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The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple & Less-costly
Alternative to the Finite Element and Boundary Element Methods

Satya N. Atluri1& Shengping Shen1

Abstract: A comparison study of the efficiency and ac-
curacy of a variety of meshless trial and test functions
is presented in this paper, based on the general concept
of the meshless local Petrov-Galerkin (MLPG) method.
5 types of trial functions, and 6 types of test functions
are explored. Different test functions result in different
MLPG methods, and six such MLPG methods are pre-
sented in this paper. In all these six MLPG methods,
absolutely no meshes are needed either for the interpo-
lation of the trial and test functions, or for the integration
of the weak-form; while other meshless methods require
background cells. Because complicated shape functions
for the trial function are inevitable at the present stage,
in order to develop a fast and robust meshless method,
we explore ways to avoid the use of a domain integral in
the weak-form, by choosing an appropriate test function.
The MLPG5 method (wherein the local, nodal-based test
function, over a local sub-domain Ωs (or Ωte) centered at
a node, is the Heaviside step function) avoids the need
for both a domain integral in the attendant symmetric
weak-form as well as a singular integral. Convergence
studies in the numerical examples show that all of the
MLPG methods possess excellent rates of convergence,
for both the unknown variables and their derivatives. An
analysis of computational costs shows that the MLPG5
method is less expensive, both in computational costs as
well as definitely in human-labor costs, than the FEM,
or BEM. Thus, due to its speed, accuracy and robustness,
the MLPG5 method may be expected to replace the FEM,
in the near future.
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1 Introduction

Meshless methods, as alternative numerical approaches
to eliminate the well-known drawbacks in the finite el-
ement and boundary element methods, have attracted
much attention in the past decade, due to their flexibil-
ity, and due to their potential in negating the need for the
human-labor intensive process of constructing geomet-
ric meshes in a domain. Such meshless methods are es-
pecially useful in those problems with discontinuities or
moving boundaries. The main objective of the meshless
methods is to get rid of, or at least alleviate the difficulty
of, meshing and remeshing the entire structure; by only
adding or deleting nodes in the entire structure, instead.
Meshless methods may also alleviate some other prob-
lems associated with the finite element method, such as
locking, element distortion, and others.

The initial idea of meshless methods dates back to the
smooth particle hydrodynamics (SPH) method for mod-
eling astrophysical phenomena (Gingold and Monaghan,
1977). The research into meshless methods has become
very active, only after the publication of the Diffuse Ele-
ment Method by Nayroles, Touzot & Villon (1992). Sev-
eral so-called meshless methods [Element Free Galerkin
(EFG)] by Belytschko, Lu & Gu (1994); Reproducing
Kernel Particle Method (RKPM) by Liu, Chen, Uras
& Chang (1996); the Partition of Unity Finite Element
Method (PUFEM) by Babuska and Melenk (1997); hp-
cloud method by Duarte and Oden 1996; Natural Ele-
ment Method (NEM) by Sukumar, Moran, & Belytschko
(1998); Meshless Galerkin methods using Radial Basis
Functions (RBF) by Wendland (1999); have also been
reported in literature since then. The major differences
in these meshless methods, all of which may be classi-
fied as Galerkin methods, come only from the techniques
used for interpolating the trial function. Even though no
mesh is required in these methods for the interpolation
of the trial and test functions for the solution variables,
the use of shadow elements is inevitable in these meth-
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ods, for the integration of the symmetric weak-form, or
of the ‘energy’. Therefore, these methods are not truly
meshless.

Recently, two truly meshless methods, the meshless lo-
cal boundary integral equation (LBIE) method, and the
meshless local Petrov-Galerkin (MLPG) method, have
been developed in Zhu, Zhang & Atluri (1998a, b), Atluri
& Zhu (1998a, b) and Atluri, Kim & Cho (1999), for
solving linear and non-linear boundary problems. Both
these methods are truly meshless, as no finite element/or
boundary element meshes are required in these two ap-
proaches, either for purposes of interpolation of the trial
and test functions for the solution variables, or for the
purpose of integration of the weak-form (either “sym-
metric” or “unsymmetric”). All pertinent integrals can
be easily evaluated over over-lapping, regularly shaped,
domains (in general, spheres in three-dimensional prob-
lems) and their boundaries. In fact, The LBIE approach
can be treated simply as a special case of the MLPG
approach (Atluri, Kim & Cho, 1999). Remarkable suc-
cesses of the MLPG method have been reported in solv-
ing the convection-diffusion problems [Lin & Atluri
(2000)]; fracture mechanics problems [Kim & Atluri
(2000), Ching & Batra (2001)]; Navier-Stokes flows [Lin
& Atluri (2001)]; and plate bending problems [Gu & Liu
(2001), and Long & Atluri (2002)].

In summary, the MLPG is a truly meshless method,
which involves not only a meshless interpolation for the
trial functions (such as MLS, PU, Shepard function or
RBF), but also a meshless integration of the weak-form
(i.e. all integrations are always performed over overlap-
ping and regularly shaped sub-domains such as spheres,
parallelopipeds, and ellipsoids in 3-D). In the conven-
tional Galerkin method, the trial and test functions are
chosen from the same function-space. In MLPG, the
nodal trial and test functions can be different: the nodal
trial function may correspond to any one of MLS, PU,
Shepard function, or RBF types of interpolations; and
the test function may be totally different, and may corre-
spond to any one of MLS, PU, Shepard function, RBF, a
Heaviside step function, a Dirac delta function, the Gaus-
sian weight function of MLS, a special form of the funda-
mental solution to the differential equation, or any other
convenient function, in the support domain, Ω te, of the
test function. Furthermore, the physical sizes of the sup-
ports (Ωtr and Ωte, respectively) as well as shapes of the
nodal trial and test functions may be different. These fea-

tures make the MLPG method very flexible. The MLPG
method, based on a local formulation, can include all the
other meshless methods based on global formulation, as
special cases.

Effective implementations of meshless methods are the
key to their success. Meshless methods still require a
considerable improvement, before they are equal to or
excel the convenience of the finite element method in
computational science and engineering. The great chal-
lenges appear to lie in improving the speed and robust-
ness of the meshless methods, to match the correspond-
ing levels of the low-order finite elements. Numerical
integration plays an important role in the convergence
of numerical solutions of meshless methods. Unfortu-
nately, the nodal shape functions from meshless inter-
polations, such as MLS, are highly complex in nature;
and this makes an accurate numerical integration of the
weak form highly difficult, especially in the conventional
Galerkin type methods. Due to the fact that the com-
putational cost is too high, and large numbers of Gaus-
sian points are needed to obtain a convergent result in
the Galerkin equivalent (Atluri, Kim & Cho (1999)) of
the MLPG, we henceforth discard the notion of using
Galerkin type approximations (i.e. trial and test functions
belonging to the same function spaces) in the MLPG
method. Also, although only boundary integrals appear
in the LBIE method, these boundary integrals may con-
tain singularities, to which special attention should be
paid [Sladek, Sladek & Atluri (2000)]. In order to take a
full advantage of the concept of the MLPG method, we
try to

1. Use mainly the Petrov-Galerkin type approximations,
i.e. the nodal trial and test functions are decidedly differ-
ent.

2. Simplify the integrand in the weak-form over the local,
nodal-based test function domain;

3. Avoid the domain integral in the weak-form, if pos-
sible, over the local, nodal-based test-function domain.

The second idea implies that we should choose a suitable
interpolation that makes the nodal (trial function) shape
function simple. The third idea means that we should
choose a suitable local nodal-based test function over a
regular-shaped local domain [centered at each node, such
as a sphere, parallelopiped, and ellipsoid in 3-D], in or-
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der to make the domain integral in the weak-form disap-
pear. In this paper, we will study the efficiency and ac-
curacy of a variety of meshless nodal trial and test func-
tions, using the three main ideas mentioned above. MLS
(or, entirely equivalently, RKPM), PU, Shepard function,
and RBF interpolations are selected to be the trial func-
tions in this paper. Unfortunately, the nodal shape func-
tions from all these interpolations are highly complex (al-
though the one from Shepard function is relatively sim-
pler), which means that the integrand in the weak-form,
for Galerkin-type method, including the Galerkin equiv-
alent of the MLPG, cannot be simplified at the present
stage. Six different nodal-based local test functions are
also selected, leading to six different MLPG methods.
Based on the MLPG concept, we label these variants
of the MLPG method as MLPG1, MLPG2, MLPG3,
MLPG4, MLPG5, and MLPG6, respectively. Among
them, there are three methods that avoid the domain in-
tegral in the weak-form, over the nodal test-function do-
main Ωs: MLPG2 (wherein the local, nodal-based test
function, over a local sub-domain Ωs centered at a node,
is the Dirac’s Delta function); MLPG4 (wherein the lo-
cal, nodal-based test function, over a local sub-domain
Ωs centered at a node, is the modified fundamental solu-
tion to the differential equation); and MLPG5 (wherein
the local, nodal-based test function, over a local sub-
domain Ωs centered at a node, is the Heaviside step func-
tion). MLPG4 (which is synonymous with the LBIE) in-
volves singular integrals; while the collocation method,
(i.e. MLPG2), is notorious for the sensitivity of the solu-
tion to the choice of proper collocation points. However,
MLPG5 does not involve either a domain, or a singular
integral, to generate the stiffness matrix; it only involves
the regular boundary integral. Thus, it is a highly promis-
ing MLPG method. The numerical examples in Section
7 also illustrate that the MLPG5 method is fast, accurate
and robust. We believe that the MLPG (especially the
MLPG5) method holds a great promise to replace the fi-
nite element method, as a method of choice, someday in
the not-too distant future.

The paper is organized as follows. In Section 2, we in-
troduce the 3 global weak forms, which are the basis
of the Finite Element Method (FEM), an Element Free
Galerkin method (EFG), the global collocation method,
and the global boundary integral equation (or bound-
ary element) method. In Section 3 are derived three
corresponding local weak forms, which form the basis

of the meshless local Petrov-Galerkin (MLPG) method.
Section 4 discusses five meshless interpolations for trial
functions: 1. moving least square (MLS); 2. Shepard
function; 3. the partition of unity method (PU); 4. repro-
ducing kernel particle methods (RKPM); and 5. radial
basis functions (RBF). In Section 5, six different nodal-
based local test functions are selected; and thus six differ-
ent MLPG methods are developed. Based on the MLPG
concept, these variants of the MLPG method are labeled
as MLPG1, MLPG2, MLPG3, MLPG4, MLPG5, and
MLPG6, respectively. Section 6 deals with the imple-
mentation of the essential boundary conditions in these
six MLPG methods. In Section 7, some numerical re-
sults are presented, to compare the efficiency and accu-
racy of the present MLPG methods. Section 8 qualita-
tively estimates the computational costs in the present
MLPG methods, and compares these costs with that of
the classical FEM. The paper concludes in Section 9.

2 The Global Weak Forms

Consider the linear Poisson’s equation (in a global do-
main Ωs bounded by Γ), which can be written as

∇ 2u(x) = p(x) x 2Ω (1)

where p is a given source function, and the domain Ω is
enclosed by Γ = Γu[Γq, with boundary conditions

u = u on Γu; (2a)

∂u
∂n

� q = q on Γq (2b)

where u and q are the prescribed potential and normal
flux, respectively, on the boundary Γ u, and on the bound-
ary Γq; and n is the outward normal direction to the
boundary Γ. We will consider three weak formulations
of the differential Eq.(1).

In the Galerkin finite element, and in element free
Galerkin [Belytschko, Lu, & Gu, 1994] methods, which
are based on the global Galerkin formulation, one uses
the global weak form over the entire domain Ω, to solve
the problem numerically. For a general discussion of the
alternate “symmetric” and “unsymmetric” weak forms as
the basis of a variety of numerical methods, such as the
collocation, sub-domain, least squares, Finite Volume,
Finite Element & Boundary Element Methods, see Atluri
(2002).
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A global unsymmetric weak formulation (GUSWF1) of
the problem may be written as
Z

Ω

�
∇ 2u� p

�
vdΩ = 0 (3)

where u is the trial function, and v is the test function.
This GUSWF requires that u be at least C1 continuous,
while v may be discontinuous, and hence is the label,
“unsymmetric weak formulation”, in as much as the con-
tinuity requirements on u and v are not the same. In this
case, the collocation approach or other approaches, such
as the penalty approach, are used to impose both the es-
sential as well as natural boundary conditions.

Using (∇ 2u)v= u
;iiv= (u

;iv)
;i�u

;iv;i, and the divergence
theorem, we obtain the following global symmetric weak
formulation (GSWF),
Z

Γ
u

;inivdΓ�
Z

Ω
(u

;iv;i + pv)dΩ�α
Z

Γu

(u�u)vdΓ = 0

(4)

where α is a penalty parameter, which is used to impose
the essential boundary conditions. The GSWF requires
that both u and v be C0 continuous, and hence the label
“symmetric weak form”. Imposing the natural boundary
condition (2b) and noticing that u

;ini = ∂u
Æ

∂n � q in Eq.
(4), we obtain,

Z
Γu

qvdΓ+
Z

Γq

qvdΓ�
Z

Ω
(u

;iv;i + pv)dΩ

�α
Z

Γu

(u�u)vdΓ = 0 (5)

In this case, the collocation approach, or other ap-
proaches such as the penalty approach, is used to im-
pose only the essential boundary condition a priori. The
Galerkin Finite Element Method (GFEM) is based on the
Global Symmetric Weak Form (GSWF), Eq. (5).

Using (∇ 2u)v = u
;iiv = (u

;iv)
;i � (uv

;i);i + uv
;ii, and the

divergence theorem twice, yields another “global unsym-
metric weak formulation” (GUSWF2),
Z

Γ
u

;inivdΓ�
Z

Γ
uv

;inidΓ +
Z

Ω
u∇ 2vdΩ�

Z
Ω

pvdΩ = 0

(6)

This GUSWF requires that v be at least C1 continuous,
while u may be discontinuous. Imposing the natural

boundary condition (2b) and essential boundary condi-
tion (2) in Eq. (6), we obtain,

Z
Γq

qvdΓ +
Z

Γu

qvdΓ�
Z

Γq

uv
;inidΓ�

Z
Γu

uv
;inidΓ

+
Z

Ω
u∇ 2vdΩ�

Z
Ω

pvdΩ = 0 (7)

The major dilemma in meshless methods, based on the
global weak forms revolves around how to evaluate the
integrals in the (3-7). In many methods, such as the EFG
method, the background cells are used for integration. As
a matter of fact, the background cell integration does not
lead to a truly meshless method.

3 MLPG: the Local Weak Forms

Many of the so-called meshless methods, such as the
EFG (element free Galerkin) method, are based on the
global weak form over the entire domain Ω. In the
MLPG, however, a local weak form over a local sub-
domain Ωs, which is located entirely inside the global
domain Ω is used. This is the most distinguishing fea-
ture of the MLPG. It is noted that the local sub-domain
Ωs can be of an arbitrary shape. Even though a partic-
ular approximation of the local weak form will give the
same resulting discretized equations as from the Galerkin
approximation of the global weak form, the local weak
form will provide a clear concept for a local mesh-
less integration of the weak-form, which does not need
any background integration cells over the entire domain.
Also, it will lead to a natural way to construct the global
stiffness matrix: not through the integration over a con-
tiguous mesh, and by assembly of the stiffness matrices
of the elements in the mesh, but through the integra-
tion over local sub-domains. These local sub-domains
do not form a contiguous mesh globally; but these dis-
jointed local sub-domains may overlap each other. In
contrast to the conventional Galerkin finite element for-
mulations, which are based on the global weak form, the
MLPG method (Atluri and Zhu, 1998) stems from a weak
form over a sub-domain Ωs inside the global domain Ω
as shown in Fig. 1, where the domain of support of the
test function ΩI

te is synonymous with the sub-domain Ω s.
A local unsymmetric weak formulation (LUSWF1) of
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Figure 1 : Schematics of the MLPG method

the problem (1), corresponding to the GUSWF1, may be
written as
Z

Ωs

�
∇ 2u� p

�
vdΩ = 0 (8)

The local symmetric weak formulation (LSWF), corre-
sponding to GSWF, can be written as

Z
Ls

qvdΓ +
Z

Γsu

qvdΓ +
Z

Γsq

qvdΓ�
Z

Ωs

(u
;iv;i + pv)dΩ

�α
Z

Γu

(u�u)vdΓ = 0 (9a)

in which, Γsq is a part of ∂Ωs, over which the natural
boundary condition is specified. In general, ∂Ω s=Γs [
Ls, with Γs being a part of the local boundary located
on the global boundary, and let L s being the other part
of the local boundary over which no boundary condition
is specified, i.e., Γs=∂Ωs \ Γ, (see Fig. 1). For a sub-
domain located entirely within the global domain, there
is no intersection between ∂Ωs and Γ, Ls=∂Ωs and the
integrals over Γsq and Γsu vanish.

It is noted that in a 3-D problem, Ωs can be: (i) a sphere;
(ii) an ellipsoid; (iii) a cube, or any other simple shape.
Correspondingly, in a 2-D problem, Ωs can be: (i) a cir-
cle; (ii) an ellipse; (iii) a rectangle, or any other conve-
nient regular or irregular shape. In order to simplify the
above equation, we can select a test function v such that
it vanishes over Ls, which is, usually, a circle (for an in-
ternal node) in a 2D problem, or the circular arc (for a
node on the global boundary Γ. Therefore the first inte-
gral in Eq. (9a) vanishes. Using this test function and
rearranging Eq. (9a), we obtain the following local weak
form (LSWF),

Z
Ωs

u
;iv;idΩ�

Z
Γsu

qvdΓ+α
Z

Γu

uvdΓ =

Z
Γsq

qvdΓ�
Z

Ωs

pvdΩ+α
Z

Γu

uvdΓ (9b)

Another local unsymmetric weak formulation
(LUSWF2) of the problem (1) corresponding to
GUSWF2 can be written as
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Z
Ls

qvdΓ�
Z

Ls

uv
;inidΓ+

Z
Γsq

qvdΓ+
Z

Γsu

qvdΓ�
Z

Γsq

uv
;inidΓ

�
Z

Γsu

uv
;inidΓ+

Z
Ωs

u∇ 2vdΩ�
Z

Ωs

pvdΩ = 0 (10a)

Also, by selecting a test function v such that it vanishes
over Ls, we obtain the following local weak form

Z
Γsu

qvdΓ�
Z

Ls

uv
;inidΓ�

Z
Γsq

uv
;inidΓ +

Z
Ωs

u∇ 2vdΩ =

Z
Ωs

pvdΩ�
Z

Γsq

qvdΓ +
Z

Γsu

uv
;inidΓ (10b)

It should be noted that these local weak forms (8)-(10)
hold, irrespective of the size and shape of ∂Ωs. There-
fore, we can choose a simple regular shape for Ωs and
thus for ∂Ωs. The most regular shape should be an n-
dimensional sphere for a boundary value problem de-
fined on an n-dimensional space. Thus, an n-dimensional
sphere (or a part of an n-dimensional sphere for a bound-
ary node), is chosen in our development (see Fig. 1).

With the local weak form for any point x, the problem
(1) becomes one as if we are dealing with a localized
boundary value problem over an n-dimensional sphere
Ωs. The radius of the sphere will thus affect the solution.
The equilibrium equation and the boundary conditions
are satisfied, a posteriori, in all local sub-domains and on
their Γs, respectively. Theoretically, as long as the union
of all local domains covers the global domain, i.e., [Ω s �
Ω, the equilibrium equation and the boundary conditions
will be satisfied, a posteriori, in the global domain Ω and
on the boundary Γ, respectively.

In this paper, the Petrov-Galerkin method is used in each
local sub-domain. Unlike in the conventional Galerkin
method in which the trial and test functions are chosen
from the same space, the Petrov-Galerkin method uses
the trial function and test function from different spaces.
In particular, the test functions need not vanish on the
boundary where the essential boundary conditions are
specified.

uh( )x

x

u

BoundaryNode

1x 2x

Iu
Iû

Ix

Figure 2 : The distinction between u I and ûl .

4 Meshless Approximation of Trial Functions

In this section, various available methods of approximat-
ing a trial function over an arbitrary domain, using only
its value at a finite number of points in the domain, with-
out, however, using a mesh, are discussed. In general, in
a meshless method, which still preserves the local char-
acter of the numerical implementation, one uses a local
interpolation or approximation to represent the trial func-
tion with the values (or the fictitious values) of the un-
known variable at some randomly located nodes. A va-
riety of local interpolation schemes that interpolate the
data at randomly scattered points in two or more inde-
pendent variables is available.

4.1 Moving least –square method (MLS)

The moving least-square method is generally considered
to be one of the best schemes to interpolate data with
a reasonable accuracy. The MLS interpolation does not
pass through the nodal data, as shown in Fig. 2. Here
we give a brief summary of the MLS approximation. For
details of the MLS approximation, see Belytschko, Lu &
Gu (1994) and Atluri, Kim & Cho (1999).

Consider a sub-domain Ωx, which is defined as the neigh-
borhood of a point x and denoted as the domain of defi-
nition of the MLS approximation for the trial function at
x, and which is located in the problem domain Ω. To ap-
proximate the distribution of the function u in Ω x, over a
number of randomly located nodes fxIg, I=1, 2,. . . N, the
moving least squares approximant uh(x) of u, 8x 2 Ωx,
can be defined by

uh (x) = pT (x)a(x)8x 2 Ωx (11)
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where pT(x)=[p1(x), p2(x), . . . , pm(x)] is a complete
monomial basis, m is the number of terms in the ba-
sis; we denote by t the highest-order polynomial which
is completely include in the basis, the relation between
m, and t can be described as: m = (t+1)(t+2)

2 in 2 di-

mension, while m = (t+1)(t+2)(t+3)
6 in 3 dimension [Usu-

ally, for l-dimension problem, we have m = (t+1)���(t+l)
1���l ];

and a(x) is a vector containing coefficients a j(x), j=1, 2,
. . . m which are functions of the space co-ordinates x=[x1,
x2,x3]T. The commonly used bases in 2-D or 3-D are the
linear basis, due to their simplicity. In Zhu, Zhang &
Atluri (1998a, b) and Atluri & Zhu, (1998a, b), both the
linear and quadratic basis are used, and the results show
that both bases possess high accuracy. In the present re-
search, we just use the linear basis pT(x)=[1, x1, x2] for
2-D. In fact, the linear basis assures that the MLS ap-
proximation has the linear completeness. Thus, it can re-
produce any smooth function and its first derivative with
arbitrary accuracy, as the approximation is refined. It is
also possible to use other functions in a basis. For exam-
ple, in problems with singular solutions, singular func-
tions can be included in the basis.

The coefficient vector a(x) is determined by minimizing
a weighted discrete L2 norm, which can be defined as

J(a(x)) =
N

∑
I=1

wI (x)
�
pT (xI)a(x)� ûI�2 (12)

where wI(x) is a weight function associated with the node
I, with wI(x)>0 for all x in the support of wI(x), xI de-
notes the value of x at node I, N is the number of nodes
in Ωx for which the weight functions wI(x)>0.

Here it should be noted that û I, I=1, 2,. . . N, in equation
(12), are the fictitious nodal values, and not the actual
nodal values of the unknown trial function u h(x), in gen-
eral (see Fig. 2 for a simple one-dimensional case for the
distinction between uI and ûI).

Solving for a(x) by minimizing J in equation (12), and
substituting it into equation (11), give a relation which
may be written in the form of an interpolation function
similar to that used in the FEM, as

uh (x) =
N

∑
I=1

φI (x) ûI
; uh (xI)� uI 6= ûI

; x 2Ωx (13)

where

φI (x) =
m

∑
j=1

p j (x)
�
A�1 (x)B(x)

�
jI (14)

with the matrix A(x) and B(x) being defined by:

A(x) =
N

∑
I=1

wI (x)p(xI)pT (xI) (15)

B(x) = [w1 (x)p(x1) ;w2 (x)p(x2) ; � � � ;wN (x)p(xN)]

(16)

The partial derivatives of φI(x) are obtained as

φI
;k =

m

∑
j=1

�
p j;k
�
A�1B

�
jI + p j

�
A�1B

;k +A�1
;k B

�
jI

�

(17)

in which A�1
;k =

�
A�1

�
;k represents the derivative of the

inverse of A with respect to xk, which is given by

A�1
;k = �A�1A

;kA�1 (18)

The second partial derivatives of φI(x) (which are used in
the MLPG2 and MLPG3 methods to be discussed later
in this paper) are obtained as

φI
;kl =

m
∑
j=1

[p j;kl
�
A�1B

�
jI + p j;k

�
A�1B

;l +A�1
;l B

�
jI

+p j;l(A�1B
;k +A�1

;k B) jI

+p j(A�1B
;kl +A�1

;kl B+A�1
;l B

;k +A�1
;k B

;l) jI]

(19)

with

A�1
;kl =�A�1A

;lA
�1A

;kA�1�A�1A
;klA�1

+A�1A
;kA�1A

;lA�1 (20)

The MLS approximation is well defined, only when the
matrix in Eq. (15) is non-singular. φI(x) is usually called
the shape function of the MLS approximation, corre-
sponding to the nodal point x I. From Eqs. (14) and (16),
it may be seen that φI(x)=0 when wI(x)=0. The fact that
φI(x) vanishes, for x not in the support of nodal point x I

preserves the local character of the moving least squares
approximation. The nodal shape function is complete up
to the order of the basis P(x). The smoothness of the
nodal shape function is determined by that of the basis,
as well as that of the weight function.

The choice of the weight function is more or less arbi-
trary, as long as the weight function is positive and con-
tinuous. Both Gaussian and spline weight functions with
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compact supports can be considered in the present work.
The Gaussian weight function corresponding to node I
may be written as

wI (x) =

8<
:

exp[�(dI
Æ

rI)
2k]�exp[�(rI

Æ
cI)

2k]
1�exp[�(rI

Æ
cI)2k]

; 0� dI � rI

0; dI � rI

(21)

where dI = jx�xI j is the distance from node xI to point
x, cI is a constant controlling the shape of the weight
function wI (and therefore the relative weights), and rI

is the size of the support for the weight function w I (and
thus determines the support of node x I).

A 4th-order spline weight function is defined as

wI (x)=

(
1�6

�
dI
rI

�2
+8
�

dI
rI

�3
�3
�

dI
rI

�4
; 0 � dI � rI

0; dI � rI

(22)

The size of the support, rI of the weight function wI as-
sociated with node I should be chosen such that r I should
be large enough to have sufficient number of nodes cov-
ered in the domain of definition of every sample point
(N � m), in order to ensure the regularity of A. A very
small rI may result in a relatively large numerical error,
while using the Gauss numerical quadrature to calculate
the entires in the system stiffness matrix. On the other
hand, rI should also be small enough to maintain the lo-
cal character of the MLS approximation. It can be easily
seen that the spline weight function given in (22) pos-
sesses C1 continuity. So, with the use of the linear basis
P(x), and the 4th-order spline for w I(x), the MLS, Shep-
ard, and PU shape functions, and the corresponding trial
functions are C1 continuous over the entire domain.

In Atluri and Zhu (1998b) and Zhu, Zhang &
Atluri(1998a), both the Gaussian weight function and the
spline weight function were used. Both of them possess
high accuracy. However, the definition of all constants c I

in Eq. (21) is more or less arbitrary, and they do affect the
computational results significantly. When inappropriate
cI are used in the Gaussian weight function, the results
may become very unsatisfactory. The optimal choice of
these parameters is still an open research topic. So, in this
study, we just use the 4th-order spline weight function.

A generalization of the MLS interpolation scheme using
the data for the derivative of a function, in addition to the
value of the function itself, at a finite number of nodes,
can be found in Atluri, Cho & Kim (1999).

4.2 Shepard function

If the MLS nodal shape functions (14) only represent a
globally constant function, i.e. m=1 in the basis P(x),
we obtain the so called Shepard function (Shepard, 1968)
given by

φI
0 (x) =

wI (x)
N
∑

J=1
wJ (x)

(23)

The Shepard functions satisfy the zeroth order complete-
ness [Here, by zeroth-order completeness implies the
ability to represent a constant function exactly (m=1 in
the basis P(x)); first-order completeness implies the abil-
ity to represent a complete linear function in x1, x2 (i.e.,
m=3 in the basis P(x)]. The Shepard shape functions
have a simpler structure than the higher order MLS shape
functions, but they are still in a rational form. The Shep-
ard function in the MLS interpolation is one of the parti-
tion of unity functions.

4.3 Partition of Unity methods (PU)

Meshless methods can also be based on partitions of
unity. This viewpoint has been developed by Bauska and
Melenk (1997). The interpolation can be defined as

uh (x) =
N

∑
I=1

m

∑
j=1

φI
0 (x) p j (x)β jI (24)

where p j(x) are the polynomials [p1(x) = 1; p2(x) = x1;
p3(x) = x2, etc], φI

0(x) are defined in Eq. (23) and β jI

are the coefficients. The consistency in the above shape
function depends on the order of polynomials in p j(x) .
Note that this method requires at least three unknowns
per node, in order to attain linear consistency; whereas,
an MLS approximation of order 1 [i.e., linear basis, with
m=3 in P(x)] requires only one unknown per node for
linear consistency. In computations, p j(x) is generally
replaced by p j(x-xI) for better conditioning.

PU method is not a good choice for present MLPG
method, because the test function also needs m unknowns
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per node, or indirectly, m test functions are needed in
each Ωs; otherwise we cannot obtain sufficient equa-
tions to determine the unknowns. In addition, it is more
time-consuming to form and solve the resulting algebraic
equations, because, in this case, the dimension of the
stiffness matrix will be m times of that in the case when
MLS or Shepard functions are used. However, the PU
can be used for the Galerkin method, due to the fact that
the test function can be taken as same as the trial func-
tion. But it is still more time consuming. In Section 5,
we will find that a large number of Gaussian points are
needed to guarantee a convergent result in the Galerkin
method, which is very expensive; hence, we will not con-
duct the numerical analysis for PU interpolation in this
paper.

4.4 Reproducing Kernel Particle Methods (RKPM)

The reproducing kernel particle method (RKPM) is de-
veloped in Liu, Chen, Uras & Chang (1996). Here we
just give a brief summary of the RKPM approximation.

The shape function in RKPM was derived from the repro-
ducing conditions. In order to reproduce the linear basis
function exactly, the following conditions are required:

φ�P1 = 1 (25a)

φ�P2 = 0 (25b)

φ�P3 = 0 (25c)

where

φ=
�

φ1 φ2; � � �;φN
�

(26a)

PT
1 =

�
p1 (x1); p1 (x2); � � �; p1 (xN)

�
=
�

1;1; � � � 1
�

(26b)

PT
2 =

�
p2 (x1;)p2 (x2); � � �; p2 (xN)

�
=
�

x1
1; x1

2; � � � ;x
1
N

�
(26c)

PT
3 =

�
p3 (x1;)p3 (x2); � � �; p3 (xN)

�
=
�

x2
1; x2

2; � � � ;x
2
N

�
(26d)

In (26a-d), the superscripts for φ, and the subscripts for
x1 and x2, refer to the nodes, 1, � � � ;N. It is noted that,
here, the origin is shifted to the point of evaluation.

The linear RKPM shape function can be chosen as

φI (x) =
3

∑
j=1

α j (x)q j (xI)wI (x) (27)

where qi(x) are three linearly independent functions. The
coefficients α j can be determined by equations (25). If
we let qi(x) be the same as the linear basis pi(x) in the
MLS, and the weight function also to be the same as that
in the MLS, we can obtain

φI (x) =
3

∑
j=1

p j (x)
�
A�1 (x)B(x)

�
jI (28)

which is the same as that in MLS. The detailed procedure
to show this equality can be found in Belytschko et al.
(1996).

Therefore, if we choose the same weight function for the
RKPM and impose the consistency requirement of order
k, the resulting shape function is identical to the MLS ap-
proximation of order k [note that, in the present notation,
k=0 implies m=1 in P(x); k=1 implies m=3 in P(x)]. As
in MLS, the kernels can also be designed to reproduce
functions other than the polynomial basis. The equiva-
lence between the MLS and the RKPM is also discussed
in Jin, Li & Aluru (2001).

4.5 Radial Basis Functions (RBF) with compact sup-
port

Compact support, positive definite Radial Basis Func-
tions have been suggested only recently (Wendland,
1995; Wu, 1995). It was demonstrated that, for a given
dimension and smoothness C2k , a positive definite radial
basis function in the form of a univariate polynomial of
minimal degree always exists, and is unique within a con-
stant factor. The compactly supported positive definite
RBFs studied in this paper are (Wu, 1995):

RBF1:

RI (x)=

(�
1� dI

rI

�
5
�

8+40 dI
rI
+48 d2

I

r2
I
+25 d3

I

r3
I
+5 d4

I

r4
I

�
; 0� dI � rI

0; dI � rI

(29)

and RBF2:

RI(x)=

(�
1�dI

rI

�
6
�
6+36 dI

rI
+82 d2

I
r2

I
+72 d3

I

r3
I
+30 d4

I
r4

I
+5 d5

I

r5
I

�
; 0� dI�rI

0; dI � rI
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(30)

where is the distance from node xI to point x, and rI is the
size of the support for the radial basis function at node x I .

Another kind of radial basis functions can be found in
Wendland (1998), where a recursion formula is given to
compute the radial basis functions.

We consider the approximation of function u(x) in a lo-
cal region sub-domain Ωapproximate the distribution of
function u in Ω, over a number of randomly located
nodes fxIg, I=1, 2, . . . N, the radial basis function ap-
proximation of u(x), can be defined by:

u(x) = RT (x)a 8x 2Ωx (31)

where , is the set of radial basis functions centered around
xI ; and a is a vector containing the coefficients of a I , I=1,
2, . . . N.

From interpolation equation (31) for the compact sup-
port, positive definite RBFs, the following system of lin-
ear equations for the coefficients a is obtained as:

R0a = u (32)

where

uT =
�

u1 u2 � � � uN
�

R0 =

2
6664

R1 (x1) R2 (x1) � � � RN (x1)
R1 (x2) R2 (x2) � � � RN (x2)
...

...
...

...
R1 (xN) R2 (xN) � � � RN (xN)

3
7775

Here, uI , I=1, 2, . . . N, are the nodal values. The RBFs
are positive definite, which ensures that the matrix R 0

is invertible (non-singularity). Hence, we can obtain the
vector a from equation (32),

a = R�1
0 u (33)

So, the approximation u(x) can be expressed as

u(x) = RT (x)R�1
0 u =

N

∑
I=1

φI (x)uI (34)

where the nodal shape functions are given by

φ(x) = RT (x)R�1
0 (35)

This shape function depends uniquely on the distribution
of scattered nodes within the sub-domain, and possesses
the Kronecker Delta property, which is same as in the
traditional Galerkin FEM; a property not possessed by
the shape functions of the MLS approximation.

The partial derivative of the shape function can be ob-
tained as follows,

φ(x)
;k = [RT (x)]

;kR�1
0

=
�

R1;k (x) R2;k (x) � � � RN;k (x)
�
R�1

0

(36)

where, ( )
;idenotes , and

RI;k (x) =
∂RI (x)

∂dI

∂dI

∂xk (37)

with

∂dI

∂xk
=

xk �xk
I

dI

Thus, it can be very easy to obtain the partial derivative
of φI(x). It is noted that the RBFs, and the corresponding
shape functions are of smoothness C 2 and C4 for RBF1
and RBF2, respectively. For the linear elasticity problem,
the smoothness of the first derivative of shape functions
is very important to evaluate the energy correctly.

The nodal shape functions can be written as

φI (x) =
N

∑
J=1

RJ (x)rJI (38)

where rJI are the elements of matrix R�1
0 . And the corre-

sponding derivative of the nodal shape function thus can
be expressed as
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φI
;k (x) =

N

∑
J=1

RJ;k (x)rJI (39)

Equations (38) and (39) show that the shape function and
its derivative have polynomial forms of dI . However,
they are still rational forms of x.

The Hermite-Birkhoff type interpolation of scattered
multidimensional data, through radial basis functions,
can be found in Wu (1992); and this type of interpolation
is desirable when the derivative is also used as a degree
of freedom at each node.

4.6 Convergence and Summary

In meshless interpolations of trial functions, the rates of
the convergence of the solution may depend upon the
nodal distance h, as well as the size of sub-domain de-
fined by ρ, where ρ is the scaling parameter for the
size of the support of the trial function. Atluri, Kim &
Cho (1999) assumed that the interpolation-error-estimate
for MLS, Shepard or PU methods has the same h-
convergence characteristic as in the Galerkin finite ele-
ments:u�uh


k � Gρ;kht+1�kjujt+1 (40)

where Gρ;k is a function of ρnd k, k�kk is the norm
in the Sobolev space, and t indicates the order of the
complete polynomial in the interpolation function, and
m = (t+1)(t+2)

2 in 2 dimension. For examples, for Shep-
ard function (the zeroth order consistency), m = 1 and
t=0, for linear complete, m = 3, t = 1.

For radial basis functions, Wendland (1999) proved that
the interpolation-error-estimate, in a meshless Galerkin
method, also has the h-convergence as in equation (40),
with

t +1 � l+
d+1

2

where d is the dimension of the radial basis function, and
2l is the degree of the smoothness of the radial basis func-
tion.

Obviously, these five trial function approximations, i.e.
MLS, Shepard, PU, RKPM, and RBF, respectively, can

be classified into two categories: one in which the corre-
sponding “nodal” shape functions possess the Kronecker
Delta properties, and the other in which they do not.
Only the radial basis function possesses the Kronecker
Delta property, while the rest do not. Unfortunately, the
nodal shape functions from all the interpolations are still
in a rational form, and are highly complex (although the
one from Shepard function is relatively simpler), which
means that the integrand in the weak-form cannot be sim-
plified at the present stage, for the Galerkin-equivalent of
the MLPG method. A summary of the approximations is
given in Table 1.

It is noted that the nodal shape functions (trial functions)
from all the interpolations listed here in this paper, pos-
sess a high order of continuity: MLS, Shepard and PU
are C1, RBF1 is C2, and RBF2 is C4, respectively. This
high order of continuity provides solutions with smooth
derivatives, and is very different to the FEM. Thus, the
MLPG methods have the advantage of providing better
(smooth) approximation of stresses. Consequently, the
postprocessing in MLPG is relatively straightforward,
and no additional stress smoothing is required. How-
ever, this high order of continuity can also be a disad-
vantage in problems where the coefficients of the par-
tial differential equation are discontinuous: such as in
elastostatics, wherein the coefficients in the partial dif-
ferential equation are discontinuous along the interface
between two different materials, and the derivatives of
the displacements may be discontinuous across the ma-
terial interfaces. Thanks to the MLPG concept, the shape
of the support of the test functions can be chosen to be
arbitrary, and be different at each nodal point, which pro-
vides the key to this difficulty. We can use polygonal
local-domains (Kim and Atluri, 2000) along the inter-
face, and use a C0 trial function (such as the finite el-
ement shape function as the weight in the MLS); but
the circular local-domains and C1 trial functions are still
used at the remained nodal points. The results based on
this idea, to treat the (displacement and derivative) dis-
continuities will be presented in a forthcoming paper.

5 Numerical implementation: the Meshless Local
Petrov-Galerkin (MLPG) Approach

Based on the local weak form, the meshless local Petrov-
Galerkin (MLPG) method is a truly meshless method.
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Table 1 : Various meshless approximations of the trial function:
Method Shape function Completeness Continuity Convergence Remark

MLS or
(RKPM)

φI (x) =
m
∑
j=1

p j (x)
�
A�1 (x)B(x)

�
jI

with 4th order spline weight func-
tions wI

t C1 h-
convergence
Eq. (40) φJ (xI) 6= δIJ

Shepard
function

φI
0 (x) = wI (x)

,
N

∑
J=1

wJ (x)

wI : 4th order spline

0 C1 h-
convergence
Eq. (40) φJ (xI) 6= δIJ

Partitions of
unity

uh (x) =
N

∑
I=1

m

∑
j=1

φI
0 (x) p j (x)β jI

t C1 h-
convergence
Eq. (40) φJ (xI) 6= δIJ

RBF

φI (x) =
N

∑
J=1

RJ (x)rJI

none RBF1: C2

RBF2: C4
h-
convergence
Eq. (40) φJ (xI) = δIJ

�t is the order of the complete polynomial in the interpolation function.

In the conventional Galerkin method, the trial and test
functions are chosen from the same space. In general, in
MLPG, the nodal trial and test functions can be different,
the nodal trial function may correspond to any one of:
1. MLS (or entirely equivalently the RKPM); 2. PU; 3.
Shepard function; or 4. RBF interpolations; and the test
function may be totally different. Furthermore, the size
as well as the shape of the sub-domains over which the
nodal trial and test functions are, respectively, non-zero,
may be different. Different choices of the basis functions
for the trial function and the test functions will lead to
different approximation methods. We will use the inter-
polations introduced in the last section, to generate the
trial functions. Based on the concept of the MLPG, the
test functions over each local Ω s can be chosen through
a variety of ways:

(1) the test function over Ωs is the same as the weight
function in the MLS approximation: The resultant
Meshless Local Petrov-Galerkin Method is denoted as
MLPG1;

(2) the test function over Ωs is the collocation Dirac’s

Delta function (collocation method): The resultant
Meshless Local Petrov-Galerkin Method is denoted as
MLPG2;

(3) the test function over Ωs is the same as the error
function in the differential equation, using discrete least
squares: The resultant Meshless Local Petrov-Galerkin
Method is denoted as MLPG3;

(4) the test function over Ωs is the modified fundamental
solution to the differential equation (LBIE): The resul-
tant Meshless Local Petrov-Galerkin Method is denoted
as MLPG4; Thus, MLPG4 is synonymous with the Local
Boundary Integral Equation (LBIE) method [Zhu, Zhang
& Atluri (1998a)].

(5) the test function over Ωs is the Heaviside step func-
tion (constant over each local sub-domain Ω s): The resul-
tant Meshless Local Petrov-Galerkin Method is denoted
as MLPG5;

(6) the test function over Ωs is identical to the trial func-
tion (Galerkin method): The resultant Meshless Local
Petrov-Galerkin Method is denoted as MLPG6.

In the following, we will develop the MLPG methods
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along these six paths. As a known test function is used in
the local weak form (LWF), the use of the LWF for one
point (and here for one domain Ωs) will yield only one
algebraic equation. It is noted that the trial function u
within the sub-domain Ωs, in the interpolations without
Kronecker Delta properties, is determined by the ficti-
tious nodal values û I, within the domain of definition for
all points x falling within Ω s. One can obtain as many
equations as the number of nodes. Hence, we need as
many local domains Ωs as the number of nodes in the
global domain, in order to obtain as many equations as
the number of unknowns. In the present paper, dealing
with 2D problems, the local domain is chosen as a circle,
centered at a node xI.

5.1 MLPG1: Using the MLS weight function as the
test function in eachΩs

To obtain the discrete equations from the LSWF (9b), al-
ternatively the MLS approximation (13), or the Shepard
function (23), or the RBF (34) are respectively used to
approximate the trial function u. The MLS weight func-
tion (23) is taken to be test function in each Ω s. Substi-
tution of interpolations (13), (23) or (34) into the LSWF
(9b) for all the nodes, leads to the following discretized
system of linear equations:

K � û = f (41)

where, the entries of the global ‘stiffness’ matrix K and
the global ‘load’ vector f, respectively, are defined as:

KIJ =
Z

Ωs

φJ
;k (x)v

;k (x;xI)dΩ�
Z

Γsu

∂φJ (x)
∂n

v(x;xI)dΓ

+α
Z

Γsu

φJ (x)v(x;xI)dΓ (42)

and

fI =
Z

Γsu

q(x)v(x;xI)dΓ�
Z

Ωs

p(x)v(x;xI)dΩ

+α
Z

Γsu

u(x)v(x;xI)dΓ (43)

in which φJ is alternatively, the shape function from the
MLS, Shepard function or RBF, respectively. In the
above, I = 1; � � � ;M (where M is the total number of the
nodes in the domain), and the only non-zero KIJ coeffi-
cient for each I, extend over only J = 1; � � � ;N, where N
is the number of weight functions centered at x J, which
do not vanish at xI . Futher details of this method using
the MLS approximation for the trial function u can be
found in Atluri and Zhu (1998).

It is noted that for the RBF approximation, û should be
replaced by the true nodal values, u in these equations.
For the RBF approximation, due to the Kronecker Delta
properties, the Dirichlet or essential boundary conditions
(2a) can be imposed directly, just as in the conventional
FEM.

5.2 MLPG2: The Collocation method: Using the col-
location Dirac’s Delta function as the test func-
tion in eachΩs

In this method, the discrete equations are obtained from
the local unsymmetric weak formulation (LUSWF1) (8);
while, alternatively, (i) the MLS approximation (13); (ii)
Shepard function (23); and (iii) RBF (34), respectively,
are used to approximate the trial function u. The test
function in each Ωs is taken to be the Kronecker Delta
function. Substitution of interpolations (13), (23) or (34)
into the LUSWF1 (8) for the internal nodes, leads to the
discretized system of linear equations (41). Now, the
entries of the global ‘stiffness’ matrix K and the global
‘load’ vector f are defined as:

KIJ =

8<
:

φJ
;ii (xI) ; xI 2Ω

φJ
;n (xI) ; xI 2 Γq

φJ (xI) ; xI 2 Γu

(44)

and

fI =

8<
:

p(xI) ; xI 2Ω
q(xI) ; xI 2 Γq

u(xI) ; xI 2 Γu

(45)

Here, I;J = 1;2; � � � ;M. Note that, for the RBF ap-
proximation of the trial function, φJ(xI)=δIJ. In this
method, second derivatives of the shape functions are
needed in constructing the global stiffiness matrix for
the interior nodes; however, the calculation of the deriva-
tives of shape functions from the MLS approximation is
quite costly. No numerical integration is needed in this
method.
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Thus, the collocation method can be treated simply as a
special case of the MLPG approach.

5.3 MLPG3: Using discrete least squares, i.e. Error
function is used as the test function in eachΩs

In this method, the test function is assumed as in the dis-
crete least square method. Once again, the trial function
u, may be chosen alternatively as (i) MLS (13), or (ii)
Shepard (23), or (iii) RBF (34), respectively. The equa-
tion (1) can be satisfied by minimizing an L2 norm, which
can be defined as

J =
Z

Ωs

 
M

∑
I=1

∇ 2[φI (x) ûI ]� p

!2

dΩ (46)

To minimize (46), we must have

∂J
∂ûI = 0 (47)

for every nodal value ûI. Thus, we can obtain that

Z
Ωs

 
M

∑
J=1

∇ 2[φJ (x) ûJ]� p

!
∇ 2φI (x)dΩ = 0 (48)

Obviously, if we chose the test function as

v(x;xI) = φI
;ii (x) (49)

Then, substituting (49) in to (8), we can also obtain (48).

Substitution of interpolations (13), (23) or (34) into the
LUSWF1 (8) for the internal nodes, leads to the dis-
cretized system of linear equations (41). Now, the entries
of the global ‘stiffness’ matrix K and the global ‘load’
vector f are defined as:

KIJ =

8<
:

R
Ωs

φJ
;kk (x)φI

;ii (x)dΩ; xI 2Ω
φJ

;n (xI) ; xI 2 Γq

φJ (xI) ; xI 2 Γu

(50)

and

fI =

8<
:

R
Ωs

p(x)φI
;ii (x)dΩ; xI 2Ω

q(xI) ; xI 2 Γq

u(xI) ; xI 2 Γu

(51)

ΩI
te

ΩI,k
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Ω
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J
nodeI

x
1

x
2

Figure 3 : The nodal shape function has a different form
in each small region ΩI;k

tr , which is the intersection of
ΩI

te and ΩJ
tr.

Here, I;J = 1;2; � � � ;M, and the test function and the trial
function come from the same space.

From the detailed analysis in Atluri, Kim & Cho (1999),
we can find that the larger the support of the test function
is, the more complex the integrand is. This is because of
the fact that the nodal shape function consists of a differ-
ent form of rational function in each small region Ω I;K

tr ,
as shown in Fig. 3. The smaller the size of the support
of the test function is, the fewer the small regions are,
and the relatively simpler the integrand is. Thus, in this
method, the integrand is far more complex, since the test
function comes from the same function space as the trial
function. Therefore, it may be difficult to perform the
domain integration necessary for generating the stiffness
matrix. More Gaussian points or the partition method
developed in Atluri , Kim & Cho (1999) must be used to
get a convergent result. This conclusion is also verified
in our numerical examples. As a comparison, we still use
equation (49) as the test function, but we reduce the size
of its support. The results indicate that the calculation is
quite costly in the case when Ω te=Ωtr. This comparison
also suggests that it is better to choose a smaller support
for the test function (i.e., it is better, in MLPG3, to use:
Ωte < Ωtr).
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5.4 MLPG4 or the LBIE: Using the modified funda-
mental solution to the differential equation as the
test function in eachΩ

We choose the modified fundamental solution u� (which
vanishes at ∂Ωs as long as ∂Ωs does not intersect with Γ
as the test function, i.e.:

∇ 2u� (x;xI)+δ(x;xI) = 0 on Ωs (52)

u� (x;xI) = 0 on ∂Ωs

For the 2-D potential operator, the test function u � can be
easily obtained as

u� (x;xI) =
1

2π
ln

r0

r
(53)

where r = jx�xI j denotes the distance from the source
point to the generic point under consideration, and r 0 is
the radius of the local sub-domain, Ωs (i.e. the support of
the test function ΩI

te.

Thus, using the test function u �in the local unsymmetric
weak formulation (LUSWF2) (10b), the following local
boundary integral equation (LBIE) can be obtained:

α(xI)u(xI)=�
Z

∂Ωs

u(x)
∂u� (x;xI)

∂n
dΓ+

Z
Γ

∂u(x)
∂n

u�(x;xI)dΓ

�
Z

Ωs

u� (x;xI) p(x)dΩ (54)

In Eq. (54), the trial function u, may be chosen alterna-
tively, as (i) the MLS (13), or (ii) the Shepard function
(23), or (iii) the RBF (34), respectively.

Substituting interpolations (13), (23) or (34) into (52),
the following linear equations can be obtained

αIuI = f 0I +
N

∑
J=1

K0

IJûJ for every node I (55)

where

αI =

8<
:

1 internal nodes
1
Æ

2 nodes on a smooth boundary
θ
Æ

2π nodes on boundary corners
(56)

K0

IJ =
Z

Γsu

u� (x;xI)
∂φJ (x)

∂n
dΓ�

Z
Γsq

φJ (x)
∂u� (x;xI)

∂n
dΓ

�
Z

Ls

φJ (x)
∂u� (x;xI)

∂n
dΓ (57)

f 0I =
Z

Γsq

qu� (x;xI)dΓ�
Z

Γsu

u(x)
∂u� (x;xI)

∂n
dΓ

�
Z

Ωs

u� (x;xI) p(x)dΩ (58)

Here, I;J = 1;2; � � � ;M. Upon imposing the essential
boundary condition for uI in the left hand side of (55) for
those nodes where u is specified, we can obtain the linear
system (41). Here, for the trial function in interpolations
that do not possess the Kronecker Delta properties,

KIJ =

�
�K0

IJ for nodes with uI known;
�K0

IJ +αIφJ (xI) for nodes with uI unknown

(59)

fI =

�
f 0I�αIuI for nodes with uI known;
f 0I for nodes uI unknown

(60)

while for the interpolations with the Kronecker Delta
properties,

KIJ =

�
�K0

IJ for I 6= J
αI �K0

IJ for I = J
(61)

fI = f 0I (62)

The details of this method, while using the MLS approx-
imation for the trial function u, can be found in Zhu,
Zhang & Atluri (1998a). From equation (57) and (58),
it is seen that no derivatives of the shape functions are
needed, in constructing the stiffness matrix for the in-
terior nodes, as well as for those boundary nodes with
no essential boundary condition prescribed sections on
their local boundaries. This is attractive in engineering
applications, as the calculation of derivatives of shape
functions from the MLS approximation is quite costly.
However, singular integrals appear in the local boundary
integral equation (defined only over a sphere centered at
each point in question), to which special attention should
be paid (Sladek, Sladek and Atluri (1999)).
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5.5 MLPG5: Using the Heaviside step function as the
test function in eachΩs

In this method, the discrete equations are derived from
the LSWF (9a); while, alternatively: 1. the MLS approx-
imation (13); 2. Shepard function (23); and 3. RBF (34),
respectively, are used to approximate the trial function u.
The Heaviside step function is taken to be the test func-
tion in each Ωs; however, here we use the local symmet-
ric weak form rather than the unsymmetric weak form.
Thus, when the Heaviside step function is used for the
test function v in Ωs, the LSWF (9a) can be rewritten as

Z
Ls

∂u
∂n

dΓ+
Z

Γsu

∂u
∂n

dΓ+
Z

Γsq

qdΓ�
Z

Ωs

pdΩ�α
Z

Γu

(u�u)dΓ=0

(63)

In MLPG5, the sub-domains Ωs are over-lapping and do
not need a mesh, at all. Substitution of interpolations
(13), (23) or (34) into the LSWF (63) leads to the linear
system (41), the entries of the global ‘stiffness’ matrix K
and the global ‘load’ vector f are defined by

KIJ = �
R

Ls
φJ

;k (x)nkdΓ�
R

Γsu
φJ

;k (x)nkdΓ +α
R

Γsu
φJ (x)dΓ

I;J = 1; � � � ;M

(64)

and

fI =
Z

Γsu

q(x)dΓ�
Z

Ωs

p(x)dΩ+α
Z

Γsu

u(x)dΓ (65)

It is well-known that the numerical integration plays an
important role in the convergence of numerical solutions
of meshless methods. The numerical integration in the
usual finite element method is not a serious issue, be-
cause the domain integration of “energy” [which is of
a polynomial form], to evaluate for the stiffness matrix,
may be performed exactly, by using Gauss quadrature of
the necessary order. However, it may be difficult to per-
form the domain integration for the stiffness matrix in
meshless methods, due to the complexity [rational form]
of the integrand. From equation (64), it can be seen
that the domain integral over Ω s is altogether avoided;
Eq. (64) involves only boundary integrals over each cir-
cle, which will greatly improve the effectiveness of this
method. Hence, this method may be an attractive mesh-
less method, because neither domain integrals nor singu-
lar integrals appear in the stiffness matrix, which make

the solution stable, fast and accurate. It is thus seen that
MLPG5 provides a simple and efficient alternative to the
finite element and boundary element methods.

Futher details of this method are given in Atluri and Shen
(2002).

5.6 MLPG6: Meshless Local Galerkin method
[“Galerkin-equivalent” of the MLPG]: Using the
test function to be the same as the trial function in
eachΩs

In the Galerkin method, the trial function and test func-
tion come from the same space. To obtain the discrete
equations from the LSWF (9b), alternatively: 1. the MLS
approximation (13); 2. Shepard function (23); and 3.
RBF (34), respectively, are used to approximate the trial
function u, as well as the best function v. Substitution of
interpolations (13), (23) or (34) into the LSWF (9b) for
all nodes leads to the discretized system of linear equa-
tions (41); and the entries of the global ‘stiffness’ matrix
K and the global ‘load’ vector f are defined as:

KIJ =
Z

Ωs

φJ
;k (x)φI

;k (x)dΩ�
Z

Γsu

∂φJ (x)
∂n

φI (x)dΓ

+α
Z

Γsu

φJ (x)φI(x)dΓ (66)

and

fI =
Z

Γsu

q(x)φI (x)dΓ�
Z

Ωs

p(x)φI (x)dΩ

+α
Z

Γsu

u(x)φI (x)dΓ (67)

Here, I;J = 1;2; � � � ;M. In MLPG6, the integrand is far
more complex than in the 5 previous MLPGs, due to fact
that the test function comes from the same space of the
trial function. In fact, Atluri, Kim & Cho (1999) stud-
ied MLPG6 in great detail. Their results showed that the
partition method must be used to get a convergent result.
Based on their research and the results in Section 7.2, in
this paper, we will omit a further study of MLPG6 here.
We now think that the Galerkin method is not a good op-
tion for the MLPG method, from the viewpoint of cal-
culation and application; and thus, henceforth, discard
MLPG6 from our further considerations.
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Figure 4 : Interrelationship of meshless methods

5.7 Summary

A summary of the variety of MLPG methods is given in
Table 2. In this table, for convenience, we denote the
support of the trial function as Ω tr, and the support of
the test function as Ωte. It is noted that in this paper, lo-
cal sub-domain, Ωs is the same as the support of the test
function, Ωte. In general, the local sub-domain Ωs may
not be coincident with the support of the test function,
Ωte, such as in the case of the MLPG Upwinding scheme
(Lin and Atluri, 2000). The interrelationships of these
developments can also be illustrated as in Fig. 4. Under-
lying all these meshless methods is the general concept of
the meshless local Petrov-Galerkin method; thus, MLPG
provides a rational basis for constructing meshless meth-
ods with a greater degree of flexibility. It is noted that
in all the MLPG methods in this study, the usual “el-
ement assembly” process is not required, to form the
global stiffness matrix, unlike in the conventional FEM.
Theoretically, as long as the union of all local domains
covers the global domain, the equilibrium equation and
the boundary conditions will be satisfied in the global
domain Ω and its boundary Γ, respectively. However,
from our computational experience, the present formula-
tion yields a very satisfactory result even when the union
of all local domains does not completely cover the global
domain.

In this study, Gaussian quardrature is used to integrate all
the weak forms that arise in all the six MLPG methods.
A special attention is needed in MLPG3 and MLPG6, be-

cause sufficient Gaussian points are needed to guarantee
a convergent result. Once again, we must point out that
the PU interpolation is not suitable for MLPG2, MLPG5,
MLPG4 and MLPG1. However, the PU interpolation can
be used for MLPG3 and MLPG6, due to the fact that the
test function can be taken to be the same as the trial func-
tion in MLPG6, and is determined by the least square
approach in MLPG3. From the viewpoint that sufficient
Gaussian points are needed to guarantee a convergent re-
sult in MLPG3 and MLPG6, we do not conduct the nu-
merical analysis for PU interpolation in this paper.

The collocation method (MLPG2) does not involve any
numerical integration to generate the global stiffness ma-
trix, thus it is the simplest form of the meshless method.
The MLPG4 (LBIE) does not involve the domain integral
to generate the stiffness matrix; but does involve a singu-
lar integral. The MLPG1, MLPG3 and MLPG6 methods
involve domain integrals to generate the stiffness matrix,
which is difficult in meshless methods due to complexity
of the integrand, especially for the MLPG3 and MLPG6.
The MLPG5 does not involve any domain and singular
integrals to generate the global stiffness matrix; it only
involves a regular boundary integral. Thus, it is an at-
tractive meshless method. We are certain that MLPG5
will have a considerable impact on computational me-
chanics; and may prove to be a simple and efficient alter-
native to the currently popular finite element and bound-
ary element methods.

It is noted that in MLPG1 MLPG4, and MLPG5, when
the size of the support of the test function domain, Ω s,
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Table 2 : Meshless local Petrov-Galerkin (MLPG) methods
Methods Test function in

Ωte

Local weak form over
each Ωs

Relation between
Ωte and Ωtr

Integral to evaluate the
weak-form

MLPG1 MLS weight
function

LSWF Ωte < Ωtr Domain integral

MLPG2 Kronecker Delta
δ(x,xI)

LUSWF1 Ωte can be arbitrary None

MLPG3 Least square
φI

;ii (x)
LUSWF1 Ωte = Ωtr

(for the modified
MLPG3: Ωte < Ωtr)

Domain integral

MLPG4 Fundamental so-
lution u�

LUSWF2 Ωte < Ωtr Singular boundary inte-
gral

MLPG5 Heaviside step
function

LSWF Ωte < Ωtr Regular boundary inte-
gral

MLPG6 Same as the trial
function

LSWF Ωte = Ωtr Domain integral

shrinks to zero, the results in these methods approach to
those in collocation method. Even in MLPG3, if we still
use the test function (49), but shrink its support, the re-
sults also approach to those in the collocation method.

6 Essential boundary conditions

For the trial-function-interpolation schemes with the
Kronecker Delta properties, such as the RBF, it is triv-
ial to implement the essential boundary conditions. In
this study, for the all the methods using RBF, we directly
impose the essential boundary conditions.

However, in trial-function interpolation schemes without
the Kronecker Delta properties, such as the MLS, Shep-
ard function and PU, the meshless trial-function approx-
imations do not pass through the nodal data, which are
the fictitious values at the nodes. It is not easy to im-
plement the essential boundary conditions. In many re-
searches, a Lagrange multiplier technique has been used
to impose the essential boundary conditions. However,
this technique produces a non-banded and a non-positive
definite stiffness matrix. One of the promising methods
to enforce the essential boundary conditions in meshless
methods is the penalty parameter technique as developed
by Zhu and Atluri (1998), which is efficient and does
not need any other additional unknown variables. This
penalty technique is used in Eq. (42). In this study, in the
MLPG1-MLS (Shepard function or PU) and MLPG6-

MLS (Shepard function or PU), we use this penalty tech-
nique to enforce the essential boundary conditions.

A modified collocation method is also a very important
technique to enforce the essential boundary conditions in
the meshless method (Zhu and Atluri, 1998) due to its
simplicity. In fact, in this study, in MLPG2 and MLPG3,
we use this collocation technique to enforce the essential
boundary conditions. Our numerical results show that
both the penalty parameter and collocation techniques
are effective and convenient.

Another technique to exactly impose the essential bound-
ary conditions in meshless methods is developed by
Atluri, Kim & Cho (1999). However, it is not employed
in the present study.

7 Numerical experiments

In this section, some numerical results are presented,
in order to compare the efficiency and accuracy of the
present MLPG methods, for a variety of meshless trial
and test functions. For the purpose of error estimation
and convergence studies, the Sobolev norms k�kk, k=0,1
are calculated. These norms are defined as:

kuk0 =

�Z
Ω

u2dΩ
� 1

2

(68a)

and

kuk1 =

�Z
Ω

u2+(j∇ uj)2dΩ
� 1

2

(68b)
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Figure 5 : Nodes for the patch test

The relative errors are defined as

rk =
kunum�uexactkk

kuexactkk
; k = 0;1 (69)

7.1 Patch test

Consider the standard patch test in a domain of dimen-
sion 2�2 as shown in Fig. 5, and for the Dirichlet prob-
lem for the Laplace equation, i.e. with p=0, in equation
(1). We consider a problem with the exact solution

u = x1 +x2 (70)

where the potential boundary condition Eq. (2a) is pre-
scribed on all boundaries according to Eq. (70). Satis-
faction of the patch test requires that the value of u at
any interior node be given by the same linear function
(70); and that the derivatives of the computed solution be
constant in the patch.

In this example, 9 Gauss points are used on each local
boundary Ls (a circle for internal nodes and a part of a
circle for boundary nodes in this paper), and 6 points are
used on each boundary section Γ s for numerical quadra-
tures in the MLPG4 and MLPG5 methods.

In the MLPG1 method, 6 points are used on each bound-
ary section Γs, and 5�8 points are used in the local do-
main Ωs for numerical quadratures.

In the MLPG3 method, 15 points are used on each
boundary section Γ, and 15�5 points are used in the local
domain Ω for numerical quadratures.

The nodal arrangements of all patches are shown in Fig.
5. In the computation, the radius of the local sub-domain
ri=4 are used. In Fig. 5, the coordinates of node 5 for the
meshes c1, c2, c3, c4, c5 and c6 are (1.1,1.1), (0.1,0.1),
(0.1,1.8), (1.9,1.8), (0.9, 0.9) and (0.3, 0.4) respectively.

The computational results show that all the present
MLPG methods, with various test-functions, pass all the
patch tests as shown in Fig. 5, for the alternative trial-
function interpolations MLS, Shepard functions, and the
radial basis functions, respectively, with the given source
function p=0.

7.2 Laplace equation

The second example solved here is the Laplace equation
in the 2�2 domain shown in Fig. 5, with the exact solu-
tion taken to be a cubic polynomial, as:

u =�
�
x1�3

�
�
x2�3

+3
�
x1�2

x2 +3x1 �x2�2
(71)

A Dirichlet problem is solved, for which the essential
boundary condition is imposed on all sides, and a mixed
problem, for which the essential boundary condition is
imposed on top and bottom sides and the flux boundary
condition is prescribed on left and right sides of the do-
main.

Regular meshes of 9(3�3), 36(6�6) and 81(9�9) nodes
are used to study the convergence of the method. 9 Gauss
points are used on each local boundary Ls (a circle for
internal nodes and a part of a circle for boundary nodes
in this paper), and 6 points are used on each boundary
section Γs for numerical quadratures in the MLPG4 and
MLPG5 methods.

In the MLPG1 method, 6 points are used on each bound-
ary section Γs, and 5�8 points are used in the local do-
main Ωs for numerical quadratures.

7.2.1 Moving least –square interpolation (MLS)

In this calculation, the trial function is from the MLS, in
which the 4th-order spline weight function (22) is used.
The size of support for the trial functions is taken to be
5h, with h being distance between nodes; and the size
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Figure 6 : Relative errors and convergence rates for the
Dirichlet problem of Laplace equation for MLS: a for
norm k�k0, b for norm k�k1. In this figure and thereafter,
R is the convergence rate.

(radius) of the local boundary (i.e., support of the test
function, Ω) for each node is chosen as 0.9h in all the
computations, except for the MLPG3, when it is the same
as the size of support for trial functions.

The convergence, with the nodal-spacing refinement,
of the present methods: MLPG1, MLPG2, MLPG3,
MLPG4 and MLPG5 is studied for this problem. For
MLPG1, MLPG2, MLPG4 and MLPG5, the results of
the relative errors, and the convergence for norms k�k0
and k�k1 are shown in Fig. 6 for the Dirichlet problem,
and in Fig. 7 for the mixed problem, respectively, where
R is the rate of the convergence.
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Figure 7 : Relative errors and convergence rates for the
mixed problem of Laplace equation for MLS: a for norm
k�k0, b for norm k�k1.
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Figure 8 : Relative errors and convergence rates for
the Dirichlet problem of Laplace equation with different
Gaussian points for MLS: a for norm k�k0, b for norm
k�k1.

It can be seen that the present MLPG methods have high
rates of convergence for norms k�k0 and k�k1 and give
reasonably accurate results for the unknown variable and
its derivatives. Among them, MLPG5 appears to be the
best (highest rate of convergence).

In MLPG3, the results of the relative errors and the con-
vergence for norms k�k0 and k�k1 are shown in Fig. 8 for
the Dirichlet problem, where the term ‘modified’ means
that the equation (49) is still used as the test function, but
the size of its support is changed to h (note that the sup-
port of the trial function, chosen in this example, is 5h).
It is observed from these figures that a monotonic con-
vergence cannot be obtained if a sufficient numbers of
Gaussian points is not used. Particularly, the numerical
integration deteriorates as the nodal distance decreases, if
the numerical integration is not accurate enough to eval-
uate the stiffness matrix. In other words, the more nodes
are added in the domain, the more integration points are
required, in order to achieve the accuracy correspond-
ing to a smaller nodal distance. This kind of difficulty
is caused by the complexity of the shape functions in
MLPG3, as discussed in Section 5.3 and in Atluri, Kim &
Cho (1999). In MLPG3, the Gauss points must be at least
11�11, almost 5 times that of the ‘modified’ MLPG3.
Moreover, the accuracy is lower than the corresponding
‘modified’ MLPG3, or even MLPG2. These results also
imply that the size of the support of the test function can-
not be too large; a good choice for the size of the support
being less than h.

The effect of the size of sub-domain (the support of the
test function) is shown in Fig. 9. Here, the size of the
support of the trial function is 5h, and 81(9�9) nodal
points are used. It is found that MLPG1, MLPG4 and
MLPG5 approach to the MLPG2 as the size of the sup-
port of the test function approaches to zero. In almost
all of the intervals, MLPG5 is of the highest accuracy.
The size of the support of the trial function will affect the
trend.

The effect of the size of the support of the trial function
is shown (ρ; ρh ρ is changed from 2 to 10; h is the nodal
spacing) in Fig. 10. Here, the size of the support of the
test function is h, and 81(9�9) nodal points are used. The
trend is very complex for MLPG1, MLPG2, MLPG4 and
MLPG5. The size of the support of the test function af-
fects this trend.

7.2.2 Shepard function
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Figure 9 : Relative errors for the Dirichlet problem of
Laplace equation vs the size of the support of the test
function for MLS: a for norm k�k0, b for norm k�k1.

In this calculation, the trial function approximation is
from the Shepard function. The size of the support for the
trial functions is taken to be 6h [with h being the distance
between nodes], and the radius of the local test function
domain for each node is chosen as 0.9h in the compu-
tation; but for the MLPG3, it is the same as the size of
support for trial functions.

For MLPG1, MLPG2, MLPG4 and MLPG5, the results
of the relative errors and the convergence for norms k�k0
and k�k1 are shown in Fig. 11 for the Dirichlet problem
and in Fig. 12 for the mixed problem, respectively. The
convergence rate is lower than that in MLS. Once again,
the MLPG5 method has the best rate of convergence.

In MLPG3, the results of the relative errors and the con-
vergence for norms k�k0 and k�k1 are shown in Fig. 13
for the Dirichlet problem. It is indicated that we still
need 11�11 Gaussian points to ensure the convergence.
The results for the corresponding ‘modified’ MLPG3,
and MLPG2 are also shown in Fig. 13 for comparison.

The effect of the size of sub-domain (the support of the
test function) is shown in Fig. 14. Here, the size of the
support of the trial function is 6h, and 81(9�9) nodal
points are used. The trend is same as that in MLS.

The effect of the size of the support of the trial function is
shown in Fig. 15. Here, the size of the support of the test
function is h, and 81(9�9) nodal points are used. The
trend is less complicated than that in MLS.

7.2.3 Radial basis function

In this calculation, the trial function approximation is
from the radial basis function (RBF). Two kinds of ra-
dial basis functions, RBF1 Eq. (29) and RBF2 Eq. (30)
are considered. The size of support for the trial functions
are taken to be 2.5, and the size (radius) of the local do-
main (the test function support) for each node is chosen
as 0.9h, with h being the distance between nodes. For
the MLPG3, the size of the nodal test function domain is
same as the size of support for trial functions.

For RBF1, the results of the relative errors, and the con-
vergence for norms k�k0 and k�k1 for MLPG1, MLPG2,
MLPG4 and MLPG5, are shown in Fig. 16 for the
Dirichlet problem, and in Fig. 17 for the mixed prob-
lem, respectively. For RBF2, similar results are shown in
Fig. 18 and 19, respectively. The convergence rate for
RBF1 is lower than that for RBF2.

In MLPG3, for the Dirichlet problem, the results of the



The MLPG Method: A Simple & Less-costly Alternative to the Finite Element and Boundary Element Methods 33

-4

-3.5

-3

-2.5

-2

2 4 6 8 10

�

L
o

g
(r

0
)

MLPG1

MLPG2

MLPG4

MLPG5

(a)

-3

-2.5

-2

-1.5

2 4 6 8 10

�

L
o

g
(r

1
)

MLPG1

MLPG2

MLPG4

MLPG5

(b)
Figure 10 : Relative errors for the Dirichlet problem of
Laplace equation vs the size of the support of the trial
function for MLS: a for norm k�k0, b for norm k�k1
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Figure 11 : Relative errors and convergence rates for the
Dirichlet problem of Laplace equation for Shepard: a for
norm k�k0, b for norm k�k1.
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Figure 12 : Relative errors and convergence rates for the
mixed problem of Laplace equation for Shepard: a for
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Figure 13 : Relative errors and convergence rates for
the Dirichlet problem of Laplace equation with different
Gaussian points for Shepard: a for norm k�k0, b for norm
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Figure 14 : Relative errors for the Dirichlet problem of
Laplace equation vs the size of the support of the test
function for Shepard: a for norm k�k0, b for norm k�k1.
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Figure 15 : Relative errors for the Dirichlet problem of
Laplace equation vs the size of the support of the trial
function for Shepard: a for norm k�k0, b for norm k�k1.
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relative errors and the convergence for norms k�k0 and
k�k1 are shown in Fig. 20 for RBF1 and Fig. 21 for
RBF2, respectively. It is noted that we still need 11�11
Gaussian points to ensure the convergence for both RBF1
and RBF2. The results for the corresponding ‘modified’
MLPG3 (with Ωs � Ωte being of radius h, and Ωtr being
of radius 2.5) and MLPG2 are also shown in these figures
for comparison.

The effect of the size of the sub-domain (the support of
the test function) is shown in Fig. 22. Here, the size of
the support of the trial function is 2.5, and 81(9�9) nodal
points are used. The trend is more complicated than that
in the MLS and the Shepard function approximations.

The effect of the size of the support of the trial function is
shown in Fig. 23. Here, the size of the support of the test
function is h, and 81(9�9) nodal points are used. The
trend is simpler than that in MLS. For MLPG1, MLPG2,
MLPG4 and MLPG5, the trend is almost the same.

To compare the efficiency and accuracy of the three trial
functions, we also plotted the results of the relative er-
rors and the convergence for norms k�k0 and k�k1 for the
Dirichlet problem, as shown in Fig. 24-28 for MLPG1,
MLPG2, MLPG4, MLPG5 and MLPG3, respectively. In
these figures, the size of support for the trial functions is
taken to be 2.5, and the size (radius) of the local bound-
ary for each node is chosen as 0.9h. For MLPG3, it is
same as the size of support for trial functions.

From these figures, we can find that for MLPG1,
MLPG2, MLPG4 and MLPG5, the MLS trial-function
approximation has the highest accuracy and convergence
rate; the second in accuracy is the Shepard function,
and lastly the RBF1; while in MLPG3, RBF2 type trial-
function approximation has the highest accuracy, the fol-
lowed by the MLS, and then the RBF1. It is also noted
that the size of the support of the trial function in RBF
must be large; otherwise we cannot get a high accuracy.

7.3 Poisson’s equation

The results from the MLPG1, MLPG2, MLPG4 and
MLPG5 methods are also studied for the Poisson’s equa-
tion, with the source function p=x1+x2, in a 2�2 domain,
for which the exact solution is taken to be

u =�
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Figure 16 : Relative errors and convergence rates for the
Dirichlet problem of Laplace equation for RBF1: a for
norm k�k0, b for norm k�k1.
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Figure 17 : Relative errors and convergence rates for
the mixed problem of Laplace equation for RBF1: a for
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Figure 19 : Relative errors and convergence rates for
the mixed problem of Laplace equation for RBF2: a for
norm k�k0, b for norm k�k1.
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Figure 20 : Relative errors and convergence rates for
the Dirichlet problem of Laplace equation with different
Gaussian points for RBF1: a for norm k�k0, b for norm
k�k1.
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Figure 21 : Relative errors and convergence rates for
the Dirichlet problem of Laplace equation with different
Gaussian points for RBF2: a for norm k�k0, b for norm
k�k1.
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Figure 22 : Relative errors for the Dirichlet problem of
Laplace equation vs the size of the support of the test
function for RBF2: a for norm k�k0, b for norm k�k1.
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Figure 23 : Relative errors for the Dirichlet problem of
Laplace equation vs the size of the support of the trial
function for RBF2: a for norm k�k0, b for norm k�k1.
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Figure 24 : Relative errors and convergence rates for the
Dirichlet problem of Laplace equation in MLPG1: a for
norm k�k0, b for norm k�k1.
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Figure 25 : Relative errors and convergence rates for the
Dirichlet problem of Laplace equation in MLPG2: a for
norm k�k0, b for norm k�k1.
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Figure 26 : Relative errors and convergence rates for
the Dirichlet problem of Laplace equation in MLPG4
(LBIE): a for norm k�k0, b for norm k�k1.



42 Copyright c 2002 Tech Science Press CMES, vol.3, no.1, pp.11-51, 2002

-4

-3

-2

-1

0

-0.7 -0.35 0
Log(h)

L
o

g
(r

0
)

MLS, R=3.89

Shepard, R=3.30

RBF2, R=3.08

RBF1, R=3.08

(a)

-3

-2

-1

0

-0.7 -0.35 0
Log(h)

L
o

g
(r

1
)

MLS, R=2.75

Shepard, R=2.26

RBF2, R=2.04

RBF1, R=1.67

(b)
Figure 27 : Relative errors and convergence rates for the
Dirichlet problem of Laplace equation in MLPG5: a for
norm k�k0, b for norm k�k1.
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Figure 28 : Relative errors and convergence rates for the
Dirichlet problem of Laplace equation in MLPG3: a for
norm k�k0, b for norm k�k1.
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The boundary conditions, the size of the local boundary,
the size of the support of the trial functions as well as the
nodal arrangement are the same as those used in the last
example, for every method.

The convergence, with nodal-spacing refinement, of
the present methods: MLPG1, MLPG2, MLPG4 and
MLPG5 are studied for this problem.

For the trial-function approximation using the MLS, the
results of the relative errors and the convergence for
norms k�k0 and k�k1 for MLPG1, MLPG2, MLPG4 and
MLPG5 are shown in Fig. 29 for the Dirichlet problem,
and in Fig. 30 for the mixed problem, respectively.

For the trial-function approximation using the Shepard
function, the results of the relative errors and the con-
vergence for norms k�k0 and k�k1 for MLPG1, MLPG2,
MLPG4 and MLPG5 are shown in Fig. 31 for the Dirich-
let problem, and in Fig. 32 for the mixed problem, re-
spectively.

For the trial-function approximation using the RBF1, the
results of the relative errors and the convergence for
norms k�k0 and k�k1 for MLPG1, MLPG2, MLPG4 and
MLPG5 are shown in Fig. 33 for the Dirichlet problem,
and in Fig. 34 for the mixed problem, respectively.

For the trial-function approximation using the RBF2, the
results of the relative errors and the convergence for
norms k�k0 and k�k1 for MLPG1, MLPG2, MLPG4 and
MLPG5 are shown in Fig. 35 for the Dirichlet problem,
and in Fig. 36 for the mixed problem, respectively.

These results show that all the MLPG methods studied
in this paper work quite well for the Poisson’s equation.
Among them, MLPG5 yields somewhat of a better result
than the others, while all the methods possess high accu-
racy. For the trial-function interpolations, it seems that
the MLS yields somewhat of a better result than the Shep-
ard function or the RBF.

The rates of convergence in all the MLPG methods, es-
pecially using the MLS and Shepard functions as the trial
function, are higher than that in the FEM.

8 Computational costs

The major factors influencing the success of a method-
ology are the (human as well as computer) costs versus
accuracy considerations. In the MLPG methods, there

-4

-3

-2

-1

-0.7 -0.35 0
Log(h)

L
o

g
(r

0
)

MLPG1, R=3.46

MLPG2, R=2.37

MLPG4, R=2.71

MLPG5, R=3.99

(a)

-3.5

-2.5

-1.5

-0.5

-0.7 -0.35 0
Log(h)

L
o

g
(r

1
)

MLPG1, R=2.82

MLPG2, R=2.16

MLPG4, R=2.78

MLPG5, R=3.19

(b)
Figure 29 : Relative errors and convergence rates for the
Dirichlet problem of Poinson’s equation for MLS: a for
norm k�k0, b for norm k�k1.
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Figure 30 : Relative errors and convergence rates for
the mixed problem of Poinson’s equation for MLS: a for
norm k�k0, b for norm k�k1.
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Figure 31 : Relative errors and convergence rates for the
Dirichlet problem of Poinson’s equation for Shepard: a
for norm k�k0, b for norm k�k1.
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Figure 32 : Relative errors and convergence rates for the
mixed problem of Poinson’s equation for Shepard: a for
norm k�k0, b for norm k�k1.
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Figure 33 : Relative errors and convergence rates for the
Dirichlet problem of Poinson’s equation for RBF1: a for
norm k�k0, b for norm k�k1.
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Figure 34 : Relative errors and convergence rates for the
mixed problem of Poinson’s equation for RBF1: a for
norm k�k0, b for norm k�k1.
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Figure 35 : Relative errors and convergence rates for the
Dirichlet problem of Poinson’s equation for RBF2: a for
norm k�k0, b for norm k�k1.
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Figure 36 : Relative errors and convergence rates for the
mixed problem of Poinson’s equation for RBF2: a for
norm k�k0, b for norm k�k1.

are selectable parameters, such as the size of the support
of test and trial functions, which affect both the cost and
accuracy; however, the effect of the size of the nodal trial-
function domain is unclear (see Fig. 10). In this section,
we will qualitatively (or roughly) estimate the computa-
tional costs in the present MLPG methods, and compare
these with that of the classical FEM. We only consider
the major computational costs: cost of generating the
global stiffness matrix and that of solving the resulting al-
gebraic equations. We do not consider the preprocessing
human-labor cost in generating a mesh, and the postpro-
cessing time, which, of course, are the main features of
attraction and advantage of the meshless MLPG meth-
ods over the FEM. The high order of continuity which
MLS inherits from an appropriate choice of the weight
function, provides solutions with smooth derivatives, a
feature which is very different to the FEM. Hence, as
mentioned in Section 4, postprocessing in MLPG is rel-
atively straightforward, and no additional stress smooth-
ing is required.

The estimation here is for a d dimensional problem. We
assume a discretization scheme using M nodal points,
and assume that the average number of nodal points,
whose shape functions are involved at an integration
point, is N. Let ng denote the number of Gaussian in-
tegration points per finite element in the FEM, or per Ω s

in the MLPG. In the following, some superscripts will be
used to distinguish the same variables for the different
MLPG methods presented in this paper.

The computational time for a single term of the element
stiffness matrix can be estimated as

tFEM
e � nFEM

g tFEM
sh (73)

where tsh is the average computational time for a shape
function or its derivative. Hence, the computational time
for the global stiffness matrix may be estimated as

tFEM
K � d2MFEMNFEMtFEM

e � d2nFEM
g MFEMNFEMtFEM

sh

(74)

For the MLPG methods, the computational time for the
global stiffness matrix can also be estimated as

tK � d2MNte � d2ngMNtsh (75)
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However, tsh is greater than the t FEM
sh if the interpola-

tions are MLS or RBF, which involve the inversion of
matrix at each integration point. As an example, here
we only consider the MLS with first-order completeness
[i.e., t=1, and m=3 in P(x)], which means that the in-
version of the matrix can be obtained theoretically, and
the cost is lower, in this case, t MLS

sh almost is the same as
tSF
sh in the case of Shepard function, where t SF

sh requires
the evaluation of N weight functions at each integration
point. Hence, for the MLPG methods, the computational
time for the global stiffness matrix can be rewritten as

tK � d2ngMNtsh � d2ngMN2tw (76)

where tw is the computational cost of evaluating the
weight function equation (22) or its derivative at a sin-
gle evaluation point. From the analysis in Section 7, we
see that

nMLPG3
g > nMLPG1

g > nMLPG4
g > nMLPG5

g
�= nFEM

g > nMLPG2
g = 1

(77)

Hence, for the present MLPG methods, we have

tMLPG2
K < tMLPG5

K < tMLPG4
K < tMLPG1

K < tMLPG3
K (78)

It can be seen that, when the cost for the computation in
an MLPG method computation is compared to an FE so-
lution with the same number of unknowns (dM), the FEM
results are much less expensive. However, comparing the
cost based on the approximation accuracy, the conclusion
can be quite different. The accuracy of the FEM is less
than that of the MLPG5 method, therefore more nodes
are needed for the FEM method than that needed for the
MLPG5 method to obtain the same accuracy of the re-
sults.

Now, we only consider the MLPG5. Assuming that t FEM
sh

and tw are of the same order of magnitude, we have

tMLPG5
K

tFEM
K

�
d2nMLPG5

g MMLPG5(NMLPG5)2tw
d2nFEM

g MFEMNFEMtFEM
sh

�
MMLPG5(NMLPG5)2

MFEMNFEM
(79)

where we assume nMLPG5
g � nFEM

g . For the same desired
accuracy in the obtained numerical solution, M FEM

>>

MMLPG5. Moreover, according to the numerical results
in Section 7 (Fig. 6a and 29a), the rate of convergence
for k�k0 norm, in the present MLPG5 is about 4 with C 1

trial functions, while the rate of convergence in the FEM
using linear C0 elements is 2. Thus, it is reasonable to
say that

MFEM � (MMLPG5)2 (80)

In the 2-D FEM, for 3-noded triangular element (see Fig.
37), we have

NFEM = 7 (81)

(for 8-noded element in 2-D, NFEM=21, see Fig. 38).
For the MLPG5, if we take, for instance, the supports
of the trial function and test function to be 3h and 0.9h,
respectively, we can obtain that

NMLPG5 � 25 (82)

Obviously, NMLPG5
> NFEM . Now, it can be derived, in

this example, that

tMLPG5
K

tFEM
K

�
(NMLPG5)2

MMLPG5NFEM �
625

(7) �MMLPG5 �
89

MMLPG5

(83)

In the present example, MMLPG5 �100. Thus, we find
that:

tMLPG5
K

tFEM
K

� 1:0 (84)

As for the cost of solving the resulting algebraic equa-
tions, due to fact that M FEM >> MMLPG5 for the same
accuracy, it is reasonable to estimate that this cost in
MLPG5 is also less than that in FEM.

In general, in view of Eq. (80), we find from Eq. (79):

tMLPG5
K

tFEM
K

�
(NMLPG5)2

MMLPG5NFEM (85)
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I

Figure 37 : 2-D 3-noded triangular mesh.

As seen before, NFEM for a 2-D, 3-noded triangular
mesh, NFEM=7; and for a 2-D, 8-noded quadrilateral
mesh, NFEM=21. Thus, the “band-width” of the FEM in-
creases rapidly, as “higher-order” C0 elements are used.
However, the MLPG5 method, with MLS trial function,
is inherently a “higher-order, but C1 interpolation”. Thus,
NFEM , and NMLPG5 are of the same order of magnitude,
especially when higher-order FEM are used.

Thus, from Eq. (85), it can be derived that

tMLPG5
K

tFEM
K

�
NMLPG5

MMLPG5 (86)

which, for most realistic computations, leads to the con-
clusion that:

tMLPG5
K

tFEM
K

< 1:0 (87)

It may be concluded that:

1. MLPG5 has little or no preprocessing and postpro-
cessing costs, thus the human-labor cost in MLPG5 is
negligible compared to that in FEM;

2. For the same accuracy, the computational cost in
MLPG5 is also lower than that in FEM, or at least com-
parable to that in FEM.

Thus, the MLPG5 method has the potential to replace the
FEM as a method of choice for engineering analysis.

9 Conclusion

We have presented a comparison study of the costs, ef-
ficiency and accuracy of a variety of meshless trial and

I

Figure 38 : 2-D 8-noded quadrilateral mesh.

test functions in this paper, based on the general concept
of the meshless local Petrov-Galerkin (MLPG) method.
5 types of trial functions and 6 types of test functions
are examined. Different test functions result in differ-
ent MLPG methods, and 6 such MLPG methods are pre-
sented in this paper. In all these six MLPG methods,
absolutely no meshes are needed either for interpolation
of the trial and test functions, or for the integration of the
weak forms, while other meshless methods (such as the
EFG) require background cells. The nodal shape func-
tions, for the trial function, from all the 5 interpolations
(MLS, RKPM, PU, Shepard, and RBF) are of a ratio-
nal form, and are highly complex, leading to the diffi-
culty in the numerical integration of the weak-forms, es-
pecially in the Galerkin equivalent of the MLPG (viz., the
MLPG6). A large support of the test function also makes
the shape function for the trial functions more compli-
cated. Hence, it is suggested that the size of the sup-
port of the test function should be smaller (between 0
and h, h being the nodal spacing). Because the compli-
cated shape functions for the trial-function are inevitable
at the present stage, to develop a fast and robust meshless
method, we try to avoid the use of the domain integral
[involved in the weak-form] by choosing a proper test
function. The MLPG5 method avoids the need for both a
domain integral as well as a singular integral, and thus
shows a great promise in engineering applications.

Convergence studies in the numerical examples show
that all of the six MLPG methods presented here pos-
sess excellent rates of convergence for both the unknown
variables and their derivatives. The analysis of computa-
tional costs shows that the MLPG5 result is less expen-
sive in computational costs, and definitely less expensive
in human-labor costs than the FEM, or BEM. Particu-
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larly, due to its speed, accuracy and robustness, MLPG5
may be expected to replace the FEM or BEM in the near
future.
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