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On a Meshfree Method for Singular Problems

Weimin Han and Xueping Meng1

Abstract: Interests in meshfree (or meshless) methods
have grown rapidly in the recent years in solving bound-
ary value problems arising in mechanics, especially in
dealing with difficult problems involving large deforma-
tion, moving discontinuities, etc. Rigorous error esti-
mates of a meshfree method, the reproducing kernel par-
ticle method, for smooth solutions have been theoreti-
cally derived and experimentally tested in Han, Meng
(2001). In this paper, we provide an error analysis of
the meshfree method for solving problems with singular
solutions. The results are presented in the context of one-
dimensional problems. The error estimates are of optimal
order and are supported by numerical results.

1 Introduction

The finite element method has been the dominant nu-
merical method in computational mechanics for several
decades. Since 1994, a new family of methods, collec-
tively called meshfree methods, has attracted much inter-
est in the community of computational mechanics. This
new family of numerical methods is designed to inherit
the main advantages of the finite element method such as
compact supports of shape functions and function (poly-
nomials, singular functions, etc.) reproducing properties,
while at the same time, overcome the main disadvan-
tages of the finite element method owing to the mesh-
dependence. The meshfree methods share a common
feature that no mesh is needed and shape functions are
constructed from sets of particles, thus eliminating the
need for time-consuming mesh generation. These meth-
ods can handle more effectively problems with large de-
formations, moving discontinuities, severe mesh distor-
tions and other problems the finite element method ex-
periences difficulty. The meshfree methods are hailed as
numerical methods of the next generation (cf. Preface of
Liu, Belytschko, Oden (1996)).
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A variety of numerical methods found in the literature
belongs to the family of meshfree methods, e.g. Smooth
Particle Hydrodynamics (SPH) methods (Lucy (1977);
Monaghan (1982, 1988)), Diffuse Element Method
(DEM) (Nayroles, Touzot, Villon (1992)), Element Free
Galerkin Method (EFG) (Belytschko, Gu, Lu (1994);
Belytschko, Lu, Gu (1994)), Reproducing Kernel Par-
ticle Method (RKPM) (Liu, Jun, Li, Adde (1995); Liu,
Jun, Zhang (1995); Chen, Pan, Wu, Liu (1996)), Moving
Least-Square Reproducing Kernel Method (Liu, Shao-
fan, Belytschko (1997); Li, Liu (1996)), h-p-Clouds
(Duarte, Oden (1996a,b)), Partition of Unity Finite Ele-
ment Method (Babuška, Melenk(1997)), Meshless Local
Petrov-Galerkin Method (MLPG) (Atluri, Zhu (1998);
Atluri, Kim, Cho (1999); Atluri, Zhu (2000)). In most
of these methods, interpolation functions are constructed
in a meshfree manner; however, background meshes are
still needed for numerical integration in the construction
of stiffness matrices and load vectors. MLPG is a method
that is completely mesh independent.

A rigorous error analysis for the Reproducing Kernel Par-
ticle Method (RKPM) has been done recently in Han,
Meng (2001). In that paper, conditions are identified
for the method that lead to optimal order error estimates.
The error estimates are comparable to those for the finite
element method. Numerical results support the optimal
order convergence. The error estimates in Han, Meng
(2001) are stated and proved under the assumption of suf-
ficient smoothness of the solution. Here, we will take one
step further by deriving error estimates and showing nu-
merical examples for boundary value problems with sin-
gular solutions. One-dimensional sample problems are
used for our discussion. The results will be useful as
an insight for analysis of meshfree methods in solving
higher dimensional boundary value problems with geom-
etry singularities. We notice that meshfree methods have
been used for computer simulations of singular problems
in engineering literature, e.g., in Kim, Atluri (2000);
Ching, Batra (2001), MLPG is used to solve problems
involving cracks and other singularities.
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The paper is organized as follows. In the following sec-
tion, we briefly review the method and some theoretical
results. In the third section, we derive meshfree interpo-
lation error estimates for singular functions. In Section 4,
we derive some error estimates for meshfree approxima-
tions of one-dimensional boundary value problems with
singular solutions. In the final section, we present some
numerical results. The numerical examples are of two
different types. The first type is designed for the purpose
of demonstrating the theoretical error estimates. For the
second type, we experiment on particle distributions in
order to achieve better convergence order for singular so-
lutions.

2 Reproducing Kernel Particle Approximation

In this section, we provide another point of view for the
development of the reproducing kernel particle approxi-
mation and review some theoretical results on error esti-
mates for smooth functions.

Let Ω � R
d be a nonempty, open bounded set with a

Lipschitz continuous boundary. In the one-dimensional
case, d = 1, we choose Ω = (0;L) for some L > 0. A
generic point in R

d is denoted by x = (x1; : : : ;xd)T or
z = (z1; : : : ;zd)

T . We use the Euclidean norm to measure
the vector length:

kxk=
� d

∑
i=1
jxij

2
�1=2

:

For x 2 Rd and r > 0, we use Br(x) for the closed ball
centered at x with radius r in Rd ; in particular, B1 is the
closed unit ball centered at the origin in R d. Through-
out the paper we use the multi-index notation for partial
derivatives and indices. The symbol P p = Pp(Ω) rep-
resents the space of the polynomials of degree less than
or equal to p on Ω. The dimension of the space P p is
Np = (p+d)!=(p!d!).

Let fxigI
i=1 � Ω be a set of points, called particles. The

idea of the particle approximation is to use particle func-
tion values for approximation:

u(x)�
I

∑
i=1

Ψi(x)u(xi): (1)

Here fΨig
I
i=1 are the shape functions associated with the

particles fxigI
i=1. These functions can be constructed by

a moving least-squares procedure (Belytschko, Gu, Lu

(1994); Belytschko, Lu, Gu (1994)), or by a corrected
reproducing kernel particle procedure (Liu, Jun, Li, Adde
(1995); Liu, Jun, Zhang (1995)). We take a new point of
view for the construction of these shape functions.

As we mentioned in Introduction, we want to keep the
main advantages of the finite element method. The first
requirement is then that each shape function should have
a compact support. This requirement is satisfied by in-
cluding a function of the form

Φri(x�xi) = Φ
�x�xi

ri

�

as a factor for Ψi. The function Φ is called a generat-
ing function or a window function, and has the following
properties:
8<
:

Φ is continuous;
suppΦ = B1;

Φ(x)> 0 for kxk< 1:

A normalization condition
Z

B1

Φ(x)dx = 1

is usually used in the description of the derivation of re-
producing kernel particle approximations, but this condi-
tion is not essential and is thus excluded from the outset.
The number ri > 0 is small and represents the support
size of the function Φ. For different particles, we may
use different window functions. For example, a singular-
ity can be introduced in the window functions for parti-
cles on the boundary in order to treat Dirichlet boundary
values (see Chen, Wang (2000)).

There are infinite many possible choices for the generat-
ing function. We first list some generating functions in
one dimension. A popular choice in engineering compu-
tations is the cubic spline, that has the smoothness C 2.
Another popular choice is

Φ(z) =

�
e1=(z2�1); jzj< 1;
0; jzj � 1:

This function is infinitely smooth. One family of gener-
ating functions is given by the formula

Φl(z) =

�
(1� z2)l; jzj � 1;
0; jzj> 1:

We observe that Φl 2Cl�1.
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Any one-dimensional generating function Φ(z) can be
used to create a d-dimensional generating function either
in the form Φ(kzk) or by a tensor product ∏d

i=1 Φ(zi).

The second requirement on the shape function is that the
approximation (1) should be able to reproduce polyno-
mials (and other special functions) in order to achieve
convergence with optimal orders. For definiteness, here
we consider the polynomial reproducing property only.
Thus we are inclined to choose a polynomial as another
factor for Ψi. Moreover, we choose the coefficients of
the polynomial to be the same for all the shape functions
fΨig

I
i=1 but allow the coefficients to depend on x. As a

result, we use the following form for the shape functions
fΨig

I
i=1:

Ψi(x) = Φri(x�xi) ∑
jαj�p

(x�xi)
αbα(x); 1� i� I: (2)

Here α = (α1; : : : ;αd), αi � 0 integer, is a multi-index.
The quantity jαj = ∑d

i=1 αi is the length of α. The ex-
pression xα stands for xα1

1 � � �xαd
d . Since the domain Ω is

assumed to be Lipschitz continuous, it is locally on one
side of the boundary. In case the particle x i lies on or
close to the boundary so that Bri(xi)\ ∂Ω 6= /0, we rede-
fine the function value Φri(x�xi) to be zero outside that
side of Ω on which the particle x i lies. This is implicitly
assumed throughout the paper.

Imposing the polynomial reproducing conditions on the
formula (1),

u(x) =
I

∑
i=1

Ψi(x)u(xi) 8u 2 Pp; (3)

we have

∑
jαj�p

mα+β(x)bα(x) = δjβj;0; jβj � p; (4)

where

mα(x) =
I

∑
i=1

Φri(x�xi)(x�xi)
α; jαj � p; (5)

are the discrete moment functions. The conditions (4)
can be written as a consistency condition for the shape
functions fΨi(x)g:

I

∑
i=1

Ψi(x)(x�xi)
β = δjβj;0; jβj � p: (6)

Denote the discrete moment matrix from the system (4)
by M(x). Then

M(x) =
I

∑
i=1

Φri(x�xi)h(x�xi)h(x�xi)
T ; (7)

where

h(z) = (zα)jαj�p 2 R
Np :

To describe conditions under which the method is defined
(i.e. the system (4) is uniquely solvable for any x 2 Ω),
we bring in a definition.

Definition 2.1 A point x 2 Ω is said to be covered by m
shape functions if there are m indices i 1; : : :; im such that

kx�xi jk< ri j ; j = 1; : : : ;m:

It can be shown that for any x2Ω, a necessary condition
for M(x) to be invertible is that x is covered by at least
Np shape functions. In the one-dimensional case, the dis-
crete moment matrix M(x) is invertible if and only if x is
covered by at least p+1 shape functions.

For the method to work well, we need conditions stronger
than the nonsingularity of the discrete moment matrix
M(x). The notion of an (r; p)-regular family of particle
distributions to be introduced and discussed later is one
such condition. The (r; p)-regularity leads immediately
to sufficient conditions for the nonsingularity of the dis-
crete moment matrix.

Assume M(x) is nonsingular. Then the shape functions
fΨig

I
i=1 are uniquely determined from (2) and the fol-

lowing properties hold:

1. The shape functions have compact supports:
suppΨi � Bri(xi).

2. The shape functions fΨigI
i=1 form a partition of

unity.

3. If Φ2Ck, then Ψi 2Ck, i = 1; : : : ; I.

4. Assume Φ2Ck. Then

I

∑
i=1

DαΨi(x)(x�xi)
β = (�1)jαjβ!δαβ 8jαj � k; jβj � p:

(8)

Here δαβ equals 1 if β = α, and is zero otherwise.
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So unlike the finite element method, in the meshfree
method it is easy to construct shape functions of any de-
gree of smoothness. Thus the solution of higher order
differential equations does not present any special diffi-
culty in the construction of conforming meshfree shape
functions. The relations (8) are consistency relations of
derivatives of the shape functions and are derived from
the consistency condition (6).

2.1 Regularity of Particle Distributions

As in Han, Meng (2001), we consider the case of qua-
siuniform support sizes, i.e. there exist two constants
c1;c2 2 (0;∞) such that

c1 �
ri

r j
� c2 8 i; j:

For such particle distributions, there exists a parameter
r > 0 such that

c̃1 �
ri

r
� c̃2 8 i:

Let us introduce the scaled discrete moment matrix

M0(x) =
I

∑
i=1

Φ
�x�xi

ri

�
h
�x�xi

r

�
h
�x�xi

r

�T
:

Definition 2.2 A family of particle distributions
ffxig

I
i=1g is said to be (r; p)-regular (or we simply say

the particle distributions are (r; p)-regular) if there is a
constant L0 such that

max
x2Ω

kM0(x)�1k2 � L0

for all the particle distributions in the family.

Since on a finite dimensional space all norms are equiva-
lent, the spectral norm k�k2 in the above definition can be
replaced by any other matrix norm. We observe that the
essential point is to have M0(x)�1 uniformly bounded,
or equivalently, the vectors fh((x� x i)=r)g, for which
Φ((x� xi)=r) � c0 > 0, are “uniformly” independent.
The next several results concerning the regularity of par-
ticle distributions are shown in Han, Meng (2001).

Proposition 2.3 A family of particle distributions is
(r; p)-regular if it is (r; p+1)-regular, but not conversely.

Theorem 2.4 Assume there exist two constants c0 > 0,
σ0 > 0 such that for any x 2 [0;L], there are i0 < i1 <

� � �< ip with

min
0� j�p

Φ
�x�xi j

ri j

�
� c0 > 0 (9)

and

min
j 6=k

���xi j �xik

r

��� � σ0 > 0: (10)

Then the family of particle distributions ffx ig
I
i=1g is

(r; p)-regular, i.e. there exists a constant L(c0;σ0) such
that

max
0�x�L

kM0(x)�1k2 � L(c0;σ0): (11)

Notice that the first condition (9) is a strengthened ver-
sion of the necessary condition that any point must be
covered by p+ 1 shape functions. The condition (10)
can be equivalently written as

min
0� j�p�1

xi j+1 �xi j

r
� σ0 > 0:

A geometrical interpretation of the condition (10) is that
in any local region, at least p+1 particles do not coalesce
as the refinement goes (i.e. as r! 0).

As a further remark, assume equal support size r1 = � � �=
rI � r and consider the situation where Φ is increasing on
[�1;0] and decreasing on [0;1], and is symmetric with
respect to 0, as is the case in actual computations. If for
any x, we can find i�1 < i0 < � � �< ip+1 such that

jx�xi j j � r; �1� j � p+1

with

min
�1� j�p

xi j+1 �xi j

r
� σ0 > 0;

then (9) is automatically satisfied with

c0 �Φ(1�σ0):

Theorem 2.5 A family of particle distributionsffx igI
i=1g

in Rd is (r;1)-regular if there exist two constants c 0; c̃0 >
0 such that for any x 2 Ω, there are d + 1 particles
xi0; : : : ;xid satisfying

min
0� j�d

Φ
�x�xi j

r

�
� c0 > 0

and the d-simplex with the vertices x i0; : : : ;xid has a vol-
ume larger than c̃0rd.

We have the following result for bounds on the shape
functions and their derivatives.
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Theorem 2.6 Assume the particle distributions are (r; p)-
regular and the generating function Φ is k-times contin-
uously differentiable. Then there exists a constant c such
that

max
1�i�I

max
β:jβj=l

kDβΨik∞ �
c
rl ; 0� l � k:

2.2 Interpolation Error Estimates for Smooth Func-
tions

Assume Φ 2Ck. Given a continuous function u on Ω �
R

d, we define its meshfree interpolant by the formula

uI(x) =
I

∑
i=1

u(xi)Ψi(x); x 2 Ω:

Notice that in general, uI(xi) 6= u(xi), so uI is an inter-
polant of u in a generalized sense.

Let us introduce the following hypothesis.

Hypothesis (H). There is a constant integer I0 such that
for any x 2 Ω, there are at most I0 of xi satisfying the
relation kx� xik < ri, i.e. each point in Ω is covered by
at most I0 shape functions.

The hypothesis (H) is quite natural since otherwise as
the number of shape functions covering a local area in-
creases, the shape functions tend to be more and more
dependent in the local area.

The following result is proved in Han, Meng (2001).

Theorem 2.7 Assume the particle distributions are (r; p)-
regular, Φ2Ck, and the hypothesis (H) holds. Let m� 0,
q 2 [1;∞] with (m+ 1)q > d if q > 1, or m+ 1 � d if
q = 1. Then for any u2W m+1;q(Ω), we have the optimal
order interpolation error estimates

ku�uIkWl;q(Ω) � crminfm+1;p+1g�l jujWminfm+1;p+1g;q(Ω)

8 l �minfm+1; p+1;kg: (12)

Notice that when m� p and Φ2Ck is chosen so smooth
that k � p+1, then the error estimate (12) reduces to

ku�uIkW l;q(Ω) � crp+1�l jujW p+1;q(Ω) 8 l � p+1:

3 Interpolation Error Estimates for Singular Func-
tions in One Dimension

We assume for the function u, there is a non-integer λ > 0
such that

ju(k)(x)j � ck(x
λ�k +1) for k = 0;1; : : :; (1)

where ck is a constant depending on k. The assump-
tion (1) mimics corner singularities of solutions to elliptic
boundary value problems (cf. Grisvard (1985)).

We are interested in estimating the error for the interpo-
lation

uI(x) =
I

∑
i=1

u(xi)Ψi(x):

Recall the Taylor theorem for a real-valued function

f (x) =
n

∑
j=0

(x�x0) j

j!
f ( j)(x0)+

1
n!

Z x

x0

(x� t)n f (n+1)(t)dt:

(2)

Using the formula (2) we have

u(xi) =
pλ

∑
j=0

(xi�x) j

j!
u( j)(x)+

1
pλ!

Z xi

x
(xi�t)pλu(pλ+1)(t)dt;

(3)

where pλ � p is determined later. For an integer l � 0,
let

el(u)(x)� (uI �u)(l)(x) =
I

∑
i=1

u(xi)Ψ(l)
i (x)�u(l)(x)

denote the lth derivative of the interpolation error. Then
using (3) and the consistency property of the shape func-
tions we obtain

el(u)(x) =
1

pλ!

I

∑
i=1

Ψ(l)
i (x)

Z xi

x
(xi� t)pλ u(pλ+1)(t)dt: (4)

Theorem 3.1 Consider the case of quasiuniform support
sizes. Assume the family of particle distributions is (r; p)-
regular, and the hypothesis (H) is valid. For a function u
with the behavior (1), we have the error estimates

k(uI�u)(l)kLq(0;1) � crminfλ+1=q; p+1g�l: (5)

where q 2 [1;∞] and when q = ∞, we adopt the conven-
tion 1=q = 0.

PROOF. Since support sizes are quasiuniform, we have

c̃1r� ri � c̃2r 8 i:

Let us prove the error estimate (5) for the case q2 [1;∞).
Let pλ = minf[λ + 2=q]� 1; pg, where [x] denotes the
largest integer less than x. We notice that

minfλ; pλ +1g+1=q�minfλ+1=q; p+1g: (6)
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Because of the hypothesis (H), we derive from (4) that

jel(u)(x)j
q � c

I

∑
i=1

jΨ(l)
i (x)jq

���
Z xi

x
(xi� t)pλu(pλ+1)(t)dt

���q:
Using Hölder’s inequality we get

jel(u)(x)jq �

c
I

∑
i=1

jΨ(l)
i (x)jqjxi�xjq�1

���
Z xi

x
jxi� tjpλqju(pλ+1)(t)jqdt

���:
Thus
Z 1

0
jel(u)(x)j

qdx � c
I

∑
i=1

I(i); (7)

where

I(i) =
Z

[0;1]\[xi�ri;xi+ri]

jΨ(l)
i (x)j

qjxi�xjq�1
���

xiZ

x

jxi�tjpλqju(pλ+1)(t)jqdt
���dx:

We first estimate I(i) for those i with xi 2 [0;2 c̃2r]. We
have

I(i)� I(i;1)+ I(i;2);

where

I(i;1) =
Z xi

0
jΨ(l)

i (x)jq(xi�x)q�1

Z xi

x
(xi� t)pλqju(pλ+1)(t)jqdt dx;

I(i;2) =
Z xi+ri

xi

jΨ(l)
i (x)jq(x�xi)

q�1

Z x

xi

(t�xi)
pλqju(pλ+1)(t)jqdt dx:

These terms are bounded as follows.

I(i;1)� cr(pλ�l)q
Z xi

0
(xi�x)q�1

Z xi

x
ju(pλ+1)(t)jqdt dx

= cr(pλ�l)q
Z xi

0
ju(pλ+1)(t)jq

Z t

0
(xi�x)q�1dxdt

= cr(pλ�l)q
Z xi

0
ju(pλ+1)(t)jq[xq

i � (xi� t)q]dt

� cr(pλ�l)q
Z xi

0
rq�1t ju(pλ+1)(t)jqdt:

Using the bound (1), we have

I(i;1)� cr(pλ+1�l)q�1
Z xi

0
t
�

t(λ�pλ�1)q +1
�

dt:

Therefore,

I(i;1)� cr(minfλ+2=q; pλ+1+2=qg�l)q: (8)

We also have

I(i;2)�
Z xi+ri

xi

c r(1�l)q�1dx
Z xi+ri

xi

(t�xi)
pλqju(pλ+1)(t)jqdt

= cr(1�l)q
Z ri

0
spλqju(pλ+1)(xi + s)jqds

� cr(1�l)q
Z ri

0
spλq

�
s(λ�pλ�1)q +1

�
ds:

Therefore,

I(i;2)� cr(minfλ+1=q; pλ+1+1=qg�l)q: (9)

Combining (8) and (9), we see that if xi 2 [0;2 c̃2r], then

I(i)� cr(minfλ+1=q; pλ+1+1=qg�l)q:

Since the number of xi in [0;2 c̃2r] is bounded from above
by a constant, we have

∑
i:xi2[0;2 c̃2r]

I(i)� cr(minfλ+1=q; pλ+1+1=qg�l)q: (10)

Then we estimate those I(i) with xi > 2 c̃2r. We have

I(i) =

minfxi+ri;1gZ

xi�ri

jΨ(l)
i (x)jqjxi�xjq�1

���
xiZ

x

jxi� tjpλqju(pλ+1)(t)jqdt
���

�

minfxi+ri;1gZ

xi�ri

c r(1�l)q�1dx

minfxi+ri;1gZ

xi�ri

rpλqju(pλ+1)(t)jqdt

= cr(pλ+1�l)q

minfxi+ri;1gZ

xi�ri

ju(pλ+1)(t)jqdt:

So

∑
i:xi>2 c̃2r

I(i)� cr(pλ+1�l)q ∑
i:xi>2 c̃2r

Z minfxi+ri;1g

xi�ri

ju(pλ+1)(t)jqdt:

Because of the hypothesis (H), we have

∑
i:xi>2 c̃2r

Z minfxi+ri;1g

xi�ri

ju(pλ+1)(t)jqdt� c
Z 1

c̃2r
ju(pλ+1)(t)jqdt:

Using the bound (1) we obtain

∑
i:xi>2 c̃2r

I(i)� cr(minfλ+1=q; pλ+1+1=qg�l)q: (11)
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We can combine (10) and (11),

kel(u)kLq(0;1) � crminfλ+1=q; pλ+1+1=qg�l:

By (6), (5) follows from this estimate.

Taking the limit q ! ∞ in (5), we see that it holds for
q = ∞ also.

4 Reproducing Kernel Particle Method and Error
Analysis

The Reproducing Kernel Particle Method is a Galerkin
method combined with the use of reproducing kernel par-
ticle spaces. To explain the method in a concrete problem
setting, we take a linear elliptic boundary value problem
as an example. It is equally fine to consider nonlinear el-
liptic BVPs if we wish. Since nonhomogeneous Dirichlet
boundary conditions can be rendered homogeneous in a
standard way (see Han, Reddy (1999)) or one of many
texts on modern PDE), we will assume Dirichlet bound-
ary conditions, if any, are homogeneous. The weak for-
mulation is

u 2V : a(u;v) = `(v) 8v 2 V: (1)

Here V is a Sobolev space. For Neumann boundary value
problems, V is a complete Sobolev space without bound-
ary condition constraints, e.g., H 1(Ω) for second-order
problems, and H2(Ω) for fourth-order problems, Ω be-
ing the spatial domain of the differential equation. Oth-
erwise, V is a subspace of a complete Sobolev space (e.g.
H1

0 (Ω)). The bilinear form a(�; �) is continuous and ellip-
tic on V , and ` is a linear continuous form on V . By the
Lax-Milgram lemma, the variational problem (1) has a
unique solution u 2V .

On Ω, introduce a set of particles fx igI
i=1, some of the

particles lie on the boundary. Also introduce fr ig
I
i=1,

ri > 0, and construct functions fΨigI
i=1 in the form of

(2) where fbα(x)gjαj�p are computed from (4). The re-
producing kernel paticle space is

VR = spanfΨi; 1� i� Ig\V:

Then the RKPM is

uR 2 VR : a(uR;v) = `(v) 8v 2 VR: (2)

This problem admits a unique solution u R 2 VR, again
following the Lax-Milgram lemma. For error estimates

of the RKP solution uR 2VR defined in (2), we have Céa’s
inequality

ku�uRkV � c inf
v2VR

ku�vkV : (3)

In the rest of the section, we assume the (r; p)-regularity
and hypothesis (H). Then we can use the error estimates
for RKP interpolants derived in the previous section.

4.1 Error Estimates for BVP without Dirichlet Condi-
tion

For a boundary value problem without Dirichlet bound-
ary condition,

VR = spanfΨi; 1� i� Ig:

Assume the solution u is continuous. Then its reproduc-
ing kernel particle interpolant

uI(x) =
I

∑
i=1

u(xi)Ψi(x)

is well defined and uI 2VR. Then from (3), we have

ku�uRkV � cku�uIkV (4)

and the question of error estimation for the RKP solution
uR is reduced to that for the RKP interpolant uI. As a
sample result, we can state the following result.

Theorem 4.1 Let us employ the RKPM to solve the
second-order BVP of the type (1) without Dirichlet
boundary condition. Assume the solution u is continu-
ous and has the behavior (1). Assume Φ 2 C 1, and the
(r; p)-regularity and hypothesis (H) are valid. Then we
have the error estimate

ku�uRkH1(Ω) � crminfλ�1=2; pg: (5)

4.2 Error Estimates for BVP with Dirichlet Condition

When the boundary value problem includes a Dirichlet
condition, derivation of rigorous error estimates is much
more difficult. Since in general uI 62 VR, and we need to
replace (4) by

ku�uRkV � cku� ũIkV ; (6)

where ũI 2VR is a modification of uI. This approach can-
not be carried out in case d � 2, since a function from VR
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does not vanish on a part of the boundary even when it is
zero at all the particles on that part of the boundary.

In one-dimensional case, though, it is possible to derive
rigorous error estimates. In the following, we consider a
general linear elliptic BVP on [0;L]with Dirichlet bound-
ary conditions

u(0) = u0; u(L) = uL: (7)

Let the weak form of the problem be: Find u 2 H 1(0;L)
satisfying (7) such that

a(u;v) = `(v) 8v 2 H1
0(0;L): (8)

Let the RKP space be

VR = spanfΨi; 1� i� Ig:

Then the RKPM for the problem is: Find uR 2 VR satis-
fying such that uR(0) = u0, uR(L) = uL, and

a(uR;v) = `(v) 8v 2VR\H1
0 (0;L): (9)

For an error estimate, Céa’s inequality (3) is modified to

ku�uRkV � c inffku�vkV : v2VR; v(0) = u0; v(L) = uLg:

(10)

For the RKP interpolant, we have

uI(x) = u(x)+Rp(x);

where

Rp(x) =
1
p!

I

∑
i=1

Ψi(x)
Z xi

x
(xi� t)pu(p+1)(t)dt:

In particular,

uI(0)�u(0) =Rp(0) =
1
p!

I

∑
i=1

Ψi(0)
Z xi

0
(xi�t)pu(p+1)(t)dt:

Then

juI(0)�u(0)j � c ∑
i:jxi j�ri

rp
i

Z ri

0
ju(p+1)(t)jdt:

Since there are at most I0 points xi with jxij � ri, we have

juI(0)�u(0)j � crp+1=2ku(p+1)kL2(0;L): (11)

Similarly,

juI(L)�u(L)j � crp+1=2ku(p+1)kL2(0;L): (12)

Under the assumption u(p+1) 2 L∞(0;L), the estimates
(11) and (12) can be sharpened,

juI(0)�u(0)j+ juI(L)�u(L)j � crp+1ku(p+1)k∞:

Define a corrected RKP interpolant,

ũI(x) = uI(x)+
L�x

L
(u(0)�uI(0))+

x
L
(u(L)�uI(L)):

We have ũI(0) = u(0), ũI(L) = u(L). Since linear func-
tions can be reproduced, ũI 2 VR. By (11) and (12), we
have

kũI�uIkWl;q(0;L) � crp+1=2ku(p+1)kL2(0;L);

l � 0 integer; q 2 [1;∞]: (13)

The definition of the corrected RKP interpolant and the
related error estimate can be easily modified to adapt to
the case with a Dirichlet condition at only one end of the
interval [0;L]. Then from (10), we have

ku�uRkH1(0;L) � cku� ũIkH1(0;L) �

c
�
ku�uIkH1(0;L)+kũI �uIkH1(0;L)

�
: (14)

Using (14), (13) and the estimate for u�uI from the pre-
vious section we get the next result.

Theorem 4.2 Let us employ the RKPM to solve the
second-order BVP (8) with a solution u with the behav-
ior (1). Assume Φ 2 C1, and the (r; p)-regularity and
hypothesis (H) are valid. Then we have the error esti-
mate

ku�uRkH1(Ω) � crminfλ�1=2; pg: (15)

Applying the well-known Aubin-Nitsche’s technique, we
can show that under the conditions stated in Theorem 4.2,
the following L2-norm error estimate holds:

ku�uRkL2(Ω) � crminfλ�1=2; pg+1: (16)
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5 Numerical Results

In this section, we present some numerical results on con-
vergence orders of RKPM. The numerical results support
the theoretical error estimates presented in the previous
sections.

The boundary value problem we solve is

�
�u00(x) =�λ (λ�1)xλ�2; x 2 (0;1);
u(0) = 0; u(1) = 1:

The exact solution is

u(x) = xλ:

The parameter λ is chosen to be larger than 1=2 so that
the solution u 2 H 1(0;1). The smaller the parameter λ,
the stronger the singularity. For various values of λ, we
will report numerical results on the L2-norm errors of
meshfree solutions and their derivatives, as well as the
L2-norm errors of meshfree interpolants and their deriva-
tives.

We first use uniform particle distributions with equal sup-
port size. We divide the interval [0;1] into N = 20, 30,
40, 50 and 60 equal parts, and let h = 1=N. We use r =
(p+2:1)h as the support size. This choice of the support
size guarantees the satisfaction of both (r; p)-regularity
and hypothesis (H). Since r is proportional to h, we show
figures for errors compared against h (rather than r itself)
in the log-log scale. Numerical results for λ = 0:6, 1:5
and 2:5 are shown in Figures 1–3. These results support
the theoretical convergence order minfλ�1=2; pg in the
H1-norm (see (16)) and order minfλ�1=2; pg+1 in the
L2-norm (see (16)) for the meshfree solution and mesh-
free interpolation errors.

To increase the accuracy of the meshfree solutions in
solving singular problems, it is natural to use more par-
ticles near the singularity points. To see the effects, we
discuss a local particle enhancement technique for the 1D
model problem. Given a natural number n and a parame-
ter a2 (0;1), we define a particle distribution as follows:
First, we introduce the nodes (1� n�a) j, j = 0;1; : : :;n.
Since (1� n�a)n�1 � (1� n�a)n < (1� n�a)n, we fur-
ther divide [0;(1� n�a)n] into subintervals with lengths
nearly equal to (1� n�a)n�1� (1� n�a)n. The support
size of the shape function corresponding to a particle
is chosen to be (2:1+ p) times the larger length of the
two subintervals containing the particle. This condition
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Figure 1 : Uniform particle distributions, λ = 0:6
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Figure 2 : Uniform particle distributions, λ = 1:5
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Figure 3 : Uniform particle distributions, λ = 2:5



74 Copyright c 2002 Tech Science Press CMES, vol.3, no.1, pp.65-76, 2002

guarantees the invertibility of the discrete moment ma-
trix. The parameter a controls the strength of the particle
enhancement for the singularity. A smaller value for a
indicates a more dense particle distribution near the sin-
gularity.

The results of the particle enhanced meshfree solutions
(indicated by “Æ”) are compared with those with uniform
particle distributions (indicated by “+”); see Figures 4–
7. In these figures, N is the total degrees of freedom.
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Figure 5 : Enhanced particle distributions with a = 0:6,
λ = 1:5
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Figure 6 : Enhanced particle distributions with a = 0:5,
λ = 1:5

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

 1.9628,p=1

 2.0107,p=2

N

||E
||2

meshfree solution

 1.9619,p=1

 2.0657,p=2

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

 0.9398,p=1

 1.0087,p=2

N

||E
||2

meshfree derivative

 0.9756,p=1

 1.0358,p=2

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

 1.9488,p=1

 2.0191,p=2

N

||E
||2

interpolation

 1.9776,p=1

 2.0733,p=2

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

 0.9398,p=1

 1.0095,p=2

N

||E
||2

interpolation derivative

 0.9760,p=1

 1.0358,p=2

Figure 7 : Enhanced particle distributions with a = 0:9,
λ = 1:5

Numerical results for using the meshfree method to
solve elliptic boundary value problems on higher dimen-
sional corner domains exhibit similar properties. As one
such example, we solve a boundary value problem for
the Laplace equation � ∆u = 0 on the crack domain
(�1;1)2nff0g� [0;1)g. The solution of the problem is
chosen to be

u(x) = kxk1=2 sin(θ=2);

where θ is the angle variable (θ = 0 corresponds to the
x-axis). Due to the symmetry, we solve a half domain
problem on the rectangle (�1;1)� (0;1). Homogeneous
Neumann condition is specified on (�1;0)� f0g, and
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Figure 8 : Uniform particle distributions, crack problem

Dirichlet condition is specified on the rest of the bound-
ary. Uniform particle distributions are used. The numer-
ical results for the crack problem are shown in Figure 8.
The numerical results suggest the following convergence
order

k∇ (u�uR)kL2(Ω) = O(r1=2);

ku�uRkL2(Ω) = O(r3=2);

irregardless of value of the reproducing order p. The re-
sults also suggest that for the meshfree interpolation,

k∇ (u�uI)kL2(Ω) = O(r1=2);

ku�uIkL2(Ω) = O(r1):

Thus the convergence order for the interpolation in the
L2(Ω) norm is twice that in the H 1(Ω) norm, while the
convergence order for the meshfree solution in the L2(Ω)
norm is one higher than that in the H 1(Ω) norm.

Similar numerical experiments are done for an L-shape
domain problem. Again we solve a boundary value prob-
lem for the Laplace equation. This time, the domain is
chosen to be (�1;1)2nf[0;1)� (�1;0]g. The data are
chosen such that the exact solution has the form

u(x) = kxk2=3 sin(2θ=3):

Numerical results of the meshfree method corresponding
to uniform particle distributions are shown in Figure 9.
The numerical results suggest the following convergence
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Figure 9 : Uniform particle distributions, L-shape prob-
lem

order

k∇ (u�uR)kL2(Ω) = O(r2=3);

ku�uRkL2(Ω) = O(r5=3);

k∇ (u�uI)kL2(Ω) = O(r2=3);

ku�uIkL2(Ω) = O(r4=3):

Again, we observe that the convergence order for the in-
terpolation in the L2(Ω) norm is twice that in the H 1(Ω)
norm, while the convergence order for the meshfree so-
lution in the L2(Ω) norm is one higher than that in the
H1(Ω) norm.
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