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A Variational Multiscale Method to Embed Micromechanical Surface Laws in the
Macromechanical Continuum Formulation

K. Garikipati1

Abstract: The embedding of micromechanical mod-
els in the macromechanical formulation of continuum
solid mechanics can be treated by a variational multi-
scale method. A scale separation is introduced on the
displacement field into coarse and fine scale components.
The fine scale displacement is governed by the desired
micromechanical model. Working within the variational
framework, the fine scale displacement field is eliminated
by expressing it in terms of the coarse scale displacement
and the remaining fields in the problem. The resulting
macromechanical formulation is posed solely in terms
of the coarse scale displacements, but is influenced by
the fine scale; thereby it has a multiscale character. The
procedure results in an embedding of the micromechan-
ical model in the macromechanical formulation. In this
paper, this general approach is presented for the special
case of traction-displacement laws on internal surfaces.
Numerical examples are presented that demonstrate the
method for several benchmark problems.

keyword: Multiscale deformation, variational meth-
ods, surface laws, embedding, micromechanics.

1 Introduction

Surface laws manifest themselves in a number of ways
within the context of macromechanical continuum solid
mechanics. Some examples are: (i) the evolution of
shear stress driven by tangential slip on an internal sur-
face, (ii) the decay of normal traction with opening of
a fracture surface, (iii) the evolution of traction driven
by slip and normal separation on a fracture surface and
(iv) the variation of traction across the contact surface
between two bodies as a function of relative motion of
the surfaces. Given appropriate macromechanical, phe-
nomenological, continuum models, a family of traction-
displacement laws can be obtained that fit the description
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of (i)—(iii) above. The analysis of phenomenological
models of plasticity and damage that admit discontinuous
solutions yields such laws [Simo, Oliver, Armero (1993);
Simo, Oliver (1994); Armero, Garikipati (1995); Lars-
son, Runesson, Akesson (1995); Aremero, Garikipati
(1996); Oliver (1996); Svedberg, Runesson (1998); Are-
mero, Callari (1999); Regueiro, Borja (1999)]. Adopt-
ing a distributional viewpoint, the strain has a singular
character (a Dirac delta function); however, careful argu-
ments reveal that the inelastic constitutive models remain
well-defined. The location of the discontinuity, specified
by a one-dimensional Heaviside function, defines the in-
ternal surface. The distributional analysis reveals that the
traction on this surface evolves with the normal and tan-
gential components of displacement across the surface,
usually in a decaying fashion.

In a contrasting scenario a bifurcation could provide the
conditions from which further evolution is governed by
a chosen traction-displacement law [Rice (1976)]. Such
an approach and the method described in the preceding
paragraph are commonly employed to model the local-
ization of deformation. For contact problems, nonlinear
and nonlocal traction-displacement laws can be formu-
lated that take account of the micromechanics of inter-
locking and deforming asperities [Oden, Pires (1983)].
The cases of interest in this paper correspond to exam-
ples (i)–(iii) in the previous paragraph. It is desired to
treat micromechanical surface laws that are specified in-
dependently of the macromechanical formulation. These
laws could arise from considerations that fall beyond the
scope of the macromechanical formulation. They might
even be specified on an empirical basis, drawing from ex-
periments. In this sense, an embedding of the microme-
chanical surface laws is sought within the macromechan-
ical continuum formulation.

To the knowledge of the author, a statement of the prob-
lem in these terms has not appeared previously in the lit-
erature. Several approaches might be possible to effect
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such embeddings. The approach to be pursued here is
called the Variational Multiscale Method. It has been ap-
plied earlier to theoretical and computational aspects of
problems of localized deformation [Garikipati, Hughes
(1998); Garikipati, Hughes (2000a)]. In subsequent
work, the idea of embedding micromechanical surface
laws was broached and presented in a one-dimensional
setting that allowed a closed-form solution [Garikipati,
Hughes (2000b)]. The present paper can be viewed as
an extension of that work to multiple dimensions and the
macromechanical setting of finite strain plasticity.

The underlying principles to embedding micromechan-
ical laws via the variational multiscale method are ele-
mentary. A scale separation is introduced on the dis-
placement field into coarse and fine scale components.
Correspondingly, two systems of equations are identi-
fied: the macromechanical continuum formulation and
the micromechanical surface law. Using the latter, the
fine scale displacement is expressed as a functional of
the coarse scale displacement and the remaining fields.
Finally, this functional is substituted for the fine scale in
the standard weak form of the macromechanical prob-
lem. The fine scale displacement does not appear explic-
itly in the resulting weak form; however, this weak form
is modified by the above procedure. It can be regarded as
having the fine scales projected on to the coarse scales.
The use of the micromechanical surface law also results
in it being embedded within the multiscale, macrome-
chanical formulation.

A related but different problem is the application of ho-
mogenization theory to calculate the effective material
properties and multiscale solution field in a material with
regularly dispersed inhomogeneities. While multiscale
fields arise due to the microstructure, the constitutive as-
sumption remains that of linear elasticity. See Refer-
ences [Fish, Belsky (1995a); Fish, Belsky(1995b); Zo-
hdi, Oden, Rodin (1996); Oden, Zohdi (1997); Moes,
Oden, Kumar, Remacle (1999); Oden, Kumar, Moes
(1999)] for recent examples of such methods. The distin-
guishing aspect of the class of problems being considered
here is that the micromechanical aspects are represented
by a separate set of constitutive relations and balance
laws. Furthermore, the macromechanical continuum de-
scription is applicable almost everywhere; it is only over
a finite number of subdomains that the micromechanical
description prevails.

Details of the formulation are worked out in Section 2,

and numerical examples are presented in Section 3. Sec-
tion 4 provides a summary and also indicates additional
areas where these methods can be applied.

2 The variational multiscale formulation

The weak form of the problem is the point-of-departure
for the developments. Since the macromechanical con-
tinuum setting is that of isochoric, multiplicative finite
strain plasticity, appropriate mixed variational formula-
tions must be used to treat numerical issues arising out
of the incompressibility constraint [Garikipati, Hughes
(2000a)]. The weak form, (W), is obtained as the Euler-
Lagrange equations of a three-field Hu-Washizu varia-
tional principle, wherein the independent unknowns are
the displacement, u, the scalar field, Θ, representing the
local ratio of current to initial volumes and, a second
scalar, p, representing the hydrostatic Kirchhoff stress
[Simo, Taylor, Pister (1985)].
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The first line in Equation (1) is a weak statement of bal-
ance of linear momentum, where w is the displacement
weighting function—also referred to as the variation on
the displacement, τ is the Kirchhoff stress, f is the body
force and T is the traction. The second line is a weak
imposition of the requirement that the scalar, Θ, be equal
to the jacobian of the deformation, J. Here, q is the vari-
ation corresponding to the hydrostatic stress field, p. Fi-
nally, the third line weakly enforces the relation between
p and the hydrostatic Kirchhoff stress, τ, where γ is the
variation corresponding to Θ. The symbol tr[�] repre-
sents the trace of a tensor argument, dev[�] is the devia-
toric component and div[�] is the divergence.

A scale separation is now introduced by a decomposition
of the dispacement, u, into coarse scale component, u,
and fine scale component, u0. Such a decomposition is
also imposed upon the displacement weighting function,
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w. The decomposition is made precise by requiring that
the fine scales, u0 and w0, vanish outside of some region
Ω0, which will be referred to as the microstructural or fine
scale subdomain.

u = u|{z}
coarse scale

+ u0|{z}
fine scale

;

w = w|{z}
coarse scale

+ w0|{z}
fine scale

u0;w0 2 S 0 = fv0jv0 = 0 on Ωnint(Ω0)g (2)

Given the decomposition in Equation (2), the weak form,
Equation (1), can be split into two separate weak forms.
One, involving coarse scale weighting function, w, is
termed the Weak Form of the Coarse Scale Problem,
(W), and the other, involving only fine scale weighting
functions, w0, is termed the Weak Form of the Fine Scale
Problem, (W 0).
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Importantly, this procedure results in the weak form of
the fine scale problem, (W 0), being defined only over Ω0.
This result is crucial since it lends itself naturally to the
application of desired micromechanical descriptions re-
stricted to the microstructural region, Ω 0. For a particular
choice of micromechanical law, the fine scale solution,
u0, is to be expressed in terms of u and other fields in the
problem via the fine scale weak form, (W 0). The final step
involves elimination of the fine scale, u 0, from the prob-
lem by substituting such an expression in the coarse scale

weak form, (W). Thus the fine scale solution does not
appear explicitly; however, its effect is fully embedded
in the resulting modified weak form, termed the Weak
Form of the Multiscale Method, (W ). In principle, the
step of expressing u0 in terms of the coarse scale, u, and
the remaining fields may be carried out either exactly or
approximately. In virtually any case of practical interest,
the exact solution is intractable. Of the available approx-
imate methods, the chosen representation may be either
analytic or numerical.

2.1 The micromechanical surface law

Having established the above general setting, a surface,
Γ � Ω0 (Figure 1), is introduced. The micromechanical
law is to be specified on Γ. In the present finite strain set-
ting, the surface Γ can be viewed in either the reference
or spatial configuration as in Figure 1.

N

M

n
m

ϕ

Γ

Ω

Ω0

ϕ(Ω)

ϕ(Ω0)

Figure 1 : Surface Γ, its normal N and tangent M in
the reference configuration, Ω, mapped forward by the
deformation ϕ to spatial configuration ϕ(Ω).

Invoking standard variational arguments, the weak form
of the fine scale problem can be reduced to the following
statement of traction continuity:

[[τn]]Γ = 0; n = F�T N; (5)

where τn is the traction vector and n is the pushed for-
ward normal (Figure 1). Writing the traction on Γ in
terms of components Tn and Tm along n and m respec-
tively (Figure 1), the traction continuity equation (5) can
be cast into the form

Tnn+Tmm = τnjΓ� ; (6)

where n = F�T N and m = F�T M.

The traction, τnjΓ� , is determined by the macromechan-
ical continuum formulation. The evolution of traction
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components on Γ is governed by the micromechanical
surface law. It is desired to allow a discontinuous dis-
placement [[u]], and to express it in terms of the normal
opening, ξn, and tangential slip, ξm, across Γ.

[[u]] = F

0
B@ ξnN|{z}

Mode 1

+ ξmM|{z}
Mode 2

1
CA (7)

Observe that this allows a mixed mode evolution of the
displacement jump [[u]] on Γ. Assuming tensile normal
traction, Tn � 0, and positive tangential traction, Tm �
0, they are driven by displacement components ξ n > 0
and ξm > 0, respectively, via the simple micromechanical
laws:

Tn = Tn0 �Hnξn; Tm = Tm0 �Hmξm; (8)

where Tn0 > 0 and Tm0 > 0 are the maximum values of Tn

and Tm respectively and Hn > 0;Hm > 0 model soften-
ing response. Consistency between the micromechanical
law and the macromechanical continuum description is
enforced by Equation (6) via Equation (8).

2.2 A specific multiscale decomposition

Attention is now turned to embedding the micromechan-
ical law. This involves the explicit definition of coarse
and fine scale fields. With the introduction of a discon-
tinuous displacement on the surface Γ, the deformation
field is written as

ϕ(X) = X+ û(X)|{z}
continuous

+ F(ξmM+ξnN)| {z }
discontinuous:[[u]]

�HΓ (9)

The Heaviside function, HΓ , acts to enforce the discon-
tinuous nature of the displacement jump, [[u]]. Turning
to the one-dimensional setting of Figure 2 for motiva-
tion, it is observed that for a displacement field admit-
ting a discontinuity, a coarse scale approximation, u, can
be constructed via the interpolation N(X), depicted as a
broken line. The difference between the actual field and
u appears in the center of the figure. Such a field can be
approximated via the interpolation N 0(X) on the right.

In a discrete setting, the coarse and fine scale fields are
obtained via the interpolations

00

1

�1
N(X)

N0(X)
Figure 2 : Coarse and fine scale interpolations N(X) and
N0(X) in a one-dimensional setting.

uh(X) =
nnode

∑
A=1

dANA(X);

u0h(X) = Fh (ξmM+ξnN)| {z }
[[u]]

N0(X); (10)

where dA are nodal values of uh, nnode is the number of
nodes in a finite element discretization, and, as is the con-
vention, superscript (�)h denotes a finite-dimensional ap-
proximation to the corresponding field.

Such an additive decomposition of the displacement
leads to a multiplicative decomposition of the deforma-
tion gradient as
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�
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| {z }
F0h

:

(11)

In Equation (11), F
h

and F0h are respectively the coarse
scale and fine scale deformation gradients.

With this elucidation of multiscale kinematics, we re-
turn to the embedding: Equation (6) enforces consistency
between the micromechanical and macromechanical de-
scriptions. Taken together with Equation (8) it relates
the discontinuous displacement components ξ n and ξm to
the macromechanical fields in ΩnΓ. Since ξn and ξm de-
termine the fine scale through Equation (10), it follows
that Equations (6), (8) and (10), taken together, express
the fine scale field, u0, in terms of the macromechanical
fields. To demonstrate this we proceed as follows:

Defining m] := FM, and n] := FN, Equation (10) gives

u0h = [[u]]hN0 = (ξmm]+ξnn])N0; (12)

from which, ξm = [[u]] �m, and ξn = [[u]] �n. Using these
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relations and Equation (8) in (6) gives

(Tn0 �Hn([[u]] �n))n+(Tm0 �Hm([[u]] �m))m� τn = 0;

(13)

where the last term on the left hand-side is to be evalu-
ated at Γ� as in Equation (6). The aim is to use Equation
(13) to solve for u0. However, this is a nonlinear relation
in u0 since τ = (∂ψ=∂Fe)FeT , where ψ is the strain en-
ergy function, Fe and Fp are the elastic and plastic de-
formation gradients respectively and F = FeFp = FF0.
Since closed-form solutions for u 0 are, in general, dif-
ficult to come by, Equation (13) is expanded up to first
order terms, denoted δ(�):

(Tn0 �Hn([[u]] �n))n+(Tm0 �Hm([[u]] �m))m� τn
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�
n+(∇δ u+ ∇δ u0)τn = 0;

(14)

where the first line in (14) represents a zeroth-order ap-
proximation to (13), and the remaining terms are the first-
order corrections. The elastoplastic tangent in the spatial
configuration is written as Cep. Using u0 = [[u]]N0 ren-
ders this a linear equation in δ[[u]] which can be solved,
and the incremental fine scale field constructed as δu0 =
δ[[u]]N0. Formally, it is represented as,

δu0 = U 0 [u;τ; f; t;Tm;Tn;ξm;ξn] : (15)

The weak form of the coarse scale problem, Equa-
tion (3), involves the jacobian of the deformation, J =
det[FF0], and the scalar field, Θ, which is weakly re-
lated to J. Recall that under the elastoplastic multiplica-
tive decomposition, F = FeFp, the Kirchhoff stress is
τ = (∂ψ=∂Fe)FeT , where ψ, Fe and Fp were introduced
following Equation (13). Furthermore, the scalar, p, is
weakly related to tr[τ]. From Equations (11) and (10)
it then follows that (W) depends nonlinearly upon the
fine scale displacement, u0. As with the fine scale solu-
tion, this difficulty is surmounted by expanding (W) up
to terms of first-order in ∇δ u and ∇δ u0:
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(16)

and substituting the fine scale equation, (15), for δu 0.
The fine scale field, δu0, is thus eliminated and the weak
form of the coarse scale problem is modified to yield
the Weak Form of the Multiscale Method, (W ), which
is now posed in terms of δu. However, the influence of
the fine scale field is not lost, but is retained through U 0.
On solving for δu, the incremental fine scale field, δu0

can be recovered via Equation (15). Iterations are to be
performed: u(i+1) = u(i)+δu, u0(i+1) = u0(i)+δu0, until
a converged solution is obtained.

From Equations (14) and (15) it should be clear that this
procedure also results in an embedding of the microme-
chanical surface law in the Weak form of the Multiscale
Method.

It is noted that the use of the superscript (�) h has been
dispensed with in Equations (13)–(16) for the sake of
clarity. The subscript is, however, implied for all fields
obtained from the discretized displacements, uh and u0h.

Remark 1: The introduction of a fine scale displacement,
u0 might raise the question of whether there is implied a
“fine scale force or stress”. No such implication is in-
tended here. Instead there are micromechanical surface
stresses, Tm and Tn arising from the chosen law in Equa-
tions (6) and (8).

Remark 2: A straightforward analysis reveals that the
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resulting system of linearized equations, (14) and (16) is
nonsymmetric.

3 Numerical examples

This section briefly discusses three numerical examples
demonstrating the embedding of the micromechanical
law. The stored energy function is quadratic in logarith-
mic principal elastic stretches:

ψ = ψ̂(Je;λ
e
1;λ

e
2;λ

e
3)

=
1
2

κ[logJe]2

+µ
h
(logλ

e
1)

2 +(logλ
e

2)
2+(logλ

e
3)

2
i
;

Je = det[Fe];

logλ
e
i = logλe

i �
1
3

log(λe
1λe

2λe
3); (17)

where λe
i ; i = 1 : : :3 are the principal elastic stretches.

The bulk and shear modulus are κ = 164:206 GPa and
µ = 80:1938 GPa respectively. The material is also as-
sumed to have an elastic-perfectly plastic response with
a yield stress, σY = 450 MPa. The internal surface, Γ,
is assumed to form at any point in the material when
the local spatial tangent modulus tensor loses strong el-
lipticity. This condition is commonlly encountered in
strain localization problems with softening plasticity or
damage, and with nonassociative flow rules [Rice(1976);
Willam(1984); Ottosen and Runesson(1991); Armero
and Garikipati(1996)]. The traction components, Tm and
Tn then begin to evolve along Γ according to Equation
(8). For the micromechanical law, Tm0 and Tn0 are taken
as the tangential and normal traction components along
Γ at the instant when strong ellipticity is lost. The soft-
ening moduli, Hm and Hn, are each taken equal to 0:6667
GPa. The examples assume plane strain conditions.

3.1 Shear along a plane

The first example is one of simple shear in a slab (Figure
3).

Figure 3 : Schematic representation of micromechanical
law on a plane parallel to shearing displacement.

When the loss of strong ellipticity is observed in the
macromechanical material model, the micromechanical
surface, Γ, forms as depicted in Figure 3. The embedded
micromechanical law becomes active. In this case it re-
duces to the tangential component of traction driven by
the slip on Γ. Figure 4 shows the undeformed and de-
formed meshes. The shaded region is the microstructural
subdomain (containing Γ) where the fine scale decompo-
sition holds. Observe the sharply resolved deformation
around the micromechanical surface. This is despite the
fact that the mesh is coarse and completely unstructured.

Figure 4 : Deformed mesh and shaded microstructural
region for the simple shear problem.

A well-known pathology that is observed with soften-
ing continuum material models is the strong dependence
of the global load-displacement response upon the mesh
size [Bazant (1976)]. Specifically, the softening portion
of the curve displays an increasingly negative slope as the
mesh is made finer, and this slope does not converge to a
limit. Physically, this arises as the size of the region over
which thermodynamic dissipation is observed tends to
zero with the element size. It is related to an ill-posedness
of softening continuum material models. However, the
incorporation of traction-displacement laws regularizes
the problem [Garkipati and Hughes(1998)]. This impor-
tant property is retained when such laws are embedded
by the variational multiscale method as demonstrated by
Figure 5.
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Figure 5 : Load-displacement curves for two uniform
meshes with different element sizes. Observe that mesh
size-dependent pathologies are absent.

3.2 Inclined plane under tension

The case of the micromechanical law specified along an
inclined plane in a bar subjected to tension is considered
next (Figure 6).

Figure 6 : Schematic representation of micromechanical
law on a plane, Γ, inclined to applied tensile loading.

The activation of the micromechanical law is based on
the strong ellipticity condition as described above. Fig-
ure 7 shows the undeformed and deformed meshes. At-
tention is again drawn to the sharp resolution of defor-
mation around the microstructural region (shaded) which
encloses the surface Γ of Figure 6.

As with the shear problem, the numerical results obtained
are devoid of mesh size-dependent pathology (plots not
shown here); i.e., the thermodynamic dissipation is inde-

Figure 7 : Deformed mesh and shaded microstructural
region for the tension problem.

pendent of mesh size.

3.3 Slipline in a wedge

For this third example the micromechanical law is spec-
ified on a slipline in a wedge (Figure 8). The surface
forms and extends when the loss of strong ellipticity is
satisfied at each point in the wedge in response to the
penetrating block. The material parameters are modified
to κ = 16:667GPa, µ = 7:6923GPa, Hm;Hn = 0:5GPa,
σY = 20MPa.

Figure 8 : Schematic representation of micromechanical
law on a curved slipline

Figure 9 shows the undeformed and deformed meshes
with the slipline contained in the shaded microstruc-
tural region. Limit analysis indicates that the shape of
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the slipline could be either a logarithmic spiral (which
is roughly the shape obtained in Figure 9) or a circle
[Lubliner(1990)]. The sharply resolved deformation is
again evident as is the rotation of the block and material
beneath it.

Figure 9 : Deformed mesh and shaded microstructural
region for the wedge problem.

These numerical examples demonstrate the effectiveness
of the variational multiscale approach at embedding mi-
cromechanical surface laws specified on sliplines and
failure surfaces. The characteristics of the micromechan-
ical laws such as softening response and well-defined
thermodynamic dissipation are also retained.

Remark 3: While the three cases considered in this
section are all shear-driven, unpublished calculations
have been carried out for boundary value problems with
mixed-mode evolution of traction on the surface Γ. On
a similar note, in an experiment, a tension-loaded prob-
lem might fail due to ductile void growth; however, in
this work the micromechanical surface law of Section 2
was deliberately chosen to represent the “failure” mech-
anism. Indeed, tension specimens often fail under shear
band formation, which is modelled by the micromechan-
ical surface law evolving in pure mode 2.

Remark 4: The meshes chosen for the three problems
have not been refined around the micromechanical sur-
face. Indeed, it is impossible to resolve the mesh down
to what is essentially a lower-dimensional manifold. On
the contrary, the point is that the macroscopic response
obtained is physically correct when the present approach
is used to embed micromechanical laws. The deforma-
tion of the mesh around the surface is restricted to a band
of elements that contain the surface in each case. The ob-
served deformations correspond to the coarse scale ones,
u. The fine scale deformations, u0 have been projected on
to the coarse scale and thus eliminated from the problem.
This process results in embedding the micromechanical
law in the macromechanical formulation.

4 Conclusion

The purpose of this communication is to demonstrate that
the variational multiscale method can be used to em-
bed micromechanics in the macromechanical formula-
tion. The choice of surface laws for the micromechanical
description was motivated by their simple form and rele-
vance to problems involving localized deformation. The
methods presented here are related to the strong disconti-
nuities approach [Armero and Garikipati(1996); Armero
and Callari(1999); Regueiro and Borja (1999); Borja and
Regueiro(2001)] for strain localization problems. The
difference lies in the fact that the present variational mul-
tiscale approach can be used to embed any specified sur-
face law. In contrast, the strong discontinuities approach
applies a distributional analysis on inelastic models ad-
mitting discontinuous solutions, to derive certain classes
of surface laws. In the formulations involving discon-
tinuous solutions, the form of the traction-displacement
law is thus dependent upon the chosen inelastic material
model. In the present paper, no such correspondence is
necessary and a micromechanical model can be specified
independently of the macromechanics. Work currently
under progress will make the extension to micromechan-
ical models applicable over small but finite-sized ma-
terial subdomains. For instance, it may be of interest
to incorporate material behavior at micron and submi-
cron length scales around atomically sharp crack tips,
micron-sized shear bands, voids and asperities. While
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there exist micromechanical continuum theories2 [Stein-
mann(1996; Fleck and Hutchinson(1997); Huang, Gao,
Nix and Hutchinson(2000); Gurtin(2000)] that represent
such fine scale physics, they are almost always applied
to boundary value problems at micron length scales. At-
tempts to incorporate such theories in large scale struc-
tural calculations are confronted with issues of computa-
tional efficiency, complexity and robustness (the last two,
due to the higher-order nature of the micromechanical
theories). The ideas presented here can be extended to
embed some of these theories in the classical macrome-
chanical formulation, so that the fine scale physics is re-
tained without sacrificing computational efficiency and
robustness.
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