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The Emerging Role of Multiscale Modeling in Nano- and Micro-mechanics of
Materials

Nasr M. Ghoniem1 and Kyeongjae Cho2

Abstract: As a result of surging interest in finding fun-
damental descriptions for the strength and failure prop-
erties of materials, and the exciting prospects of de-
signing materials from their atomic level, an interna-
tional symposium on Multiscale Modeling was convened
at ICES’2K in Los Angeles during August 23 - 25,
2000. In this symposium, 23 speakers with research in-
terests spanning fields as diverse as traditional mechan-
ics, physics, chemistry and materials science have given
talks at this symposium. The topics of discussion were
focused on sub-continuum modeling of the mechanics
of materials, taking into account the atomic structure of
solid materials. The main motivation of the symposium
was the realization of the limitations of current contin-
uum mechanics modeling approaches (e.g. the finite el-
ement method (FEM)) to describe the behavior of mate-
rials at scales smaller than tens of microns. The speak-
ers represented the international scientific community in
different countries, and utilized diverse simulation and
modeling tools for sub-continuum systems. The discus-
sions covered Ab Initio quantum simulations (e.g., den-
sity functional theory and tight-binding methods), atom-
istic simulations using empirical many-body interatomic
potentials, Monte Carlo methods, mesoscopic statistical
and dislocation dynamics, and advanced continuum field
equation approaches. In this article, we provide a per-
spective on the variety of methods presented at the sym-
posium, and a vision for future developments in multi-
scale simulations for nano- and micro-mechanics of ma-
terials.
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1 Introduction

Continuum methods of modeling the behavior of mate-
rials have dominated the research scene for over a cen-
tury. Successful engineering designs have been based
on continuum conservation equations, supplemented by
a set of phenomenological relationships (or constitutive
equations, CEs’) between cause and effect (e.g. force
and motion, or stress and strain, etc.) Because conser-
vatism is embodied in most engineering designs, such
an approach has been successful in designing large-scale
structures and components, where the exact knowledge
of materials response is not essential. The underlying
physical principles behind CEs’ are grounded in the sta-
tistical mechanics of atomic scale processes. These are
captured in the CEs’ as macroscopic thermodynamic av-
erages. Within this approach, all atomic scale dynam-
ics and defect evolutions are implicitly averaged over
time and space so that the CEs’ represent the mechani-
cal behavior of materials over long time and large length
scales. Here, the time and length scales are those of typ-
ical defects, which determine the mechanical properties:
point defects, dislocations, interfaces and grain bound-
aries. Therefore, continuum ana lyses would be valid
only for large enough systems that include a substan-
tial number of defects. Continuum approaches begin to
fail as the system size approaches the average separation
distance in between defects. At small length scales rep-
resentative of nano- and micro-engineered material sys-
tems, continuum models are not flexible enough to ac-
commodate individual atomic scale processes. While the
nano-scale is the length scale of individual atoms and de-
fects (i.e. 1� 10 nm), and the micro-scale represents the
length-scale of typical microstructure (i.e. 0:1� 1 µm),
the meso-scale is a typical length scale in which the
defect-interface interaction and individual defect dynam-
ics become significant (i.e. 1�100 µm).

Recently, the confluence of a number of factors has be-
gun to upset the continuum paradigm of engineering de-
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sign and analysis. First and foremost are the myriad of
experimental observations on the mechanical behavior of
materials that cannot be readily explained within the con-
tinuum mechanics framework: dislocation patterns in fa-
tigue and creep, surface roughening and crack nucleation
in fatigue, the inherent inhomogeneity of plastic defor-
mation, the statistical nature of brittle failure, plastic flow
localization in shear bands, and the effects of size, ge-
ometry and stress state on the yield properties. Second,
while CEs’ represent experimental data in some space
defined by temperature, stress state, strain rate and mate-
rial conditions, scientists and engineers have never been
comfortable in extending the range of experimentally-
derived CEs’ without excessive conservatism. If there
is no physical understanding, one can simply never be
sure about the behavior of materials under unanticipated
conditions outside the measured range. Third, the engi-
neering world has shrunk down to small length scales! It
is challenging to design engineering systems in the range
of nanometers that are anticipated in new generations of
computers, electronics, photonics and drug delivery sys-
tems. Urgent problems in computer technology depend
on understanding failure mechanisms of nano-wires con-
necting chips in the sub-micron length scale. At the same
time, the technology of Micro-Electro-Mechanical Sys-
tems (MEMS) has begun to reach the stage where physi-
cal understanding of the mechanical behavior will deter-
mine the reliability of developed products. There is con-
siderable effort to design ultra-strong and ultra-ductile
materials by utilizing the mechanical properties of nano-
layers. In high-payoff, high-risk technologies (e.g. nu-
clear and aerospace), the effects of aging and severe envi-
ronments on failure mechanisms cannot be left to conser-
vative factor-of-safety approaches to design, but require
thorough mechanistic analysis of materials degradation
in anticipated environments. All these examples point to
the need for a physically-based approach to performance
analysis of such small engineering structures. The chal-
lenge is great, because neither statistical nor continuum
mechanics are reliable in every case. For example, one
single nano-void can cause failure of an interconnect on
an IC board. Statistical mechanics cannot adequately ad-
dress this situation, because the law of large numbers is
not obeyed. Fourth, the sophistication of computer hard-
ware and software is increasing at an astonishing speed,
and large-scale computing is becoming far more accessi-
ble than just a few years ago. Today, a cluster of dozens
of PCs, linked by network hardware, can cost as little

as $30,000 and out-perform supercomputers that used to
cost in the millions. Such accessibility is encouraging
scientists and engineers to develop efficient numerical
methods for modeling complex physical phenomena in
materials, without much need for simplified analytical
solutions of excessively unrealistic material representa-
tions. Computational modeling of materials behavior has
begun to complement the traditional theory and experi-
mental approaches of research. Finally and interestingly,
the channels of communications between engineers and
scientists of uncommon backgrounds are becoming ever
more common! In recent technical meetings and con-
ferences one finds mechanical engineers and continuum
mechanicians discussing the same issue with materials
scientists, physicists and chemists. This barrierless atti-
tude is promoting a sense of creativity and unprecedented
fundamental focus in the mechanics of materials field.

An alternative to continuum analysis is atomistic mod-
eling and simulation, in which individual atoms are ex-
plicitly followed during their dynamic evolution. Even
though this explicit modeling of atomic structures can
trace all details of atomic-scale processes, it has its own
set of limitations. These are time and length scale limi-
tations from both small and large directions. Since atom-
istic modeling methods describe atoms explicitly, time
scales are on the order of 10�15 second (or 1 f sec) and
length scales on the order fo 10�10 m (or 1 Å). As a re-
sult of these very small time and length scales, typical
atomistic simulations are limited to very small systems
over very short times. Even though computing power
has been rapidly increasing, brute force simulations us-
ing atomistic modeling methods cannot describe systems
much larger than 1 µm (billions of atoms) or longer than
1 msec (billions of f sec time steps).

The multiscale modeling (MMM) paradigm is based on
the realization that continuum and atomistic analysis
methods are complementary. At meso-scales (i.e. those
in between continuum and atomistic), continuum anal-
yses start to break down, and atomistic methods begin
to reach their inherent time and length-scale limitations.
Mesoscopic simulation methods are being currently de-
veloped to bridge this critical gap in between the ex-
tremes of length scales. At the bottom end of the length
scales within atomistic simulation methods lies quantum
mechanics. Here, components of atoms (e.g. electrons
and nucleons) can be explicitly described, albeit with var-
ious degrees of approximations. However, quantum sim-
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ulation methods require 105�106 times more computing
resources than classical atomistic simulations. Thus, and
so far, such methods are limited to atomic systems of a
few hundred atoms. It is important to point out that at
nano-scales, materials properties are closely coupled so
that electronic and chemical properties are strong func-
tions of mechanical deformations. This is evident in the
coupling between the band gap and bending strain of SiC
nano-tubes, for example (1). Such realization may be
opening the door for many and novel nano device appli-
cations, where chemo-mechanics and physico-mechanics
must be integrated from the start.

The traditional gap between atomistic simulation meth-
ods and continuum mechanics has presented significant
challenges to the scientific community. When the length-
scale cannot be accessed by either continuum methods
because it is too small for averaging, or the atomistic
methods because it is too large for simulations on present
day computers, these two approaches become inade-
quate. Two possible solutions have emerged so far to
this challenge. Instead of simulating the dynamics of
atomic systems, one can just study the dynamics of de-
fect ensembles in the material. In this innovative strategy,
the problem becomes computationally tractable without
loss of rigor. Examples of this approach are the dynam-
ical simulations of interacting cracks in brittle materials,
or dislocations in crystalline materials. It is noted that
the development of dislocation (or defect) dynamics fol-
lows from the continuum theory of elasticity, with ad-
ditional limitations at atomic length scales. Recently, a
surge in interest towards understanding the physical na-
ture of plastic deformation has developed. This inter-
est is motivated by the extensive experimental evidence
which shows that the distribution of plastic strain in ma-
terials is fundamentally heterogeneous ((2)-(4)). Because
of the complexity of dislocation arrangements in ma-
terials during plastic deformation, an approach, which
is based on direct numerical simulations for the mo-
tion and interactions between dislocations is now be-
ing vigorously pursued. The idea of computer simula-
tion for the interaction between dislocation ensembles
is a recent one. During the past decade, the approach
of cellular automata was first proposed by Lepinoux and
Kubin(5), and that of Dislocation Dynamics by Ghoniem
and Amodeo (6)-(12). These early efforts were con-
cerned with simplifying the problem by considering only
ensembles of infinitely long, straight dislocations. The

method was further expanded by a number of researchers
((13)-(17)), showing the possibility of simulating reason-
able, albeit simplified dislocation microstructure. To un-
derstand more realistic features of the microstructure in
crystalline solids, Kubin, Canova, DeVincre and cowork-
ers ((18)-(25)) have pioneered the development of 3-D
lattice dislocation dynamics. More recent advances in
this area have contributed to its rapid development (e.g.
(26)-(28), and (29)-(31)).

The second solution to the mesoscale problem has been
based on statistical mechanics approaches (32)-(38). In
these developments, evolution equations for statistical
averages (and possibly for higher moments) are to be
solved for a complete description of the deformation
problem. The main challenge in this regard is that, un-
like the situation encountered in the development of the
kinetic theory of gases and its subsequent extensions to
neutrons, plasmas, photons, etc., the geometry of inter-
acting entities within the system matters. It is not con-
ceivable to pursue such an approach without due consid-
eration to the geometry of dislocations and cracks, and to
the confinement of their motion on specific slip systems,
or along specific directions (37).

In this overview article, we briefly outline the sta-
tus of research in each component that make up the
MMM paradigm for modeling nano- and micro-systems:
Quantum Mechanics (QM), Molecular Dynamics (MD),
Monte Carlo (MC), Dislocation Dynamics (DD) and Sta-
tistical Mechanics (SM). Time and length scale hierar-
chies, along with a brief classification of computational
methods for nano- and micro-systems, are shown in FIG.
(1). The current overview is not intended to be exhaus-
tive, but is designed to give the reader an informed level
of understanding of the various components of research
in MMM, with selected examples to illustrate what is be-
ing studied now. Since several of these topics have been
addressed within the symposium, we build on the struc-
ture of this emerging field, and introduce the papers con-
tained in this special issue. We will finally attempt to
project a possible vision for future developments in this
emerging field.
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Figure 1 : Schematic illustration of the Multi-scale Ma-
terials Modeling (MMM) Hierarchy

2 An Overview of Computational Nano- & Micro-
mechanics

2.1 Quantum Mechanics - QM

In recent years, several accurate quantum molecular dy-
namics schemes have emerged. In these methods, forces
between atoms are explicitly computed at each time step
within the Born-Oppenheimer approximation (39). The
dynamic motion for ionic positions are still governed by
Newtonian or Hamiltonian mechanics, and described by
molecular dynamics. The most widely known and accu-
rate scheme is the Car-Parrinello (CP) molecular dynam-
ics method (40), where the electronic states and atomic
forces are described using the ab-initio density functional
method (usually within the local density approximation
(LDA)). While such ab-initio MD simulations can now
be performed for systems consisting of a few hundred
atoms, there is still a vast range of system sizes for which
such calculations start to stretch the limits of present day
computational resources and become intractable. In the
intermediate regimes, between large scale classical MD
and quantum (CP) dynamics methods, semi-empirical
quantum simulation approaches cover an important sys-
tem size range where classical potentials are not accu-
rate enough and ab-initio computations are not feasible.
The tight-binding molecular dynamics (TBMD) (41) ap-
proach thus provides an important bridge between accu-
rate ab-initio quantum MD and classical MD methods.

In the most general approach of full quantum mechan-
ical descriptions of materials, atoms are represented as
a collection of quantum mechanical particles, nuclei and
electrons, governed by the Schrödinger equation:

H ΦfRI;rig= EtotΦfRI;rig (1)

With the full quantum many-body Hamiltonian operator:

H=∑ P2
I

2MI
+∑ ZIZJe2

RIJ
+∑ p2

i

2me
+∑ e2

ri j
�∑ ZIe2

jRI � rij
(2)

Where RI and ri are nuclei and electron coordinates, re-
spectively. Using the Born-Oppenheimer approximation,
the electronic degrees of freedom are assumed to follow
adiabatically the corresponding nuclear positions, and
the nuclei coordinates become classical variables. With
this approximation, the full quantum many-body prob-
lem is reduced to a quantum many-electron problem:

H (RI)Ψ(ri) = EelΨ(ri) (3)

where,

H = ∑ P2
I

2MI
+H (RI) (4)

Ab initio (or first principles) methods have been devel-
oped to solve complex quantum many-body Schrödinger
equations using numerical algorithms (43; 44). Cur-
rent ab initio simulation methods are based on the rigor-
ous mathematical foundations provided by two important
works of Hohenberg and Kohn (1963) (43), and Kohn
and Sham (1964) (44). Hohenberg and Kohn have de-
veloped a theorem stating that the ground state energy
(Eel) of a many-electron system is a functional of the
total electron density, ρ(r), rather than the full electron
wave function, Ψ(ri), thus: Eel : (Ψ(ri)) � Eel(ρ(r)).
The Hamiltonian operator H and Schroedinger equation
are given by:

H (RI) = ∑ p2
i

2me
+∑ e2

ri j
�∑ ZIe2

jRI� rij +∑ZIZJe2

RIJ
(5)

EelΨ(ri) = H (RI)Ψ(ri) (6)

where RI and ri are atomic positions and electronic co-
ordinates, respectively. The density functional theory
(DFT) is derived from the fact that the ground state total
electronic energy is a functional of the total electron den-
sity r(ρ). Subsequently, Kohn and Sham have shown that
the DFT can be reformulated as a single electron problem
with self-consistent effective potential including all the
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exchange-correlation quantum effects of electronic inter-
actions:

H1 =
p2

2me
+VH(r)+VXC[r(ρ)]+Vion�el(r); (7)

r(ρ) = ∑ jΨi(r)j2; (8)

H1Ψi(r) = εiΨi(r); i = 1; ;Ntot : (9)

This single electron Schrödinger equation is known as
Kohn-Sham equation, and the local density approx-
imation (LDA) has been introduced to approximate
the unknown effective exchange-correlation potential
VXC[r(ρ)]. This DFT-LDA method has been very suc-
cessful in predicting the properties of materials without
using any experimental inputs other than the identity (i.e.,
atomic numbers) of constituent atoms (40; 42). For prac-
tical applications, however, the DFT-LDA method has
been implemented with a pseudopotential approximation
and a plane wave (PW) basis expansion of single electron
wave functions. These systematic approximations reduce
the electronic structure problem as a self-consistent ma-
trix diagonalization problem. Over the last three decades,
the simulation method has been rapidly improved from
iterative diagonalization (ID), to Car-Parrinello molecu-
lar dynamics (CPMD) (40), to conjugate gradient (CG)
minimization methods. CPMD has significantly im-
proved the computational efficiency by reducing the N 3-
scaling of ID method down to N 2-scaling. The CG
method has further improved the efficiency by an addi-
tional factor of 2-3. One of the popular DFT simula-
tion programs is the Vienna Ab initio Simulation Package
(VASP), which is available through a license agreement
(45). For response function analysis (e.g., dielectric ten-
sor, phonon spectrum, stress/strain tensors), the ABINIT
code is a well-developed DFT code (46). Another use-
ful DFT simulation program has been developed in C++

language (47). In addition to these simulation programs,
there is also a commercial package from Molecular Sim-
ulation Inc. (48). With these and other widely used DFT
simulation packages, the ab initio simulation method has
been established as a major computational materials re-
search tool (49).

Since the DFT simulation enables us to model a few hun-
dred atoms without any experimental inputs, it provides
a powerful tool to investigate nanomaterials with predic-
tive power. Nanomaterials are building blocks of nan-
otechnology, and it is essential to develop detailed under-

Figure 2 : Top: Total valence electron charge density
plot. The value of charge contour is 0.0015 (eV/Å) show-
ing the binding charge between the SWNT (10,0) and
the NO2 molecule. Three units are shown in this figure.
Bottom: Binding energy curve for NO2 interacting with
(10,0) SWNT as a function of distance from NO2 to the
nanotube. The solid line curve is a fitting with universal
binding curve.
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standing of their diverse material properties. However,
experimental characterization is very challenging due to
extremely small size of nanostructures. Quantum simu-
lations provide a natural solution to this problem comple-
menting the experimental nanomateirals research. Here
we illustrate the use of ab initio simulations to the study
of carbon nanotube gas sensor applications. Recent ex-
periments have shown that carbon nanotubes can change
their electronic properties due to the presence of very
small amount of gas molecules (e.g., NO2, NH3, or O2).
The underlying mechanism of the gas molecule detection
was proposed to be the adsorption of the molecules on
the nanotube surface and accompanying charge transfer
between the molecules and nanotube.

To test this assumption, Peng and Cho have performed
DFT simulations of gas molecule - carbon nanotube sys-
tems. FIG. (2) shows the results of DFT simulatiosn for
NO2-(10,0) nanotube system. Three NO2 molecules are
shown at the lower right corner of the left panel, and
the molecule-nanotube binding energy curve is shown
in the right panel. The energy curve shows that there
is an attractive interaction between NO2 molecule and
the nanotube with 0.34 eV binding energy. The analysis
of electronic structure change shows that there is a net
electron transfer (about 0.1 eV) from nanotube to NO2

molecule leading to p-type doping in the semiconduct-
ing (10,0) nanotube. This example illustrates that quan-
tum simulations can model detailed electronic structures,
binding configurations, and energetics of nanoscale ma-
terials leading to detailed mechanistic understanding of
their properties.

2.2 Classical Molecular Dynamics - MD

Classical molecular dynamics (MD) simulations describe
the atomic scale dynamics of a system, where atoms and
molecules move while simultaneously interacting with
many other atoms and molecules in their vicinity. The
dynamic evolution of the system is governed by New-
ton’s equations of motion:

d2RI

dt2 = FI =� dV
dRI

; (10)

which is derived from the classical Hamiltonian of the
system:

H = ∑ P2
I

2MI
+V (RI) (11)

Each atom moves and acts simply as a rigid particle that
is moving in the many-body potential of other similar
particles, V(RI), which can also be obtained from more
accurate quantum simulations. The atomic and molecu-
lar interactions describing the system dynamics are given
by classical many-body force field functions. The atomic
interaction energy function V(RI) can be written in terms
of pair and many-body interactions, depending on the rel-
ative distances among different atoms (50; 51). Atomic
forces are derived as analytic derivatives of the interac-
tion energy functions, FI(RI) = �dV=dRI , and are used
to construct Hamilton’s equations of motion, which are
2nd order, ordinary differential equations. These equa-
tions are approximated as finite difference equations,
with a discrete time step δt, and are solved by standard
time integration algorithms, The simulations can be per-
formed under a variety of physical conditions through
discrete time evolution, starting from specified initial
condition.

Until the early 1970’s, MD simulations utilized simple
interatomic potentials, such as the Lennard-Jones poten-
tial, to qualitatively model diverse properties of material
systems. To model more realistic materials, such as met-
als and semiconductors with complex many-body inter-
actions, three approaches have emerged: (1) potentials
developed on following the Born-Openheimer expansion
(e.g. the Pearson (52) and Stillinger-Weber (SW) (53)
potentials); (2) potentials that attempt to model the local
environment using electron density distributions (e.g. the
Embedded Atom Method (EAM) (50; 51)); (3) potentials
that introduce the local electronic environment directly
into pair potentials (e.g. the Tersoff potential (54)).

The Born-Openheimer expansion expresses the inter-
atomic potential as an infinite sum over pair, triplet, etc.
interactions between atoms in the solid, as:

Φt(r1;r2;r3; � � �) = 1
2! ∑

j 6=l

V (2)(ri j)

+
1
3! ∑k 6=∑

j 6=i

V (3)(ri j;r jk;rki)

+ � � � 1
n! ∑q 6=

� �∑
m6=

� �∑
j 6=l

V (n)(ri j; ��;riq; ��;rmq; ��) (12)

For covalently-bonded materials, Pearson takes the two-
body component to be the Lennard-Jones potential, while
triplet interactions are represented by an Axilrod-Teller-
type three-body potential (52). The SW potential is an-
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other example of the type of potential that is used to ef-
fectively deal with the directional nature of bonding in
covalent materials. The EAM potential was originally
developed for metals by Daw and Baskes (50). In this
approach, the energy of an atom in the crystal is divided
into two parts: (1) a two-body core-core interaction en-
ergy Φi j(ri j); (3) an additional energy needed to embed
the atom into the electron system in the lattice Fi(ρi),
where ρi is the average local electron density. The to-
tal configurational energy fo the crystal is written as a
sum of these two types of contributions:

E = ∑
i

(
Fi(ρi)+∑

j 6=i

1
2

Φi j(ri j)

)
(13)

The embedding energy is usually fit to the form:

Fi = AiE0
i ρi lnρi (14)

Where Ai is a constant for atom type i, E 0
i is its subli-

mation energy, and ρi is obtained by functional fits to
the electronic configuration surrounding atom i. Based
on variations of these EAM and SW potentials, a wide
variety of many-body potentials have been proposed and
used in classical molecular dynamics simulations. These
potentials are expected to work well within the range
of physical parameters in which they were constructed.
Numerical integration of the equations of motion is per-
formed either by explicit or implicit methods. The simple
Euler scheme is not appropriate for MD simulations be-
cause of it lacks numerical stability. In the explicit Ver-
let’s leap-frog method, the equation of particle motion is
split into two first-order equations:

dx
dt

= v;
dv
dt

= f (x; t) (15)

When these equations are discretized and re-combined,
one gets for the particle position after a small time incre-
ment ∆t:

xn+1 = xn�1 +2∆t(vn�2 +2∆t fn�1) (16)

The Verlet algorithm is very popular in MD simulations
because it is stable, memory-efficient, and allows a rea-
sonably large time-step. Another popular implicit in-
tegration method for MD simulations is the predictor-
corrector scheme, and in particular, the Gear algorithm
(55). These techniques are formulated either as multi-
value, where higher-order spatial derivatives are carried

(a)

(b)
Figure 3 : Snapshots of a portion of the (011) cross-
section with the relative angle being (a) 45 Æ, and (b) 135Æ,
when the relative velocity is 0:93Ct at 45Æ. The disloca-
tion positions are indicated by the locations of the lighter
atoms, and dislocation on the top is positive while the
one at the bottom is negative (coutesy of H. Huang)
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out, or multi-step, where positions and velocities from
several previous time steps are used for prediction.

In standard MD simulations, the number of atoms, sim-
ulation volume and total energy are constant, thus time
averages are measured in the microcanonical (NVE) en-
semble. This is not necessarily desirable, and more of-
ten, either an isothermal (NVT) or an isobaric (NVT)
microcanonical ensembles are more preferable. Depend-
ing on the problem being simulated, algorithms are de-
veloped to maintain either constant temperature or con-
stant pressure. In the case of constant temperature sim-
ulations, a thermostat is used. The crudest thermostat is
the Berendsen algorithm, in which the velocities are sim-
ply re-scaled as: vn+1 = ηṽn+1, where:

η =

r
1+

∆t
τ
(

T �

T
�1) (17)

and T� is the isothermal target temperature, ṽ is the com-
puted velocity, v the re-normalized velocity and τ & η are
parameters. A number of more sophisticated thermostats
have also been developed, such as the Anderson ther-
mostat where thermalization is established by random
collisions with a bath, the iso-kinetic thermostat where
the equations of motion are modified to establish con-
stant average kinetic energy, and its variant: the Nosè-
Hoover thermostat that uses the time average of the ki-
netic energy, rather than its instantaneous value to estab-
lish iso-kinetic conditions (56)-(58). In some specialized
MD simulations, additional force fields of a long-range
nature may be present, such as the situation in studies
of ionic crystals, piesoelectric or magnetostrictive mate-
rials. Extensions of the simulation methods of plasma
have been attempted, in which particle MD simulations
are embedded into field solvers on a spatial mesh. Such
algorithms are sometimes called the Particle-Particle-
Particle-Mesh, or (PPPM) algorithms. These algorthims
are based on decomposing the problem into two parts.
First, the short range forces are computed using particles,
then, long range forces are computed using discretized
continuum equations, where the particles are smeared out
over a specified spatial domain.

To illustrate results o MD simulations, we will discuss
here the problem of dislocation dipole stability during
the dynamic interactions of two dislocations of opposite
sign (59)., dislocations are generated by adding two extra
(211) planes along the [111] direction to the lower half
of the simulation cell for the negative dislocation in the

Figure 4 : Atomic positions of a dislocation core at suc-
cessive time instances, as it passes through a small mi-
crovoid in Fe(coutesy of H. Huang)

dipole. The positive dislocation is created by pushing a
piston at the speed of 75 m/s. The glide planes of the two
dislocations are separated by 14jbj, b being the Burgers
vector. During the simulations, the temperature is kept
below 35 K, to eliminate the effects of thermal fluctua-
tions. This temperature control is accomplished by ap-
plying a Langevin force to atoms in the dynamic region
(60). Two snapshots, corresponding to the 45 Æ configu-
ration, at which the relative velocity is 0:93Ct, where Ct

is the speed of sound, and the final 135Æ configuration,
are shown in FIGs (3-a) and (3-b), respectively. The MD
studies reported in by Wang, Huang and Woo (59) indi-
cate that, under high speed deformation conditions, two
approaching dislocations, which would normally form a
stable dipole, may become unstable as a result of the ad-
ditional kinetic energy involved during the dipole inter-
action. Another example that illustrates the interaction
between high-speed dislocations and voids is shown in
FIG. (4). In this work, the process of interaction be-
tween high-spped dislocations and micro-voids is sim-
ulated with the calssical MD techique. The passage of a
dislocation through a small void does not result in disso-
lution of the microvoid, because of the short time scale
in MD simulations. However, successive passages of the
dislocation and its cutting of microvoids eventually re-
sults in the destruction of the microvoid.
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2.3 Kinetic Monte Carlo - KMC

The Monte Carlo (MC) method refers to any stochas-
tic technique, which investigates problems by sampling
from random distributions, and utilize concepts of proba-
bility theory. These techniques are now routinely applied
in almost every field, from biology to nuclear physics to
social studies. The MC method is simply a statistical
method for solving deterministic or probabilistic prob-
lems. A computer simulation represents a physics exper-
iment carried out numerically.

The generation of random numbers uniformly distributed
over the interval [2 (0;1)] is a fundamental aspect of
Monte Carlo simulations. Frequently, the mid-square
or the linear/multiplicative congruential method is used
in computer algorithms to generate a sequence of ran-
dom numbers(61). MC simulations generally require
random numbers generated according to specific statis-
tical distributions. General purpose algorithms are avail-
able for generating random numbers following arbitrary
given distribution functions. One of the methods for gen-
eration of random numbers according to a given distri-
bution function is the inversion method, which is only
effective for relatively simple distributions. The idea is
that, if the distribution function is normalized to obtain
a probability density function (PDF) p(x), we can obtain
the probability that the random variable x 0 is less than an
arbitrary x by integrating the PDF analytically from the
minimum value to x. The integral of the (PDF) is called
the cumulative distribution function (CDF) C(x). When
the CDF is equated to a uniformly distributed random
number ρ, C(x) = ρ, the resulting solution for x gives the
desired distribution function, thus:

x = C�1(ρ) (18)

Since each random number ρ results in one value for x,
the method is very efficient. If the PDF p(x) cannot be
easily inverted analytically, sampling can be performed
by the Von Neumann rejection technique. In this method,
a trial value, xtrial is chosen randomly, and it is accepted
with a probability proportional to p(x). First, a pair of
random numbers ρ1 and ρ2 are generated. A trial value
of x, is the obtained as:

xtrial = xmin +(xmax�xmin)ρ1 (19)

If f (xtrial) � ρ2M, where M is the maximum value that
the function can reach over the interval [xmin, xmax], then

xtrial is accepted; otherwise the procedure is repeated
until a trial value is accepted. The rejection technique
is inefficient when the distribution function has one or
more large peaks. Another popular methods is known as
importance sampling, and is a combination of the pre-
vious two methods. In this technique, we replace the
original distribution function, p(x), by an approximate
form, p̃(x), for which the inversion method can be ap-
plied. Then we obtain the trial values for x with the in-
version technique following p 0(x), and accept the trial
values with the probability proportional to the weight w:

w =
p(x)
p̃(x)

(20)

It can be shown that the rejection technique is just a spe-
cial case of the importance sampling, where p0(x) is a
constant(62).

In some applications of the MC method, the number of
new configurations available to the system at any MC
step is finite and enumerable. The configuration space
is discrete, rather than continuous. In other words, at
each MC step, we can determine all the phenomena and
the rates at which they occur, i.e. all the changes that the
system can possibly experience. Therefore, we need not
perform a random change to the system at each MC step
and then accept or reject that change on the basis of a
specified criterion. Based on the relative rates associated
with each change, we can choose and execute a single
change to the system from the list of all possible changes
at each MC step. This is the general idea of the Kinetic
Monte Carlo (KMC) method. KMC methods have been
employed in studies of radiation damage since the 1970s
((63), (64), (65)). They can take into account simultane-
ously many different microscopic mechanisms, covering
very different time scales that are difficult to handle with
other atomistic simulation techniques.

In order to perform a KMC simulation, the first step is
to tabulate the rate at which each event or phenomenon
will occur anywhere in the system, ri. The probability
of choosing an event is defined as the rate at which the
event occurs relative to the sum of the rates of all possible
events. Once an event is chosen, the system is changed
appropriately, and the list of events that can occur at the
next KMC step is updated. Therefore, at each KMC step,
one event denoted by m is randomly chosen from all of
the M events that can possibly occur at that step, as fol-
lows:
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Figure 5 : Results of KMC simulations for thin film
growth on a substrate showing columnar growth (cour-
tesy of H. Huang)

m�1

∑
i=0

ri=
M

∑
i=0

ri < ξ <
m

∑
i=0

ri=
M

∑
i=0

ri (21)

where ri is the rate at which event i occurs (r0 = 0) and
ξ is a random number uniformly distributed in the range
[2 (0;1)]. After an event is selected and carried out, the
total number of possible events, M, and the sequence in
which the events are labeled, are updated (66). In con-
ventional KMC simulations, a fixed time increment is
chosen such that at most one event happens during each
time step(67). However, this approach is inefficient since
in many time steps, no events will happen. An alternative
technique, introduced by Bortz, et al.(68) ensures that
one event occurs somewhere in the system, and the time
increment itself can be determined at each step. In this
approach, since one event occurs at each simulation step
and different events occur at different rates, the time in-
crement, dt, corresponding with each step is dynamic and
stochastic:

dt =� ln(η)=
M

∑
i=1

ri (22)

Where η is a random number evenly distributed the range
[2 (0;1)]. This method is particularly useful in cases
where the events occur at very different time scales, and
the fastest events are only possible in certain rare sit-
uations. FIG. (5) below illustrates the final stages of
columnar thin film growth during Physical Vapor Depo-

sition (PVD) utilizing the KMC technique (69), (70). An-
other example, which illustrates the power on KMC com-
putations in predictions of experimental observations is
shown in FIG. (6). In this example, the motion of Self-
Interstitial Atom (SIA) clusters is simulated in crystals
containing dislocations. The internal field of dislocations
has a profound effect on the motion of such clusters. As
a result of the stress field of dislocations, these clusters
execute two types of motions: (1) random along highly-
packed orientations; (2) drift motion by elastic interac-
tion with dislocations. The elastic interaction results in
cluster rotation, leading to decoration of dislocation seg-
ments, pinning of mobile clusters and dislocation loop
raft formation. FIG. (6) shows various stages of com-
puter simulation (71), while FIG. (7) shows TEM exper-
imental observations of dislocation decoration in irradi-
ated Mo (72).

Figure 6 : Results of KMC simulations for SIA cluster
agglomeration and interaction near dislocation segments

2.4 Dislocation Dynamics - DD

Because the internal geometry of imperfect crystals is
very complex, a physically-based description of plas-
tic deformation can be very challenging. The topolog-
ical complexity is manifest in the existence of disloca-
tion structures within otherwise perfect atomic arrange-
ments. Dislocation loops delineate regions where large
atomic displacements are encountered. As a result, long-
range elastic fields are set up in response to such large,
localized atomic displacements. As the external load is
maintained, the material deforms plastically by generat-
ing more dislocations. Thus, macroscopically observed
plastic deformation is a consequence of dislocation gen-
eration and motion. A closer examination of atomic po-
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Figure 7 : Experimental TEM observations of SIA clus-
ters decorating dislocations in irradiated Mo

sitions associated with dislocations shows that large dis-
placements are confined only to a small region around the
dislocation line (i.e. the dislocation core). The majority
of the displacement field can be conveniently described
as elastic deformation. Even though one utilizes the con-
cept of dislocation distributions to account for large dis-
placements close to dislocation lines, a physically-based
plasticity theory can paradoxically be based on the the-
ory of elasticity! Since it was first introduced in the mid-
eighties (73), (74), Dislocation Dynamics (DD) has now
become an attractive tool for investigations of both fun-
damental and collective processes that constitute plastic
deformation of crystalline materials. In its early versions,
the collective behavior of dislocation ensembles was de-
termined by direct numerical simulations of the interac-
tions between infinitely long, straight dislocations. The
numerical accuracy and limitations of the 2-D descrip-
tion of dislocation ensemble evolution has been exam-
ined in considerable detail (e.g. (75)-(83)). Although the
numerical issues of stability, accuracy, convergence and
field approximations have been largely resolved in the
2-D case, it has been realized that the fundamental phys-
ical nature of dislocation loops, being 3-D space curves,
makes progress with rigorous 2-D simulations rather dif-
ficult without additional ad-hoc rules of close-range in-

teractions. Such realization prompted several research
groups to consider extensions of the DD methodology to
the more physical, yet considerably more complex con-
ditions of 3-D DD computer simulations of plastic defor-
mation.

The starting point in DD simulations is a description of
the elastic field of dislocation loops of arbitrary shapes.
The stress σ tensor of a closed dislocation loop in an
isotropic crystal is given by deWit (1960) as (84):

σi j =
µ

4π

I
C

�
1
2

R
;mpp (ε jmndli +εimndl j)

+
1

1�ν
εkmn (R;i jm�δi jR;ppm)dlk

�
(23)

Where µ & ν are the shear modulus and Poisson’s ra-
tio, respectively, b is Burgers vector of Cartesian com-
ponents bi. The radius vector R connects a source point
on the loop to a field point, with Cartesian components
Ri, successive partial derivatives R

;i jk::::
, and magnitude

R. The line integrals are carried along the closed contour
C defining the dislocation loop, of differential arc length
dl of components dlk. The line integral is discretized,
and the stress field of dislocation ensembles is obtained
by a summation process over line segments. Recently,
Ghoniem, Huang and Wang (85)-(88) have shown that
if dislocation loops are discretized into curved paramet-
ric segments, one can obtain the field by numerical inte-
gration over the scalar parameter that represents the seg-
ment. If one of these segments is described by a param-
eter ω that varies, for example, from 0 to 1 at end nodes
of the segment. The segment is fully determined as an
affine mapping on the scalar interval 2 [0;1], if we intro-
duce the tangent vector T, the unit tangent vector t, the
unit radius vector e, as follows: T = dl

dω; t = T
jTj ; e = R

R .
Let the Cartesian orthonormal basis set be denoted by
1� f1x;1y;1zg, I = 1
1 as the second order unit tensor,
and 
 denotes tensor product. Now define the three vec-
tors (g1 = e; g2 = t; g3 = b=jbj) as a covariant basis set
for the curvilinear segment, and their contravariant recip-
rocals as: gi � g j = δi

j , where δi
j is the mixed Kronecker

delta and V = (g1� g2) � g3 the volume spanned by the
vector basis, as shown in FIG. (8). The differential stress
field is given by:
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Figure 8 : Parametric Representation of Dislocation Seg-
ments

dσ
dω

=
µV jTj

4π(1�ν)R2

��
g1
g1 +g1
g1�

+(1�ν)
�
g2
g2 +g2
g2�� (3g1
g1 + I)

	
(24)

Once the parametric curve for the dislocation segment is
mapped onto the scalar interval fω2 [0;1]g, the stress
field everywhere is obtained as a fast numerical quadra-
ture sum (85). The Peach-Kohler force is then obtained
on any other segment point as (86):

FPK = σ �b� t (25)

The self-force is obtained from knowledge of the local
curvature at the point of interest. The variational form of
the governing equation of motion of a single dislocation
loop is given by (86):
Z

Γ

�
Ft

k �BαkVα
�
δrk jdsj= 0 (26)

Here, Ft
k are the components of the resultant force, con-

sisting of the Peach-Koehler force (87) FPK ( generated
by the sum of the external and internal stress fields), the
self-force Fs, and the Osmotic force FO ( in case climb
is also considered(86)). The resistivity matrix (inverse
mobility) is Bαk, Vα are the velocity vector components,
and the line integral is carried along the arc length of the
dislocation ds. To simplify the problem, let us define the
following dimensionless parameters:

r� =
r
a
; f� =

F
µa

; t� =
µt
B

Here, a is lattice constant, µ the shear modulus, and t is
time. Hence EQN. 26 can be rewritten in dimensionless
matrix form as:

Z
Γ�

δr�>
�

f�� dr�

dt�

�
jds�j= 0 (27)

Here, f� = [ f �1 ; f �2 ; f �3 ]
>, and r� = [r�1;r

�
2;r

�
3]
>, which are

all dependent on the dimensionless time t �. Following
reference (86), a closed dislocation loop can be divided
into Ns segments. In each segment j, we can choose a
set of generalized coordinates qm at the two ends, thus
allowing parameterization of the form:

r� = CQ (28)

Here, C = [C1(ω);C2(ω); :::;Cm(ω)], Ci(ω);(i =
1;2; :::m) are shape functions dependent on the param-
eter (0 � ω� 1), and Q = [q1;q2; :::;qm]

>, qi are a set
of generalized coordinates. Now substitute EQN.28 into
EQN.27, we obtain:

Ns

∑
j=1

Z
Γ j

δQ>

�
C>f��C>C

dQ
dt�

�
jdsj= 0 (29)

Let,

f j =
Z

Γ j

C>f� jdsj ; k j =
Z

Γ j

C>C jdsj

Following a similar procedure to the FEM, we assemble
the EOM for all contiguous segments in global matrices
and vectors, as:

F =
Ns

∑
j=1

f j; K =
Ns

∑
j=1

k j

then, from EQN 29 we get,

K
dQ
dt�

= F (30)

EQN. 30 represents a set of ordinary differential equa-
tions, which describe the motion of an ensemble of dislo-
cation loops as an evolutionary dynamical system. Gen-
erally, two numerical time integration methods are avail-
able for solving this set of equations: the implicit and
the explicit classes of procedures. We will later discuss
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the accuracy and stability issues associated with each
scheme.

It is now recognized by many that fundamental studies
of plasticity requires levels of temporal and spatial res-
olution concomitant with the question at hand. For in-
stance, atomic spatial resolution and pico-second tem-
poral resolution are both required for studies of the in-
trinsic properties of single dislocations, or for single dis-
location interaction with atomic size defects. However,
development of constitutive equations of polycrystalline
materials does not necessarily require such high level
of resolution, mainly because statistical averaging takes
care of minute details. There is an enormous range of
problems in-between, spanning deformation behavior of
nano-, micro-, and single crystal materials, all the way
up to polycrystalline material deformation. A number
of numerical simulation approaches have been under de-
velopment in recent years, with emphasis on resolution
of specific dislocation interaction mechanisms, or on the
collective behavior of dislocation ensembles. These ap-
proaches differ mainly in the representation of disloca-
tion loop geometry, the manner by which the elastic field
and self energies are calculated, and some additional de-
tails related to how boundary and interface conditions are
handled. Nonetheless, the methods can be differentiated,
and may be categorized in one of the following:

1. The Lattice Method:(89)-(98):
Here, straight dislocation segments (either pure
screw or edge in the earliest versions , or of a mixed
character in more recent versions,) are allowed to
jump on specific lattice sites and orientations.

2. The Force Method:(99)-(100):
Straight dislocation segments of mixed character are
moved in a rigid body fashion along the normal to
their mid-points . No information of the elastic field
is necessary, since explicit equations of interaction
forces, developed by Yoffe (101) are directly used.

3. The Differential Stress Method:(102) -(104):
The stress field of a differential straight line element
on the dislocation is computed and integrated nu-
merically to give the necessary Peach-Koehler force
. The Brown procedure (105) is then utilized to re-
move the singularities associated with the self force
calculation.

4. The Parametric Method: (85)-(88), (107):

Dislocation loops are divided into contiguous seg-
ments represented by parametric space curves. The
equations of motion for nodal attributes (e.g. posi-
tion, tangent and normal vectors) are derived from
a variational energy principle, and once determined,
the entire dislocation loop can be geometrically rep-
resented as a continuous (to second derivative) com-
posite space curve. The Parametric Dislocation Dy-
namics (PDD) methodology is based on two main
principles that are often employed in modern nu-
merical methods of continuum mechanics (i.e. the
Finite Element Method FEM)(86),(88). The first is
some energy-based variational principle that would
allow one to derive the equations of motion (EOM)
of a reduced set of Degrees Of Freedom (DOF) rep-
resenting the system. The second principle is a kine-
matic assumption regarding how the displacement
or strain field is assumed to vary in a specified re-
gion of the continuum. To draw the analogy, a mini-
mization of the Gibbs free energy of a single loop
upon its virtual motion in the external and inter-
nal field results in the EOM, while assuming spline
functions between some fixed nodes on the disloca-
tion loop corresponds to the kinematic assumption
of continuum mechanics.

5. The Phase Field Microelasticity Method:(108)-(110):
Based on Khachaturyan-Shatalov(KS) reciprocal
space theory of the strain in an arbitrary elasti-
cally homogeneous system of misfitting coherent
inclusions embedded into the parent phase, a con-
sideration of individual segments of all dislocation
lines is not required. Instead, the temporal and
spatial evolution of several density function profiles
(fields) are dealt with.

The vector forms in EQN. 24 can be integrated for
complex-shape loop ensembles, by application of the fast
sum method (85). In typical DD computer simulations,
the shape of loop ensembles is evolved using equations
of motion for generalized coordinates representing the
position, tangent, and normal vectors of nodes on each
loop. FIG. (9) shows the results of such computations for
simulation of plastic deformation in single crystal copper
under the action of a slow stress ramp. The initial dislo-
cation density of ρ = 2�1013 m�2 has been divided into
68 complete loops. Each loop contains a random number
of straight glide and superjog segments. When a gener-
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ated or expanding loop intersects the simulation volume
of 3 µm side length, the segments that lie outside the sim-
ulation boundary are periodically mapped inside the sim-
ulation volume to preserve translational strain invariance,
without loss of dislocation lines. The initially straight,
segmented dislocation microstructure evolves under an
applied stress σxx =120 MPa in FIG. 6-a, and 165 MPa in
FIG. 6-b (88).
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Figure 9 : Results of computer simulations for disloca-
tion microstructure deformation under uniaxial applied
stress

2.5 Statistical Mechanics - SM

A number of approaches for a physical description of
inhomogeneous plastic deformation, and following con-
cepts of statistical mechanics, have emerged during the
past two decades. The fundamental difficulty here is that
dislocations, unlike particles, are linear objects of consid-
erable topological complexity. Hence, when concepts of
statistical mechanics and the theory of rate processes are
used, some level of phenomenological description is un-
avoidable. We present here, as one example, a reaction-
transport approach to Persistent Slip Band (PSB) forma-
tion. In this approach, the system is supposed to be com-
posed of nearly immobile dislocations of the forest, and
mobile dislocations, moving on their glide planes. Cou-
pled rate equations for corresponding dislocation densi-
ties are derived in the spirit of the dislocation dynamical
models derived for example by Ghoniem et al. (111) for
creep, or by Walgraef and Aifantis(32) and Kratochvil
(112) for dislocation microstructure formation in fatigue.

The static dislocation density, formed by the immobilized
dislocations of the forest, sub-grain walls or boundaries,
is defined as ρs, and the mobile dislocation density for
dislocations gliding between obstacles is defined as ρ m.
For simplicity, we will consider first systems oriented for
single slip. Hence, the mobile dislocation density, ρ m is
divided into two sub-family densities representing dislo-
cations gliding in the direction of the Burgers vector (ρ+

m)
or in the opposite direction (ρ�

m) (with ρm = ρ+m + ρ�m).
These dislocation densities are related to the strain rate
via the Orowan relation:

ε̇ = bρmvg (31)

where b is the length of Burgers vector, ρm the total mo-
bile dislocation density and v g the glide velocity in the
primary slip plane. Moreover, the dislocation densities
are related to the internal stress by the relation :

σi =
µb

2πλ
+ξµb

p
ρs (32)

with µ is the shear modulus and ξ is a constant. In the last
equation the first contribution comes from obstacles such
as precipitates or pre-existing walls separated by an ef-
fective spacing λ and, the second part is the contribution
from the static dislocation population which also opposes
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dislocation motion. The internal stress, σ i, reduces the
effective stress, σe, acting on the dislocations and where
this last is defined as:

σe = σa�σi (33)

with σa representing the applied stress. Finally, the glide
velocity is related to the effective stress via appropriate
phenomenological relations expressing the fact that in-
dividual dislocation motion is initiated when the effec-
tive stress acting on a dislocation exceeds the yield stress.
This, for example, can be written as:

vg ∝ (
σe

σ0
)m (34)

or

vg = v0 exp

�
� µ

kT
(
σe

σ0
)�m

�
(35)

where σ0 is the yield stress and m > 1. The essential
features of the dislocation dynamics are, on the one side,
their mobility, dominated by plastic flow, but which also
includes thermal diffusion and climb, and, on the other
side, the mutual interaction processes.

The essential features of dislocation dynamics are; their
mobility , dominated by plastic flow which includes ther-
mal diffusion and climb, and the mutual interaction pro-
cesses. By taking into account these mechanisms, the
resulting dynamical system can be written as (32):

∂tρs = �~∇ Js +vgρm)
p

ρs�vsdρ2
s

� vgδρmρs�βρs +vgG(ρs)ρm

∂tρ+m = �~∇ ~J++
β
2

ρs�vgG(ρs)ρ+m �vgδρ+m(ρs+ρ�m)

∂tρ�m = �~∇ ~J�
β
2

ρs�vgG(ρs)ρ�m �vgδρ�m(ρs +ρ+m)

(36)

where δ is the characteristic separation length between
dislocations for spontaneous annihilation (114), d is the
characteristic length of spontaneous dipole collapse, β is
the frequency of dislocation freeing from the forest and is

proportional to vg=d where d is the characteristic dipole
de-stabilization length which is inversely proportional to
the effective stress, and β = β0vgσe. The different char-
acteristic lengths introduced here, or at least their order
of magnitude, may in principle be evaluated from micro-
scopic analysis (113; 114). Due to mutual interactions,
thermal activation and climb, forest dislocations mobility
is represented by a diffusive current J = �Ds

~∇ρ s, which
represents the effective diffusion within the forest. The
current of mobile dislocations is taken as ~J� = �vgρ�m
and represents the flux caused by gliding dislocations,
in the present case, it is the flux caused by their edge
component. Stability and numerical analyses of the pre-
vious set of equations have provided information on the
conditions for formation of PSB’s in fatigued specimens.
It is shown that PSB formation is triggered by the clus-
tering of dislocations or dislocation dipoles, which be-
come finally immobile and arrange themselves in regu-
larly spaced walls of high dislocation density (32).

Another statistical dynamical description has been pro-
posed by Kratochvil et al. for the first stages of PSB
formation. It is based on the evolution of dipolar loops,
triggered by their interaction with gliding dislocations
(115; 116; 117). The proposed statistical model is of
the reaction-transport type, and focuses on the feedback
between the evolution of glide velocity and the dipole
density. The result is the sweeping of dipole loops by
screw dislocations, which initiates the formation of dis-
location walls. In this approach, dipole generation and
interactions play a secondary role, and are introduced in
an ad hoc and qualitative way.

In these proceedings, Thomson et al. (38) have also pre-
sented a new model for single crystal metal plasticity.
Their proposed statistical approach rests on the funda-
mental observations that deformation is characterized by
partially ordered internal dislocation wall structures, dis-
continuous strain bursts in time, and strain localization in
a surface slip band structure. A percolation strain model
corresponding to elementary slip line burst events, with
percolation parameters to be supplied from experiments
and dislocation dynamics studies of wall structures, was
developed. They proposed a model for localization of
the slip lines into bands, which envisions channels for
slip formed from the dense planar walls. Their contin-
uum model is based on two different material properties
in the slip bands, and in the matrix between the bands.
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3 A Brief Outline of Current Topics

In this symposium, 23 presentations were given on sub-
jects covering the entire range of models within the
multi-scale materials modeling framework. The articles
following this review paper are representatives of state-
of-the art theoretical and experimental methodologies to
adress the mechanics of materials at the nano- and micro-
scale. These are classified into atomistic, mesoscopic and
continuum models. In the following, we give a brief in-
troduction of the topics covered by these papers.

3.1 Atomistic Models

Five articles are focused on atomistic modelling of defect
structures in solids. Microscopic defects play critical role
in determining materials response to external stresses be-
yond elastic response, and have intrinsic atomic struc-
tures. Therefore, atomistic modelling is crucial to eluci-
date the detailed mechanisms operating during the mate-
rials responses.

Wei et al. (118) presented MD simulation study of carbon
nanotube mechanics under uniaxial compression, and
this work illustrates the capability of atomistic simula-
tions in nanomechanics research. In this work, Tersoff-
Brenner bond-order potential is used to accurately de-
scribe chemical bond breaking and formation processes
in carbon nanotubes. The authors have focused their sim-
ulation work on the plastic response of carbon nanotubes
under large strain beyond the yield strength. To find re-
alistic mechanisms, temperature acceleration techniques
has been used to overcome energy barriers and to escape
from local minimum energy configurations. It is shown
that at T = 0 the nanotube under 12% compressive strain
does not have plastic response confirming previous find-
ings of other MD simulations. The authors have system-
atically increased the temperature T = 300, 800, 1200,
and 1600 K to investigate the temperature effects and
found that there are two distinct plasticity mechanisms:
diamond-like tetrahedral bond formation, and disloca-
tion pair formation (also known as Stone-Wales defect).
This work has confirmed the importance of the time scale
problem in atomistic simulations since high temperature
simulation with high strain rate would have similar ef-
fects as low temperature simulation with low strain rate.

Li and Yip (119) have reviewed the atomistic simulations
to determine material strength based on the key-note talk
given by S. Yip at the Symposium. In this paper, me-

chanical stability criteria of elastic materials are reviewed
and applied to study SiC crystal under hydrostatic ten-
sion and Cu thin film under indentation. For cubic SiC in
3C or β-phase, phonon dispersion curves are examined
under hydrostatic tension and pure shear to elucidate the
relationship between stability criteria and phonon soft-
ening. The authors have studied the yield strength of
SiC perfect crystal, nanocrystal, and amorphous solid
and found that the nanoscale grain size and atomic scale
defects determine the ultimate tensile strenght of solids.
Their findings are summarized in scaling behavior of
cross over from Hall-Petch relation at large grain sizes
to nanograins down to amorphous solids. Using hard
nanoindentor on Cu(111) surface, the authors have found
that the plastic response of the thin film proceeds through
intermittent plasticity in which burst of dislocations are
emitted below the indentor. Finally, the authors have pro-
vided an outlook on the role of multiscale simulations for
materials strength.

Atomistic simulation method is applied to investigate
dislocation nucleation mechanisms of W thin film during
the deposition process by Liu et al. (120). In this owrk,
the authors have used Finnis-Sinclair form potential to
W(110) thin films under growth condition of adding W
atoms with 0.01 eV kinetic energy. Uniaxial tensile stress
of 13 GPa is applied along [111] direction to simulate the
substrate-film mismatch effects. Detailed investigations
performed with a very high temperature (2500 K) to ac-
celerate the kinetic processes in MD time scale. From the
simulations, it is discovered that the dislocation nucle-
ation initiates at the surface steps and as a consequence
the sharp surface step has been removed to reduce the
surface strain through dislocation motion.

Lin and Chrzan (121) have also investigated the disloca-
tion using atomistic simulations. The authors have fo-
cused the investigation on the core structure and energet-
ics of 90Æ partial dislocation in Si crystal. Tersoff po-
tential is used to determine the optimized atomic config-
uration and energy of the dislocation under hydrostatic
stresses. A detailed analysis is performed for two dif-
ferent core structure of the dislocation: single-period
(SP) reconstruction and double-period (DP) reconstruc-
tion. The authors have used periodic boundary condition
for an infinite array of dislocations and the periodic inter-
action effects are compensated through continuum elas-
tic analysis. The accuracy of this analysis is tested using
cylindrical boundary condition with increasing radius up
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to 70Åand a good agreement was obtained confirming
validity of the use of periodic boundary condition. At
zero external stress DP core reconstruction is found to be
more stable by 7 meV/Å, but it is also found that shear
stress reduce the relative stability of DP compared to SP
reconstructions. When hydrostatic pressure is applied to
Si crystal the energy difference is further reduced leading
to a stress induced phase transition of dislocation core
structure from DP to SP reconstructions. This core struc-
ture transition may paly an important role in dislocation
kinetics.

Kuramoto et al. (122) have investigate the interac-
tions between point defects (interstitial atoms and vacan-
cies) and microstructures (dislocations, interstitial clus-
ters, and stacking fault tetrahedrons) using EAM-type
potentials for BCC Fe and FCC Ni crystals. The authors
have performed detailed energetics study of the interac-
tions between point defects and microstructures leading
to capture zone analysis at 500ÆC. It is found that the
self interstitial atoms (crowdions and bumbbells) have
large capture zone than vacancies for edge dislocation in
Fe and Ni. Capture zones of self interstitial atoms by
interstitial clusters are smaller than those of edge dis-
locations for Fe. The capture zones of stacking fault
tetrahedrons are larger for interstials than vacancies in
Ni crystal. The overall energetics elucidates the origin
of preferential removal of interstitials during the evolu-
tion of damage structures in irradiated meterials. The
microstructures capture the interstitial defects and leave
excess vacancies. These vacancies nucleate during sub-
sequent evolution leading to void foramtion and swelling
of irradiated materials.

3.2 Mesoscopic Models

Three contributed articles to these proceedings have ad-
dressed aspects of mesoscopic plastic deformation, from
the theoretical (38), computational (123) and experimen-
tal (124) points of view. Thomson et al.(38) presented a
multiscale theoretical framework for metal plasticity of
single crystals. Their approach is based on the experi-
mental observations that deformation is characterized by
partially ordered internal dislocation wall structures, dis-
continuous strain bursts in time, and strain localization in
a surface slip band structure. The main approach follows
a statistical percolation strain model, whic corresponds
to elementary slip line burst events. Phenomenological
percolation parameters in their model are to be supplied

from experiments and dislocation dynamics studies of
wall structures. A model for localization of the slip lines
into bands is proposed, which envisions channels for slip
formed from the dense planar walls. This is suplemented
by a continuum model that is constructed from the out-
puts of the percolation model. The continuum model has
two principal internal variables, and exhibits the desired
hardening behavior with strain. The continuum model
is based on two different material properties in the slip
bands, and in the matrix between the bands. Althou thier
analysis does not include dislocation patterning mecha-
nisms, it addresses the transport of dislocations through
these structures.

The work of Martinez and Ghoniem (123) focuses on the
direct coupling of Dislocation Dynamics (DD) with the
Finite Element Method (FEM) to simulate plastic defor-
mation of micro-scale structures. They attempt to ad-
dress the in effects of crystal surfaces on dislocation mo-
tion. Three-dimensional DD simulations of BCC sin-
gle crystals with a single shear loop in the (101)-[111]
slip system are performed to explore the relationship be-
tween loop force distributions and the proximity of the
loop to the crystal boundaries. Traction boundary condi-
tions on a single crystal model are satisfied through the
superposition of a complementary stress field computed
by the FEM, and the elastic stress field of dislocations
computed by DD. The deformation and expansion of dis-
location loops is computed using a Galerkin variational
energy method, and the equilibrium geometry is deter-
mined. The deformation of a Frank-Reed (FR)source in
a single crystal model is also determined in their com-
puter simulations. Their results indicate that crystal sur-
face forces play a significant role in dislocation force dis-
tributions and deformation to a depth from the surface,
which is proportional to the loop radius. Large out-of-
plane force distributions on closed loops on oblique slip
plane/free surface orientations are shown. These forces
act in such a way as to repel loop motion from the in-
tersection of the slip plane with the free surface, while
causing deformation through the mechanism of cross-
slip. Expansion or contraction of shear loops is found to
be dependent on the critical applied stress, the radius of
curvature, and the proximity and orientation of the loop
with respect to the crystal surface.

Experimental work that is directed towards verification
of dislocation dynamics models has been presented by
Hsuing and Lassila (124). In this work, the initial dislo-
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cation microstructure in as-annealed high-purity Mo sin-
gle crystals, and the deformation substructures of crystals
compressed at room temperature at different strain rates
were examined. The main objective of this work is to
determine the physical mechanisms of dislocation multi-
plication and motion during the early stages of plastic de-
formation. The initial dislocation density was measured
to be in a range of 106 � 107 cm�2. Numerous grown-in
superjogs were observed along screw dislocation lines.
After testing in compression, dislocation density (mainly
screw dislocations) increased to 107 � 108 cm�2. The
formation of dislocation dipoles as a result of the noncon-
servative motion of jogged screw dislocations was found
to be dependent on the strain rate. At low strain rates (e.g.
ε̇� 10�3 s�1) small concentrations of dislocation dipoles
were found in crystals. However, more cusps along screw
dislocation lines and numerous dislocation dipoles were
observed in crystals compressed at strain rates of 1 s�1.

3.3 Continuum Models

Two papers in these proceedings have been concerned
with applications of continuum mechanics to multiscale
material problems, particularly to represent fracture pro-
cesses (125), and surface laws during slip (126) . The re-
cently developed virtual-internal-bond (VIB) model has
incorporated a cohesive-type law into constitutive lequa-
tions, such that fracture and failure are embedded into
the constitutive law, and no separate failure criteria is
needed. Zhang et al. developed a numerical algorithm
for the VIB model under static loadings. The model is
applied to study three examples: (1)crack nucleation and
propagation from a stress concentration site; (2) kinking
and subsequent propagation of a mode II crack, and (3)
buckling-driven delamination of a thin film from its sub-
strate. Their results have shwon that the VIB model pro-
vides an effective method for studying crack nucleation
and propagation in engineering materials.

In another paper on continuum mechanics, the embed-
ding of micromechanical models in the macromechani-
cal formulation was treated by a variational multiscale
method (126). A scale separation is introduced on the
displacement field into coarse and finne scale compo-
nents. The fine scale displacement is governed by the
desired micromechanical model, and is eliminated by
expressing it in terms of the coarse scale displacement
and the remaining fields in the problem. The resulting
macromechanical formulation is posed solely in terms

of the coarse scale displacements, but is influenced by
the fine scale; thereby it has a multiscale character. The
procedure results in an embedding of the micromechani-
cal model in the macromechanical formulation. Garika-
pati applied this general approach to the special case of
traction-displacement laws on internal surfaces. Numeri-
cal examples were presented that demonstrate the method
for several benchmark problems.

4 Current Challenges

The field of Multiscale modeling of materials is perhaps
not new or even novel! Since the early days of mod-
ern physics, scientists have attempted to develop sim-
ple mathematical relations that can reduce the enormous
number of degrees of freedom (DOF) in a given system to
its bare minimum. In fact, this approach is quite consis-
tent with our desire to reduce the number of observables
to what can be realistically perceived. The magic of sta-
tistical mechanics, for example, lies in the fact that the
collective behavior of atoms of infinite degrees of free-
dom can be described by simple scaling laws. This trend
stems from the fact that averaging works very well, when
things are away from catastrophes! Thus, most of the
relevant information in cosntitutive equations represent
some averaged behavior of many, many atoms. How-
ever, when one examines material systems at the nano-
and micro-scale, many of these concepts start to present
a real challenge. As we discussed before, the law of
large numbers, which is central in statistical mechanics,
does not hold in situations where we do not have ade-
quate sampling phase space. In the mean-time, phase
transitions, nucleation, plasticity, and fracture are all crit-
ical phenomena that represent material catastrophes, and
hence averaging techniques will not yield the correct in-
formation.

Nevertheless, the advent of large-scale computing is pro-
pelling the art and science of modeling material phenom-
ena into a tantalizing new direction. Instead of attempt-
ing to reduce the complexity of the material system’s be-
havior by a process of reduction of its DOF, one is try-
ing to represent large numbers of DOFs, and solve for
them numerically! The result is a real numerical exper-
iment, whose outcome is not known a priori. Whether
that makes sense can only be tested by confronting the
outcomes of computer simulations with a limited range
of experimental observations. Over a decade ago, such a
process has been viewed with great skepticism. In part,
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this skepticism stems from the realization that computer
simulations are also based on some ad hoc assumptions,
and that the numerics still represent gross approxima-
tions. However, the last decade has seen tremendous ad-
vances on a number of computational and physical fronts
that have alleviated most of that skepticism. Adavancs
have been made in atomistic simulation techniques, with
better and more rigorous ways to approximate the quan-
tum mechanical behavior of atoms and molecules. These
advances have been matched by the ability to devise em-
pirical, yet physically-based interatomic potentials for
performing more accurate classical MD simulations. The
simulated system size has also increased, almost expo-
nentially, during the past decade, thanks to the increase
in computing power and reduction in its cost. The con-
nection between classical MD and ab intio calculations
are now being made in a clear and rigorous fashion.

At the meso-scale, inbetween the atomistic and macro-
scopic, a few attempts have made it possible to find new
in-roads into modeling this forbidding regime! Over a
decade ago, there were only 2-D computer simulations
of collective dislocation phenomena. The confidence in
the realism of these simulations was not very high, be-
cause several ad hoc rules had to be introduced to account
for short-range dislocation processes. Nonetheless, the
fact that several phenomena of dislocation pattern for-
mation were demosnstrated with direct computer simu-
lations gave rise to hope that there is something useful to
be done in this area. Recently, reserach on mesoscopic
plsticity models has kicked into high gears, as a result
of concentrated efforts by many groups around the world
to develop a physical description of plastic deformation.
These efforts utilize new computational methods of 3-D
Dislocation Dynamics, as well as new physical statistical
models for the collective behavior of dislocations.

Although it is felt now that sooner or later, a coherent de-
scription for the mechanics of materials will emerge, and
that such a description will be physically-based with no
ad hoc assumptions, the road is still not entirely clear. A
number of challenges and obstacles remain, as we briefly
discuss them in the following. The main challenges in the
development of seamless multi-scale modeling method-
ology are the length-scale, the time-scale, the numerical
accuracy and the self-consistency of multiscale models,
as outlined below.

4.1 The Length Scale

The number of atomic degrees of freedom in a typical
material system is extremely large, and if one is to model
a cubic micron of the material, the equations of motion
of a few billion atoms must be numerically solved. At the
sub-continuum length scale, the material system of inter-
est is usually small enough that current computing capa-
bilities can model it realistically. Furthermore, there exist
several multiscale methods to combine atomistic model
and continuum models in a single simulation framework.
These atomistic and multiscale methods have been suc-
cessfully applied to investigate diverse defect structures
within static or quasi-static descriptions.

Even though some aspects of the length scale problem
have been overcome in the sense that one can model the
material system of interest with full atomic scale details,
there remains the very challenging problem of structural
complexity at meso-scales. As the number of atoms in
a system increases, the possible local minimum energy
configurations also grow very rapidly. Analysis of N
atom cluster shows that the number of local minimum en-
ergy configurations grows faster than eN . Without know-
ing all the relative energy values of these local configura-
tions, it is very difficult to prepare initial atomic configu-
rations which are most relevant to real physical systems.
This problem of configuration multiplicity is closely re-
lated to the other problems of time scale and accuracy
of atomistic simulations. If one can run simulations long
enough for a system to search through all the relevant
configurations, the complexity of the atomic structures
can be overcome by systematic sampling with different
initial configurations. On the other hand, the inaccuracy
of an interatomic potential can introduce errors in relative
energies of diverse configurations and also in energy bar-
riers separating different configurations. Both of these
problems seriously influence the reliability of atomistic
simulations.

Although substantial recent progress has been made in
the mesoscopic simulation area, a number of challenges
remain. As the system size becomes within the nano-
and micro-scale, applications of 3-D DD becomes very
attractive. The number of dislocation loops required to
represent full-scale plasticity of a sub-micron crystal is
relatively manageable, and the solution requires integra-
tion of a few thousand equations of motion. However,
the long-range nature of the stress field of dislocations,
the topological complexity of dislocation lines, the treat-
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ment of periodic boundary conditions that ensure statis-
tical consistency of the results, the accurate solution of
dislocation interaction with surfaces and the inclusion of
elastic anisotropy and inertial effects into dislocation dy-
namics remain as tough, yet doable problems in the near
future. The more challenging problem of polycrystalline
plasticity will require additional breakthroughs, because
of the conceptual difficulties of connecting DD to crystal
plasticity models in a self-consistent fashion. The main
question here is how to retain the characteristic length
scale from the discrete dislocation to the continuum de-
scription. A variety of strain gradient theories have been
proposed during the last decade. Since most of them are
formulated in a phenomenological manner, the charac-
teristic length scale in invoked into the theory, without
rigorous treatment of its dislocation origins. In addition,
there are indications that a single length scale is not al-
ways realistic, and that a spectrum of scales may be more
appropriate. These issues will require intensive research
to clearly establish the links between mesoscopic simu-
lations and continuum mechanics.

4.2 The Time Scale

The severe limitaions on the total simulation time in
atomistic modeling is a result of the intrinsic time scale
of atomic dynamics, which is typically on the order of
femto seconds. In numerical simulations using finite
time steps, the step size is required to be small enough
to keep the numerical simulation stable. Sub-continuum
microstructure evolution is not an equilibrium process,
and there are complex defect structural changes during
kinetic processes. Therefore, it is necessary to follow
the dynamic evolution of a system over a realistic experi-
mental time scale to accurately describe microstructure
evolution mechanisms. The experimental time scales
are very long (micro seconds or larger), compared to
atomic time scales so that more than billion time steps
are needed for these simulations.

Diverse simulation techniques are currently developed
to overcome this time scale problem. These efforts are
based on the observation that while the atomic time scale
is determined by thermal motion of atoms around a local
minimum energy configuration, the kinetic evolution of
the microstructure is dictated by much slower transitions
between neighboring local minimum configurations. Ki-
netic Monte Carlo (KMC) is a popular method to over-
come the atomic time scale problem by evolving the sys-

tem directly from one configuration to another configu-
ration without thermal motion of atoms. However, KMC
requires a complete list of possible events to simulate the
time evolution of a system, and this list is known as the
event catalogue. The accuracy of KMC is critically gov-
erned by the accuracy and completeness of the event cat-
alogue. If a critical event is missing in the catalogue, the
resulting KMC evolution may not provide meaningful in-
formation of the simulated system. The same argument
applies to the accuracy of the transition rates in the event
catalogue.

Another approach to overcome the time scale limitations
in atomistic simulations is to modify the MD scheme in
such a way that the duration of thermal motion is short-
ened, or that the configuration search is accelerated. Sev-
eral promising methods (e.g., hyperdynamics) are cur-
rently developed, but the general applicability of these
new methods to complex atomic processes is yet to be
firmly established. Another promising direction is to
develop a systematic scheme to search possible events
using accelerated MD methods or direct configuration
space search methods. Nudged elastic band (NEB) is
such a method which can be used to identify transition
states separating initial and final configurations. This
systematic search of events will enable a systematic de-
velopment of event catalogues for KMC simulations.

When one considers the evolution of the dislocation mi-
crostructure, similar imitations are immediately obvious.
When two dislocations interact at close range, such as
the case for junction or dipole formation, the dynamics is
very fast, with time steps on the order of picoseconds. On
the other hand, the evolution of dislocation cell walls and
persistent slip bands occurs on a much longer time scale,
on the order of kiloseconds, characteristic of fatigue and
creep processes. These transitions from direct DD sim-
ulations (which are in fact for very short time scales) to
longer time scales characteristic of experimental obser-
vations remain as a challenge.

4.3 Accuracy

The accuracy of interatomic potentials in classical atom-
istic simulations (MD, MC, KMC) is a critical problem
since interatomic potentials are reliable only within the
range of parameter fitting. Therefore, the question of
the influence of the accuracy of empirical interatomic po-
tentials on the predictions of atomic simulations of large
systems is vexing, and casts doubts on the fidelity of fi-
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nal conclusions. The accuracy problem can be overcome
by quantum simulation, but the stiff increase in computa-
tional cost associated with quantum simulations limits its
applicability to very small nano-scale systems. Since the
accuracy problem of interatomic potentials is intrinsic to
classical atomistic simulations, it is necessary to under-
stand the range of validity of each interatomic potential.
Based on a clear understanding of the limitations and ac-
curacy of interatomic potentials, it will be possible to ex-
tract reliable conclusions from atomistic simulations.

Mesoscopic simulations have also been confronted with
severe accuracy issues during this past decade. At the
lowest level of desired accuracy, dislocations can be
discretized into relatively long segments with average
Peach-Koehler forces acting on them, and with crude
estimates of the self forces retraining them. Several
methods, as discussed earlier, have emerged to engender
higher levels of accuracy and rigor to these earlier treat-
ments. In this regard, benchmark problems have been
used to gauge the accuracy of simulations, with added
rigor to the underlying theory. However, when one con-
siders fully-anisotropic materials, or in truly dynamical
applications such as high-speed deformation, the compu-
tational cost increases by several orders of magnitude to
achieve the same level of accuracy. It is expected, there-
fore, that a variety of levels of approximations will be
applicable for the solution of specific problems, and that
in some cases, a rigorous treatment would be an over-kill,
while in others, it may not give accurate information. The
challenge here is to identify where and how to apply the
various levels of approximations with mesoscopic simu-
lations.

4.4 Self-consistency of Multi-scale Models

At the present time, there appears to be a great need to
develop general mathematical and computational meth-
ods for a truly seamless multiscale approach to computer
simulations of nano- and micro-systems. Since the field
is in its infancy, the computational techniques are devel-
oped within a specified range of space and time scales.
There seems to be the understanding that the transition
between one space-time range to another is carried out
by a process of hand-shaking, that is the information
gained from a lower scale is summarized into a finite set
of parameters, and passed on to the higher scale. This
procedure is acceptable, as long as such parameters are
well-defined, and represent a rigorous reduction of the

enormous degrees of freedom of a lower length scale
into a few generalized degrees of freedom represented by
those parameters. However, theoretical foundations and
computational implementation of a more rigorous pro-
cess remain unresolved. If there could be generlizations
of the concept of degress of freedom from those asso-
ciated with space-time (e.g. geometry), to those repre-
sentative of statistical configurations (e.g. conductivity,
mobility, etc.), then smooth transitions between various
length scales can be worked out.

5 Future Directions

Multiscale Modeling of Materials (M3) is in its very early
stage of development, and there are many scientific and
mathematical problems to be addressed in the future. It
is a rich field of physical, numerical, computational, and
mathematical challenges. It is also going to play a key
role in the simulation and design methodology for the
newly emerging field of nanotechnology. The practical
application of multiscale simulation will be in the analy-
sis and design of nano- and micro-scale devices, and we
expect that the next decade will be critical for this de-
velopment. There are many exciting engineering science
problems as well as practical nano- and micro-device ap-
plications waiting for us to investigate with M 3. The
key problems to be investigated in the future are: (1)
the limitations on the time scale in atomistic and meso-
scopic simulations, (2) the limitaions on the length scale
in atomistic and mesoscopic simulations, (3) the effects
of modeling accuracy on the simulation results, and (4)
the development of self-consistent seamless methods of
multi-scale.
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