements, (b) 20 quadratic elements.
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Fig. 10.  Stress intensity factors KI, KII and KIII for a penny-shaped crack.
Figure 10 : Stress intensity factors KI � KII � and KIII for a
penny-shaped crack.
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Fig. 11.  Inclined elliptical crack under tension.
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Fig. 12.  Meshes for an elliptical crack: a) with element edges normal to the crack front,
b) with element edges focused to the center of ellipse.

26

σ

α a
c

2c

2a
ϕ

Fig. 11.  Inclined elliptical crack under tension.

a                                                                           b

Fig. 12.  Meshes for an elliptical crack: a) with element edges normal to the crack front,
b) with element edges focused to the center of ellipse.

Figure 11 : Inclined elliptical crack under tension.

6.2 Inclined elliptical crack under tension

Inclined elliptical crack with semi-axes c and a is shown
in Fig. 11. The exact solution for a tensile loading σ is
given by the relation [Kassir and Sih (1966); Tada, Paris
and Irwin (2000)]:

KI � 1
2

σ � 1 � cos2α ��� πa f � ϕ �
E � k �

KII � 1
2

σsin2α � πa k2 � a � c � cosϕ
B f � ϕ �

KIII � 1
2

σsin2α � πa k2 � 1 � ν � sinϕ
B f � ϕ �

f � ϕ � � � sin2 ϕ ��� a � c � 2 cos2 ϕ � 1 � 4
k2 � 1 ��� a � c � 2
B � � k2 � ν � E � k �x� ν � a � c � 2K � k �
where α is an angle characterizing crack orientation; ϕ is
the elliptical angle and K(k) and E(k) are elliptic integrals
of the first and second kind:

K � k � � π � 2�
0

dϕ�
1 � k2 sin2 ϕ � E � k � �

π � 2�
0

�
1 � k2 sin2 ϕ dϕ

First, we consider the Mode I case, with the crack-plane
being normal to the direction of loading. The two meshes

employed for crack analysis are shown in Fig. 12. Mesh
A is composed of 44 boundary elements in such a way
that the element edges are normal to the crack front.
Mesh B contains 40 boundary elements. It is produced
by scaling the circular mesh in one direction. After scal-
ing, the element edges are not normal to the crack front
line. Results for the elliptical crack a/c = 0.5 are given in
Fig. 13. The stress intensity factor values are normalized
as KI � KI � π � 2 � . It can be seen that mesh A with element
edges normal to the crack front produces better results
than mesh B.
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Fig. 13.  Stress intensity factor KI for an elliptical crack.

Fig. 14.  Mesh for an inclined elliptical crack.

Figure 13 : Stress intensity factor KI for an elliptical
crack.

The same elliptical crack inclined at 45 degrees, is char-
acterized by the distribution of all three stress intensity
factors KI, KII and KIII along the crack front. Attempts
to use same meshes, which were used for mode I anal-
ysis, lead to considerable errors in KII and KIII values
for some ranges of elliptical angles. We were not able
to obtain good results for KII and KIII using even refined
meshes of type B (Fig. 12). Refined mesh with element
sides normal to the crack front is depicted in Fig.14. It
is created using elliptical angle increment of 15 degrees.
The mesh contains 68 quadratic boundary elements and
229 nodes. SGBEM results for the stress intensity factors
KI, KII and KIII normalized as Ki �q� σ � πa � are presented
in Fig. 15. Quite a satisfactory agreement of our results
with theoretical solution is observed.

6.3 Circular-arc crack under tension

Computation of the stress intensity factors for a circular-
arc crack under tensile loading is used as first test for abil-
ity of the SGBEM method to model non-planar cracks.
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Figure 12 : Meshes for an elliptical crack: a) with element edges normal to the crack front, b) with element edges
focused to the center of the ellipse.
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Fig. 13.  Stress intensity factor KI for an elliptical crack.

Fig. 14.  Mesh for an inclined elliptical crack.
Figure 14 : Mesh for an inclined elliptical crack
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Fig. 15. Stress intensity factors KI, KII and KIII for an inclined elliptical crack under tension.
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Fig. 16. Circular-arc crack under tensile loading.

Figure 15 : Stress intensity factors KI � KII and KIII for an
inclined elliptical crack under tension.
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Fig. 15. Stress intensity factors KI, KII and KIII for an inclined elliptical crack under tension.
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Fig. 16. Circular-arc crack under tensile loading.Figure 16 : Circular-arc crack under tensile loading

Schematic of the circular-arc crack with a distance be-
tween crack tips 2a and an angle α for half of the arc is
presented in Fig. 16. The exact solution for the stress in-
tensity factors KI and KII is given in Reference [Cotterel
and Rice (1980)]:

KI � 1
2

σ � πa �<� 1 � 1
4

sin2 α� cosα � 2
1 � sin2 α � 2 � cos3α � 2�

KII � 1
2

σ � πa ��� 1 � 1
4

sin2 α � sinα � 2
1 � sin2 α � 2 � sin3α � 2�

where σ is the remote tensile stress. This two-
dimensional problem is solved as a three-dimensional
one using meshes consisting of 60 quadratic elements
(typical mesh is shown in Fig. 17). A length of the
crack model is chosen as 10a. Stress intensity factors
KI and KII calculated at centers of straight crack fronts
are compared to the exact solution in Fig. 18. Values of
the stress intensity factors are normalized by the factor
K0 � σ � πa. Some deviation of computed stress inten-
sity factor KII from the exact solution is observed only
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Fig. 17.  Mesh 10 by 6 elements for a circular arc problem.
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Fig. 18.  Stress intensity factors KI and KII for a circular arc crack.

Figure 17 : Mesh 10 by 16 elements for a circular arc
problem.

for large angles α.
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Fig. 18.  Stress intensity factors KI and KII for a circular arc crack.
Figure 18 : Stress intensity factors KI and KII for a cir-
cular arc crack.

6.4 Spherical penny-shaped crack under internal
pressure and tension

A spherical crack bounded by a circular front is shown
in Fig. 19. Crack parameters are: a radius of the circular
crack front a and an angle α. Two load cases are con-
sidered: internal crack pressure (Fig. 19,a) and remote
tension (Fig. 19,b). A typical mesh of 20 quadratic ele-
ments used for calculation of the stress intensity factors
KI and KII is presented in Fig. 20. Since the exact so-
lution for the spherical penny-shaped crack is unknown,
results are compared to numerical values obtained by Xu
and Ortiz (1993) for the Poisson’s ratio ν=0.3. Our re-
sults for the spherical penny-shaped crack under internal
pressure are presented in Fig. 21 as normalized values
KI   K0 and KII   K0 where K0 ¡ 2P ¢ a   π (P is internal
pressure). Good agreement between our results and re-
sults of Reference [Xu and Ortiz (1993)] is observed for
the case of internal pressure.
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Fig. 19. Spherical penny-shaped crack under internal pressure (a) and tensile loading (b).

Fig. 20.  Mesh for a spherical penny-shaped crack.
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Fig. 19. Spherical penny-shaped crack under internal pressure (a) and tensile loading (b).

Fig. 20.  Mesh for a spherical penny-shaped crack.

b
Figure 19 : Spherical penny-shaped crack under internal
pressue (a) and tensile loading (b).
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Fig. 19. Spherical penny-shaped crack under internal pressure (a) and tensile loading (b).

Fig. 20.  Mesh for a spherical penny-shaped crack.

Figure 20 : Mesh for a spherical penny-shaped crack.



SGBEM-FEM alternating method for analyzing 3D non-planar cracks 415

31

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

1.2

K II

K I

 Xu, Ortiz

 SGBEM

Spherical penny shaped crack 

under internal pressure

 

 

S
tr

e
ss

 in
te

n
si

ty
 f

a
ct

o
r 

K
/K

0

Angle, degrees

Fig. 21. Stress intensity factors KI and KII for a spherical penny shaped crack under internal
pressure

Figure 21 : Stress intensity factors KI and KII for a spher-
ical penny shaped crack under internal pressure.
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Fig. 22. Stress intensity factors KI and KII for a spherical penny shaped crack under remote
tension

Figure 22 : Stress intensity factors KI and KII for a spher-
ical penny shaped crack under remote tension.

The stress intensity factors KI and KII normalized by
K0 £ 2σ ¤ a ¥ π for the spherical crack under remote ten-
sion obtained with the use of our code and those from
References [Xu and Ortiz (1993)] and [Li, Mear and Xiao
(1998)] are shown in Fig 22. Our results for the stress in-
tensity factor KI and KII are in agreement with the results
of Li, Mear and Xiao (1998) for α= 45 degrees. Devia-
tion of our values of the stress intensity factors from the
results of Xu and Ortiz (1993) is considerable. Taking
into account that our results are supported by results of
Reference [Li, Mear and Xiao (1998)] and that Xu and
Ortiz give unrealistically high values of KII for large an-
gles α, we conclude that results of Xu and Ortiz may
contain some errors.

6.5 Embedded circular crack in a cylindrical bar and
in a cube

33

σ

a

2R

aA

σ

2W

a b

Fig. 23. Inner circular crack in a cylindrical bar (a) and in a cube (b).

Fig.24. Finite element–boundary element model for a cylinder bar with an inner circular crackFigure 24 : Finite element-boundary element model for
a cylinder bar with an inner circular crack.

Two problems for embedded cracks in finite bodies, in-
clude a circular crack inside a cylindrical bar (Fig. 23,a)
and a circular crack embedded in a cube (Fig. 23,b). For
a circular bar with an embedded circular crack, a discrete
model shown in Fig. 24 is used. This discrete model con-
sists of the finite element model (72 brick-type 20-noded
elements) and the boundary element model (20 quadri-
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Fig. 23. Inner circular crack in a cylindrical bar (a) and in a cube (b).

Fig.24. Finite element–boundary element model for a cylinder bar with an inner circular crack

Figure 23 : Inner circular crack in a cylindrical bar (a) and in a cube (b).

lateral 8-noded elements). The solution for a finite body
with a crack was obtained by the alternating method.
The number of iterations inside the alternating procedure
varies from 3 for a crack a/R = 0.3 to 6 for a crack a/R =
0.8. A comparison of the stress intensity factors normal-
ized by K0 § 2σ ¨ a © π obtained by of SGBEM–FEM al-
ternating method with the approximated solution of Ref-
erence [Tada, Paris and Irwin (2000)] is presented in Fig.
25.
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Fig.25. Stress intensity factor KI for a circular crack in a cylindrical bar under tension.

Fig.26. Finite element–boundary element model for a cube with an inner circular crack.

Figure 25 : Stress intensity factor KI for a circular crack
in a cylindrical bar under tension.

Finite element – boundary element model used for ana-
lyzing circular crack in a cube under tensile loading is
shown in Fig. 26. The finite element model consists of
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Fig.25. Stress intensity factor KI for a circular crack in a cylindrical bar under tension.

Fig.26. Finite element–boundary element model for a cube with an inner circular crack.

Figure 26 : Finite element-boundary model for a cube
with an inner circular crack.

64 elements. Three boundary element meshes consisting
of 12, 20 and 40 elements are used (mesh of 20 elements
is depicted in Fig. 26). Dependence of the results for
the stress intensity factor KI on the number of elements
in the boundary element model is presented in Table 1
where also given KI value obtained by Li, Mear and Xiao
(1998).

6.6 Semi-circular and semi-elliptical surface cracks

Since the ability to model surface cracks is important
from a practical point of view, the present SGBEM-FEM
alternating method is next applied to problems involving
semi-circular and semi-elliptical surface cracks. Fig. 27
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Table 1 : Stress intensity factor for circular crack in a
cube under tension

Number of boundary elements KI ªq« σ ¬ πa 
12 2.178
20 2.206
40 2.213

[Li, Mear and Xiao (1998)] 2.213

shows a semi-elliptical surface crack in a plate subjected
to a uniform tensile stress σ. The crack is characterized
by semi-axis ratio a/c and by relative depth a/t and width
a/W .
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Fig. 27. Semi-elliptical surface crack in a plate.

Fig.28. Finite element–boundary element model for a semi-circular crack in a plate
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Fig. 27. Semi-elliptical surface crack in a plate.

Fig.28. Finite element–boundary element model for a semi-circular crack in a plate

Figure 27 : Semi-elliptical surface crack in a plate.

First, we analyze a semi-circular surface crack with a/c
= 1, a/t = 1/3 and W = t. The finite element-boundary
element model is shown in Fig. 28. The finite element
model contains 192 quadratic 20-noded elements. The
crack model consists of 20 boundary elements. An at-
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Fig. 27. Semi-elliptical surface crack in a plate.

Fig.28. Finite element–boundary element model for a semi-circular crack in a plate
Figure 28 : Finite element-boundary element model for
a semi-circular crack in a plate.

tempt to solve the problem using finite element-boundary
element model presented in Fig. 28 with a crack modeled
as in Fig. 29,a lead to a slightly higher than expected
values of the stress intensity factor KI. From physical
point of view the reason is quite clear. The finite ele-
ment model for the uncracked body, and the boundary el-
ement model for the crack, are connected through resid-
ual forces. Because of this, edges of crack surfaces on
the body surface can have excessive rotations, thus lead-
ing to higher stress intensity factors at the crack front. We
propose a simple approach, which helps to decrease the
rotation of crack surfaces at the surface of the body. Ac-
cording to this approach, for a surface crack, it is neces-
sary to add a fictitious portion of the crack surface outside
the body, as shown in Fig. 29,b. It was found that a rea-
sonable additional crack surface can have an area, which
is equal to the crack area, and can consist of one row of
boundary elements. Since, geometrically, the additional
crack surface is very simple, it can be generated auto-
matically during the program run. Values of the stress in-
tensity factor for a semi-circular surface crack obtained
with the use of the crack mesh of Fig. 29,b are shown
in Fig. 30. The stress intensity factor is normalized as
KI/K0 where K0 is equal:

K0 ® σ ¯ πa
Q ° Q ® 1 ± 1 ² 464 ³ a

c ´ 1 µ 65
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Fig.29. Boundary element model for a semi-circular crack: a) generated by the user, b) actually
used in SGBEM-FEM alternating procedure
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Fig.30. Stress intensity factor KI for a semi-circular surface crack in a plate under tension.
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Fig.30. Stress intensity factor KI for a semi-circular surface crack in a plate under tension.

b
Figure 29 : Boundary element model for a semi-circular
crack: a) generated by the user, b) actually used in
SGBEM-FEM alternating procedure
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Fig.30. Stress intensity factor KI for a semi-circular surface crack in a plate under tension.
Figure 30 : Stress intensity factor KI for a semi-circular
surface crack in a plate under tension.
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a b

Fig.31. Finite element–boundary element model for a semi-elliptical surface crack in a plate (a)
and boundary element mesh for a crack (b).
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Fig.31. Finite element–boundary element model for a semi-elliptical surface crack in a plate (a)
and boundary element mesh for a crack (b).

Figure 31 : Finite element-boundary element model for
a semi-elliptical surface crack in a plate (a) and boundary
element mesh for a crack (b).

A comparison of the SGBEM-FEM results with those
given by Newman and Raju (1984) shows their good
agreement for all angles except at points where the crack
front approaches free surface of the body. The effect
of the rapid decrease of KI in a thin layer near the free
boundary is known (see, for example, Reference [Li,
Mear and Xiao (1998)]). This effect is usually neglected
in publications containing approximate equations for the
stress intensity factor KI.

Fig. 31 shows a finite element model (256 brick-type el-
ements) and a crack model (22 boundary elements) for
analyzing surface semi-elliptical crack a/c = 1/2, a/t =
1/4 and W = 2t. Normalized values of the stress intensity
factor KI (normalization is same as for the semi-circular
crack) are presented in Fig. 32 along with finite element
results from Reference [Wu (1984)]. Again a good agree-
ment is observed except points on the free surface.
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Fig.33. Inclined semi-circular surface crack in a plate (a) and a finite-element boundary-element
model of the problem(b).

Figure 33 : Inclined semi-circular surface crack in a plate (a) and a finite-element boundary-element model of the
problem (b).
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Fig.32. Stress intensity factor KI for a semi-elliptical surface crack in a plate under tension.

Figure 32 : Stress intensity factor KI for a semi-elliptical
surface crack in a plate under tension.

6.7 Inclined semi-circular surface crack in a plate

A plate with an inclined semi-circular surface crack was
analyzed. The crack plane is oriented at an angle α · 30 ¸
to a cross-sectional plane of the plate as shown in Fig.
33,a. Other problem parameters are: the relative crack
depth a/t = 1/3, W = t and the Poison’s ratio ν · 0 ¹ 3.
A discrete model used is presented in Fig. 33,b. The
finite element model contains 192 20-noded brick-type
elements. The boundary element model of a crack con-
sists of 50 quadratic elements (42 elements for crack
itself plus 8 elements for fictitious crack surface out-
side body). Results for the stress intensity factors KI,
KII and KIII normalized as Ki ºi» σ ¼ πa ½ are presented in
Fig. 34. Numerical results for same orientation of an
inclined semi-circular surface crack have been reported
by Shivakumar and Raju (1992) and by He and Hutchin-
son (2000). Some differences between solution obtained
here and previously reported results exist only for points
of the crack front, which are located at the free surface of
the structure.

6.8 Nonplanar fatigue crack growth

The fatigue growth of a nonplanar crack under mixed-
mode loading conditions is performed starting from an
inclined elliptical precrack subject to a uniform tensile
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Fig. 34. Stress intensity factors KI, KII and KIII for an inclined semi-circular surface crack in a
tensile plate.

Figure 34 : Stress intensity factors KI , KII , and KIII for
an inclined semi-circular surface crack in a tensile plate.

loading (Fig. 11). An ellipse with major semi-axis ratio
a/c = 0.5 and orientation α ¿ 45 À is used as a precrack.
The precrack is descretized by 68 quadratic boundary el-
ements as shown in Fig. 14. The Paris material fatigue
model was chosen to simulate fatigue crack growth:

da
dN

¿ c Á ∆Keff Â m
where da/dN is the crack growth rate with respect to the
loading cycles, c = 1.49 Ã 0 Ä 8 and m = 3.321 are material
parameters for 7075 Aluminum.
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Fig. 35. Stress intensity factors KI, KII and KIII for an inclined elliptical crack after crack growth
increments 1-6.

Figure 35 : Stress intensity factors KI , KII , and KIII for
an inclined elliptical crack after crack growth increments
1-6.

First, the elliptical precrack is analyzed and the stress
intensity factors KI, KII and KIII are calculated for the

crack front nodes. According to the J-integral vector
orientation and magnitude, points at the crack front are
advanced to new positions with scaling to the specified
maximum crack advance damax. A new layer of elements
is generated between old and new crack front lines. Then
the new crack model is analyzed and etc. Six crack ad-
vancements with specified damax/a = 0.3, 0.4, 0.5, 0.6,
0.7 and 0.8 were performed. Stress intensity factors
KI, KII and KIII after crack increments are given in Fig.
35 with normalization Ki Å Á σ Æ πa Â . A three-dimensional
view of the crack after six increments and its projec-
tions on planes XZ and XY are presented in Fig. 36.
While it is not possible compare results precisely, our
distributions of the stress intensity factors along crack
front during crack growth are similar to those published
in Reference [Mi and Aliabadi (1994)]. And the shape
of the final crack is alike to crack shapes obtained by
other researchers [Mi and Aliabadi (1994); Forth and
Keat (1997)].

7 Conclusion

An SGBEM-FEM alternating method has been devel-
oped for the analysis of non-planar cracks in finite bod-
ies. The symmetric Galerkin boundary element method
is used for the solution of a problem for a crack in an
infinite medium. A body without a crack is modeled by
the finite element method. The solution of a problem for
a finite body containing a crack is sought by alternating
between SGBEM solution for a crack and FEM solution
for an uncracked body. Usually less than 10 iterations are
enough for convergence. Since the finite element mesh
for the uncracked body and the boundary mesh for the
crack are completely independent, the SGBEM-FEM al-
ternating method is particularly efficient for modeling of
fatigue crack growth.

Because the crack is represented as a distribution of dis-
placement discontinuities only one crack surface needs
to be discretized. The symmetric Galerkin boundary
element method involves weakly singular integration
for element pairs. Special transformations in a four-
dimensional space, help to make integrals regular; thus
allowing one to apply usual Gaussian quadrature rule for
their evaluation. Quadratic 8-noded elements are used for
descretization of the crack surface. These elements pro-
vide good accuracy and can be easily transformed into
singular elements by moving midside nodes to quarter-
side positions.
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Fig. 36. Crack after 6 crack front advances: 3D view and projections on planes XZ and XY.
Figure 36 : Crack after 6 crack front advances: 3D view
and projections on planes XZ and XY.

The accuracy and efficiency of the SGBEM-FEM alter-
nating procedure is demonstrated by solving examples
for planar and non-planar cracks in infinite media and for
inner and surface cracks in finite bodies. An example of
fatigue crack growth from an inclined elliptical precrack
is given.
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