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The Core Structure and Energy of the 90Æ Partial Dislocation in Si

Karin Lin1 and D. C. Chrzan2

Abstract: The 90Æ partial dislocation in Si is studied
using a combination of Tersoff potentials and isotropic
elasticity theory. Both periodic supercells and cylindri-
cal cells are employed and the results compared. The
dislocation core radius is extracted by fitting the results
of atomic scale calculations to an expression for the elas-
tic energy of the dislocation. The energy differences be-
tween two proposed reconstructions of the dislocation
core are computed and found to depend systematically on
the stress field imposed on the dislocation. It is suggested
that hydrostatic stresses may introduce a core transfor-
mation.

keyword: Dislocation cores, dislocations in Si.

1 Introduction

A solid understanding of the properties of dislocations
is essential to the successful modeling of mechanical
properties in materials. The rapid increase in compu-
tational power in recent years has prompted substan-
tial developments in simulating the large-scale behav-
ior of dislocations [Kubin, Moulin, and Pirouz (1999);
Schwarz (1999); Rhee, Zbib, Hirth, Huang, and de la Ru-
bia (1998); Ghoniem, Tong, and Sun (2000); Faradjian,
Friedman, and Chrzan (1999)]. However, the failure of
continuum elasticity theory to describe a dislocation ac-
curately at small distances obviates the need for a better
picture of the dislocation core at the atomic level.

Dislocations in diamond cubic materials, and in Si in par-
ticular, have received much attention in recent years. In
theh101if111g slip system of these materials, the pre-
dominant dislocations have Burgers vectors at 0 Æ and
60Æ to the line direction, and these dislocations may dis-
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sociate into 30Æ and 90Æ partials. Most studies con-
centrate on the structure of the 90Æ partial [Bennetto,
Nunes, and Vanderbilt (1997); Nunes, Bennetto, and
Vanderbilt (1998); Valladares, Petford-Long, and Sutton
(1999); Blase, Lin, Canning, Louie, and Chrzan (2000)],
although some work on the 30Æ partial [Bulatov, Yip,
and Argon (1995); Trinczek and Teichler (1993)] and
on the perfect screw dislocation [Arias and Joannopou-
los (1994)] is also reported.

The present work, too, focuses on the structure of the 90 Æ

partial dislocation in Si. In particular, the dependence of
the relative stability of two possible reconstructions of
the core on the stress field experienced by the disloca-
tion is explored. Atomic scale calculations are performed
using Tersoff potentials, employing both periodic super-
cells and cylindrical cells. Atomic scale calculations are
interpreted, in part, using isotropic elasticity theory as a
guide.

This paper makes three important points. First, a new
method for extracting the core radius of an edge disloca-
tion from atomic scale calculations employing periodic
supercells is described in detail. The technique is em-
ployed to extract the core radius for the 90Æ partial dislo-
cation in Si (as predicted by Tersoff potentials).

Second, it is demonstrated that both periodic supercells
and cylindrical cells may be used to explore the rela-
tive stability of competing core structures. In fact, for
large enough cells, supercells and cylindrical boundary
conditions yield nearly identical results. Third, the en-
ergy difference between competing core structures for
the 90Æ partial is stress state dependent, and the stress
state dependence can be explored systematically using
periodic supercells. This systematic stress dependence is
demonstrated explicitly for applied shear and hydrostatic
stresses.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the 90Æ partial dislocation and two pos-
sible reconstructions for its core. An analysis of the rela-
tive stability of these two reconstructions is presented in
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section 3. Section 4 presents the results of applying pres-
sure to the periodic dislocation array, and a discussion
and conclusions are given in section 5.

2 Reconstructions of the 90Æ partial

In a diamond-cubic material such as Si, the unrecon-
structed core of the 90Æ partial dislocation viewed in the
f111g plane contains a zigzag chain of three-fold coordi-
nated atoms [Fig. 1(a)]. In the late seventies, it was pro-
posed by Hirsch (1979) and Jones (1980) that this core
reconstructs by breaking the mirror symmetry along the
dislocation line, restoring the fourfold coordination of
the atoms in the core. This reconstruction, illustrated in
Fig. 1(b) and commonly referred to as the single–period
(SP) core, was assumed for many years to be the physi-
cally correct core structure.

A new core reconstruction (the double-period or DP
core) was recently proposed by Bennetto, Nunes, and
Vanderbilt (1997), in which alternating five- and seven-
membered rings are formed, thus doubling the periodic-
ity along the dislocation line [Fig. 1(c)]. Using periodic
boundary conditions and a variety of energy calculation
methods, the authors showed that the DP structure has a
lower energy than the previously assumed SP structure.
Other researchers, however, have questioned the gener-
ality of this result. Lehto and Öberg (1998) have argued
that the relative stability of the two structures depends
on the choice of unit cell used in the periodic boundary
conditions, and calculations of Valladares, Petford-Long,
and Sutton (1999) suggest that the difference between
free energies of the SP and DP cores is insignificant at
temperatures required for dislocation mobility in Si.

The present work explores in detail the effect of periodic
boundary conditions on the relative energies of the two
core structures. As Lehto and Öberg (1998) have noted,
these energies are sensitive to the environment in which
the dislocation is located. Here, that dependence is stud-
ied systematically. A recently developed method Blase,
Lin, Canning, Louie, and Chrzan (2000) for performing
the “Madelung-like” sum associated with the infinite ar-
rangement of oppositely signed edge dislocations is ap-
plied. This procedure also yields the stress state imposed
on the dislocations as a function of the unit cell param-
eters, as well as the elastic energy/supercell associated
with the dislocation array. Total energies computed using
Tersoff potentials are compared with the elastic energies
predicted by isotropic elasticity theory to extract values

for µ=(1� ν), with µ the shear modulus and ν Poisson’s
ratio, and the core radius r0 for the 90Æ partial disloca-
tion in Si. The stress state dependence of the SP and DP
core energy difference is then quantified through a se-
ries of calculations in which the unit cell for the periodic
boundary conditions is varied.

(111) plane(110) plane

(a)

(b)

(c)

Figure 1 : Atomic structure of the 90Æ partial disloca-
tion viewed from above the (110) and (111) planes: (a)
unreconstructed, (b) single-period (SP) reconstructed, (c)
double-period (DP) reconstructed. Shaded area indicates
stacking fault.

3 Relative energies of the SP and DP core structures

3.1 Periodic boundary conditions

The choice of boundary conditions can have a significant
effect on the observed results, and controversy remains
as to the best methods for studying dislocation core struc-
tures. Two common approaches for boundary conditions
are the “cluster” method and the method of periodic su-
percells. In the cluster method, a typical practice is to



Core structure and energy of 90Æ partial dislocation in SI. 203

generate initial positions of the atoms in a cylindrical cell
surrounding the dislocation core within anisotropic elas-
ticity theory, fix the positions of the atoms on the surface
of the cylinder, and allow the remaining atoms to relax.
While the cluster method is useful in that it allows the
consideration of an isolated dislocation, it suffers from a
sensitivity to the initial placement of the dislocation core
and the necessity to treat in a special way atoms at the
surface.

Periodic boundary conditions eliminate the difficulty of
treating the surface atoms present in the cluster method,
but introduce an infinite number of interactions between
dislocations. When the supercell is small and the dislo-
cations are thus very close together, extreme stress states
may result. Moreover, each supercell must have a net
zero Burgers vector to avoid a divergence in the elastic
strain energy. These difficulties notwithstanding, the pe-
riodic supercell method has been the more popular for
studies of the core structure and energy of the 90Æ partial
in diamond cubic materials [Bennetto, Nunes, and Van-
derbilt (1997); Nunes, Bennetto, and Vanderbilt (1998);
Valladares, Petford-Long, and Sutton (1999); Arias and
Joannopoulos (1994); Lehto and Öberg (1998)] and is the
method applied for the majority of the work described in
this paper.

3.1.1 Definition of parameters

The simplest possible supercell is a dipolar cell, contain-
ing two dislocations with opposite Burgers vector. The
dimensions of the cell are defined by the unit vectors
in the (111) plane of the perfect 12-atom orthorhombic
cell: a1 = a

2 [112], a2 = a
2 [110], a3 = a[111], where a is

the lattice constant for Si, 5.43 Å. Adopting the notation
of Bennetto et al., the cell is assigned the parameters of
length L, height D, dislocation separation w, and cell off-
set T . (See Fig. 2). For simplicity, all parameters are
expressed as integers, with L, w, and T understood to be
in units of ja1j and D in units of ja3j.

Part of the controversy surrounding the discussion of pe-
riodic boundary conditions involves the choice of the
parameters L, D, w, and T . As first noted by Bigger,
McInnes, Sutton, Payne, Stich, King-Smith, Bird, and
Clarke (1992), the value of the offset T requires some
consideration in order to avoid a lattice mismatch at the
cell boundaries. Previously, it was thought that this prob-
lem could be solved only by using a “quadrupolar” lat-
tice, i.e. T = L=2, and several studies [Bennetto, Nunes,

[112]

[111]

L

D

T

w

Figure 2 : Representation of two unit cells in the (110)
plane. L is the width of the unit cell, D is the height, and
w is the distance between dislocations in the cell. The
offset T is also shown.

and Vanderbilt (1997); Nunes, Bennetto, and Vander-
bilt (1998); Valladares, Petford-Long, and Sutton (1999)]
have thus employed the quadrupolar lattice exclusively.
However, Lehto and Öberg (1998) pointed out that this
restriction is unnecessary. When two oppositely signed
edge dislocations are introduced into a perfect solid and
separated by a distance w, the top and bottom surfaces of
the solid are displaced relative to each other by b(w=L),
where L is the width of the solid along the slip direc-
tion and b is the magnitude of the Burgers vector. Pro-
vided that the offset T is adjusted by this amount, there
is only one additional restrictions (other than those im-
posed by the lattice periodicity itself) on L, D, w, and
T . Specifically, the ratio T=L must be a rational number.
(This limitation is not very restrictive.) This constraint
insures that the assembly of dislocations may be treated
as a collection of tilt boundaries, and avoids singularities
in the elastic energy which would arise from introducing
boundaries that are not pure tilt. Moreover, changing the
values of these parameters affects the stresses and stress
gradients experienced by a dislocation in the infinite lat-
tice, and the energies observed are expected to depend on
these stress states [Lehto and Öberg (1998)]. Thus, one
may place the dislocation under a variety of stress states
by simply changing the values of L, D, w, and T , and it is
in this manner that the stress dependence of the relative



204 Copyright c
 2002 Tech Science Press CMES, vol.3, no.2, pp.201-211, 2002

core structure may be quantified.

Each supercell employed in the periodic boundary cal-
culations contains two dislocations of opposite sign in
order that the total Burgers vector vanish, thus avoiding
a divergence in the energy. It should be noted here that
there are two possibilities for the SP reconstruction in
a dipolar unit cell depending on whether the direction
of mirror symmetry breaking is the same or the oppo-
site for the two dislocations (See Fig. 3). Previous work-
ers [Bennetto, Nunes, and Vanderbilt (1997); Valladares,
Petford-Long, and Sutton (1999)] have quoted the aver-
age of the two distinctly different energies. However, the
same sense reconstruction should always be higher in en-
ergy. In order to avoid spurious strains in the system, the
bonds in the dislocation core must be angled such that the
two “good” regions on either side of the stacking fault
are shifted with respect to each other by an amount com-
mensurable with the lattice spacing in the dislocation line
direction. This places an artificial constraint on the cell
which increases the energy. Because this constraint is not
present in the opposite sense reconstruction, it is con-
cluded that the opposite sense reconstruction gives the
better estimate of the SP core energy, and all calculations
considered here are performed with this configuration.
(That this choice is physically reasonable is borne out by
comparison with cylindrical cell calculations of the same
energy difference. See section 3.2, below.)

3.1.2 Stress field and energy of a periodic edge dislo-
cation array

In order to explore how the relative energies of the SP
and DP reconstructions depend on stress, it is necessary
to sum the stress fields from an infinite number of dislo-
cations. Since the stress field of a dislocation is propor-
tional to 1=r, where r is the distance from the dislocation,
this sum is similar to a Madelung sum for an ionic crys-
tal and must be handled carefully. The sum is found to
converge rapidly when the periodic arrangement of dis-
locations is viewed as a 1-D stack of tilt boundaries, or
linear arrays of dislocations. (See Fig. 4.) The stress field
of a tilt boundary decays exponentially with the distance
from the boundary [Hirth and Lothe (1992)]. The stress
experienced by a single dislocation in a periodic array
can then be expressed as the sum of the stress fields from
all the tilt boundaries [Gulluoglu, Srolovitz, LeSar, and
Lomdahl (1989)].

Similarly, the total elastic energy of the configuration is

(a)

(b)

Figure 3 : Two possible cells for a dipolar, SP-
reconstructed unit cell, viewed from above the (111)
plane: (a) same-sense reconstruction and (b) opposite-
sense reconstruction. Shaded region indicates stacking
fault.

the sum of the self-energy of each tilt boundary [which
depends on µ=(1�ν) and the core radius r0] and the work
required to assemble the tilt boundaries in the presence of
their stress fields [which depends only on µ=(1�ν)]. For
a tilt boundary composed of edge dislocations located at
x = 0 in the coordinate system of Fig. 4, the stress fields
predicted from isotropic elasticity theory are [Hirth and
Lothe (1992)]:

σxy = σ02πX

�(cosh2πX cos2πY �1)

σxx = �σ0 sin2πY

�(cosh2πX �cos2πY +2πX sinh2πX)

σyy = �σ0 sin2πY

�(cosh2πX �cos2πY �2πX sinh2πX) (1)
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Figure 4 : A periodic array of dislocations considered as
a 1-D stack of tilt boundaries, viewed in the (110) plane.

where

σ0 =
µb

2d(1�ν)(cosh2πX �cos2πY )2 (2)

and X = x=d, Y = y=d, where d is the distance between
nearby dislocations in the boundary.

The self-energy of a tilt boundary is taken to be half the
energy required to separate two equivalent boundaries of
opposite sign from x = r0 to x = ∞. With Y = 0 (the
tilt boundaries are not shifted with respect to each other
vertically), the shear stress σxy is

σxy =
µb

2d(1�ν)
2πX(cosh2πX �1)
(cosh2πX �1)2

=
µbπ

2d2(1�ν)
x

sinh2(πx=d)
: (3)

The self-energy per dislocation per unit length is then
given by [Hirth and Lothe (1992)]

Eself =
1
2

Z ∞

r0

bσxy dx

=
µb2

4π(1�ν)
[η0 cothη0 � ln(2sinhη0)] (4)

where η0 = πr0=d.

The total eleastic energy of the collection of tilt bound-
aries includes both the self energy of the individual
boundaries and the interaction energy between all the dis-
locations within the system. This energy can be com-
puted as follows. One imagines that each of the bound-
aries is created at x = ∞, and then one computes the work
required to bring the tilt boundary from x = ∞ to its fi-
nal position. This work is merely the interaction energy

between the newly created tilt boundary and all existing
tilt boundaries. Calculation of the work requires that one
compute the net stress on the boundary under considera-
tion arising from all existing boundaries. Since the stress
field of an individual tilt boundary decays exponentially
with distance from the boundary, this net stress is com-
puted readily using “brute force” summation.

The interaction energy (per dislocation per unit length)
between two tilt boundaries separated by a distance x 0

and offset vertically by y0 is, with ζ0 = 2πx0=d, Y0 =
y0=d, and a = cos2πY0,

ε(x0;y0) = �
µb2π

d2(1�ν)

Z x0

∞

x(acosh2πx=d�1)
(cosh2πx=d�a)2 dx

=
µb2

4π(1�ν)

�

�
ln2(coshζ0 �a)�

ζ0 sinhζ0

coshζ0�a

�
(5)

for same-signed boundaries, and �ε(x0;y0) for opposite-
signed boundaries. One then computes the energy differ-
ence between configurations differing only in the num-
ber of added tilt boundaries. This difference converges
rapidly to a constant, and allows computation of the elas-
tic energy per unit cell.

The interaction energies depend directly on µ=(1� ν),
and the self energies depend on both µ=(1� ν) and r 0.
Hence the predictions of isotropic elasticity theory can
be computed as a function of these parameters.

The above equation, which provides an expression for the
elastic energy of a dipolar cell in terms of the parameters
L, D, w, and T , now allows for the extraction of values
of µ=(1�ν) and r0 for Si. Total energies are determined
using Tersoff potentials [Tersoff (1988)] for various pe-
riodic configurations of dislocations in the single-period
structure. These energies are then fit to the expression
for the elastic energy with µ=(1� ν) and r0 as fitting pa-
rameters, assuming that both are independent of stress.
(A successful application of this technique to analysis of
ab initio results in diamond was presented by Blase, Lin,
Canning, Louie, and Chrzan (2000).)

Three choices of unit cell in the SP reconstruction are
employed: L = 12, D = 3; L = 6, D = 2; and L = 6,
D = 8, in both the dipolar (T=L = 0) and quadrupolar
(T=L= 1=2) arrangements, with w varied from 1 to L�1.
The results of the fit are shown in Fig. 5, with µ=(1�ν)=
70�17 GPa and r0 = 0:67�0:05 Å. The value for µ=(1�
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ν) is in agreement with both the experimental value of
87.1 GPa [Hirth and Lothe (1992)] and the Voigt average
value predicted by the Tersoff potentials, 77 GPa. The
core radius r0 corresponds to α = b=r0 � 3:3, consistent
with general expectations [Hirth and Lothe (1992)] and
not too far from the result α = 4:08 found by Trinczek
and Teichler (1993); the discrepancy is likely due to the
use of a different potential.

2 4 6 8 10
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Figure 5 : Fits to isotropic elasticity theory of total en-
ergy calculations for the SP core from Tersoff poten-
tials, using periodic boundary conditions for three dif-
ferent unit cells. Data are fit simultaneously, assuming
µ=(1�ν) and r0 do not change with unit cell.

3.1.3 Stress dependence of the SP and DP core energies

The difference in core energies for the SP and DP re-
constructions is now studied systematically. Most pre-
vious attempts at identifying the stable core structure
[Bennetto, Nunes, and Vanderbilt (1997); Nunes, Ben-
netto, and Vanderbilt (1998); Valladares, Petford-Long,
and Sutton (1999)] were restricted to a quadrupolar cell.
While the stress field on a dislocation in this arrangement
is indeed zero, it will be shown that the relative stability
of the two core structures depends not only on the stress
but also the stress gradients.

Indeed, there is much discussion of the proper choice of

unit cell to predict the stable core structure for the consid-
ered dislocation (see, for example, Bigger et al. Bigger,
McInnes, Sutton, Payne, Stich, King-Smith, Bird, and
Clarke (1992)). The work of Lehto and Öberg demon-
strating that the stable core structure may be stress depen-
dent suggests that these initial arguments are misguided.
There is not a single uniquely stable core structure for the
dislocation in question. Rather, the dislocation core itself
is deformable, and the stable structure of the dislocation
may well depend on the imposed stress state.

The focus of the current work, then, is to explore the rel-
ative stability of the two core configurations as a func-
tion of imposed stress state. The exploration relies heav-
ily on the use of periodic supercells. While this choice
may not be optimal for some studies, it seems that ab
initio total energy techniques are more easily applied us-
ing periodic supercells than, for example, considering a
finite radius cylinder (which requires “capping” the sur-
face bonds with H). Given the analysis above, it is pos-
sible to subject the dislocation cores to a broad variety
of stress states merely by choosing a variety of periodic
supercell configurations. The stress state imposed on the
dislocations can be estimated using the isotropic elastic-
ity theory analysis presented above. In this manner, the
dependence of the energy difference on the dislocation
environment can be quantified.

Fig. 6 shows the predicted difference in core energies,
E(DP)�E(SP) as a function of the shear stress σxy for
a large number of periodic supercells. Here E(DP) and
E(SP) are energies per unit length per dislocation of the
cells containing DP and SP cores, respectively. Since
the elastic energies of the two unit cells are identical by
definition, the considered difference can be equated to the
difference in core energies of the two cores. The shear
stress is varied for a given cell by changing w, which can
range from 1 to L� 1. The stresses thus obtained, as
estimated by istropic linear elasticity theory for the cells
under consideration, can be as large as 0.07µ, or almost 4
GPa. It is clear from the plot that although the DP core is
more stable than the SP core for most stresses, in general
the energy difference decreases with increasing σxy.

The lack of coincidence of the curves suggests that the
relative stability of the two reconstructions depends on
more than the shear stress. In fact, the diagonal stress
components σxx and σyy and their gradients are also af-
fected by the periodic arrangement of the dislocations.
The two most outlying curves, corresponding to the
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Figure 6 : Energy difference E(DP)�E(SP) for Si as a
function of shear stress for various choices of unit cell. A
negative number indicates that the DP structure is more
stable.

smallest unit cell with dimensions L = 6;D = 2, have the
largest diagonal stress components (for w 6= L=2, up to
half the magnitude of the shear stress), whereas the cells
L = 6;D = 8 and L = 8;D = 12 have the smallest diago-
nal components (down by a factor of 105 from the shear
stress, over the range of w=L investigated). This suggests
that (1) the small cells used by previous workers [Ben-
netto, Nunes, and Vanderbilt (1997); Valladares, Petford-
Long, and Sutton (1999)] to determine the relative stabil-
ity of the SP and DP cores may subject the dislocations to
stress field conditions that drastically affect the observed
value of the energy difference E(DP)�E(SP) and (2)
the energy difference of the two cores may be sensitive to
pressure such that under certain conditions the SP struc-
ture is to be the more stable core. In any case, it is clear,
as Lehto and Öberg (1998) have pointed out, that the rel-
ative stability of the two cores is highly dependent on the
environment in which the dislocation is located.

It is worthwhile commenting on the lack of symmetry
between �σxy in Fig. 6. Here, the positive shear stress is

defined as the shear stress that pushes the partial towards
the stacking fault. The asymmetry is present, quite sim-
ply, because there is no reason to expect a �σxy symme-
try: One side of the dislocation is bounded by a stack-
ing fault, whereas the other borders the unfaulted crystal.
Since the configuration of atoms clearly breaks � sym-
metry, one expects that the energy difference between the
cores will also break this symmetry.

3.2 Cylindrical boundary conditions

Given the number of degrees of freedom in choosing the
periodic supercells, and the potential for the introduction
of artifacts arising from choosing the same sense versus
opposite sense reconstruction, it is wise to compare the
periodic supercell calculations with those obtained using
a cylindrical unit cell containing an isolated single dislo-
cation. As a minimum check, it is reasonable to consider
the case of zero applied shear stress, as this is the condi-
tion under which the periodic supercell calculations show
the most significant dependence on the periodic supercell
geometry.

The initial displacements of atoms within the cylindrical
cell, which contains up to about 6000 atoms, are deter-
mined according to anisotropic elasticity theory, and the
positions of atoms in an outer ring of thickness 5 Å are
fixed. Relaxation of the core atoms is again performed
using Tersoff potentials.

In the periodic cells, small changes in the initial positions
of the dislocations (as defined by elasticity theory) are in-
significant because all atoms are allowed to relax to the
minimum energy configuration. In the cylinder, however,
the initial position of the dislocation is important because
it determines the displacements of the fixed outer atoms
and thus affects the final energy. However, the attempt
to treat a discrete atomic lattice with continuum elastic-
ity theory introduces an ambiguity; a dislocation’s posi-
tion can only be defined to within an interatomic spacing.
While one approach is simply to place the dislocation on
the center axis of the cylinder, the lack of perfect radial
symmetry about this axis at the atomic level suggests that
the core energy of the relaxed configuration may be lower
if the dislocation is displaced slightly from this axis. Fur-
ther, there is no reason to assume that the optimal posi-
tion for the dislocation is the same for the SP and DP
structures.

In order to explore these issues more carefully, the fol-
lowing procedure is performed. The trial cylinder is
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taken to have a radius of 20 Å and is periodic along
the dislocation line direction. For each core reconstruc-
tion, the dislocation position is varied in increments of
0.1 Å along each direction within a circle of radius b,
where b is the magnitude of the Burgers vector (about 2.2
Å). The resulting configurations are relaxed and the en-
ergies recorded. The energy differences associated with
the placement of the core are found to be significant;
changes in the core positions by less than 1 Å can shift
∆E = E(DP)�E(SP), by as much as 5 meV/Å, which
is on the order of ∆E itself. Since the change in elastic
energy associated with the small change in position of
the dislocation with respect to the outer ring of atoms is
negligible, it is reasonable to choose the dislocation posi-
tion at the point that minimizes the core energy for each
structure. For the SP core, the optimal placement of the
dislocation is found to be x =�1:4 Å, y=�0:5 Å, where
the x-axis is in the [112] direction and the y-axis is in the
[111] direction. For the DP core, the optimal position is
x = 0:3 Å, y =�0:7 Å.

As the radius of the cylinder is increased and surface ef-
fects become less significant, ∆E is expected to approach
a value close to what is expected for an isolated (partial)
dislocation in a bulk material. Fig. 7 plots ∆E as a func-
tion of cylinder radius, using the optimal positions for the
SP and DP cores as determined above. The thickness of
the outer cylinder of fixed atoms is kept constant at 5 Å;
supplemental trials suggest that variations in this thick-
ness are insignificant, especially as the cylinder radius is
increased.

As the radius of the cylinder increases, ∆E approaches
a value of approximately �6:8 meV/Å. This result is
to be compared to the zero shear stress, or w = L=2,
case in the periodic calculations shown in Fig. 6. Al-
though this number varies among the choices of unit cell,
it is reasonable to choose the points corresponding to
the largest cells, in which the dislocations are the most
isolated (albeit with separations on the order of tens of
angstroms). The cells L = 12, D = 8 and L = 8, L = 12
show E(DP)�E(SP) from �6:5 to �8 meV/Å. Thus, it
can be concluded that the periodic supercell method gives
results comparable to those from cylindrical cluster cal-
culations in the case of an isolated unstressed dislocation,
provided that the periodic cell is chosen judiciously.
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Figure 7 : Energy difference E(DP)�E(SP) for Si, cal-
culated using Tersoff potentials and cylindrical boundary
conditions, as a function of the cylinder radius.

4 Pressure calculations

The effects of the diagonal stress components σxx and
σyy on the relative stability of the SP and DP cores, as
discussed in section 3.1.3, suggest that one may be able
to induce a transition where the SP core is more stable
by applying a hydrostatic pressure to the periodic unit
cells. This is accomplished in the following manner. A
number of perfect diamond cubic cells are generated with
lattice constants varying near the lattice constant a= 5:43
for Si. The energy of these unit cells, calculated using
Tersoff potentials, is then tabulated and a cubic spline is
fit to the E vs. V curve. Since P = �∂E=∂V , it is then
possible to extract the lattice constant corresponding to
a particular pressure. This lattice constant is then used
to generate the dipolar unit cells, and the same analysis
used in generating Fig. 6 is performed.

Fig. 8 shows the results of applying pressure to the L = 6,
D = 8 cell, for which the diagonal stress components are
normally very small. (The difference between the T=L =
0 and T=L = 1=2 curves is negligible on the scale of the
plot.) As the diagonal stress components are increased,
the curve moves up on the plot, indicating that the DP
core is becoming less stable with respect to the SP core.
For P = 3 GPa, the SP core appears to be more stable for
all but the most extreme shear stresses.

For values of P of 5 GPa and above, the curves begin
to take on a different shape. Examination of the relaxed
core structures reveals that this is due to yet another tran-
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sition; the SP core has transformed into a symmetric re-
construction, in which each atom along the core has three
first neighbors and two further neighbors at a distance
greater than the equilibrium bond length (See Figure 9).
In this structure, found by Duesbery, Joos, and Michel
(1991), the atoms are said to have “quasi-fivefold” co-
ordination. The bonds across the dislocation core are
longer in the quasi-fivefold coordinated symmetric core
than in the four-fold coordinated asymmetric core.

Although Duesbery et al. found the symmetric recon-
struction to be more stable using certain empirical po-
tentials, it was later determined by Bigger et al. using
more accurate ab initio techniques that the asymmetric
reconstruction (Fig. 1(b)) is in fact more stable, and it
is thus this reconstruction for the SP core that has been
considered in the most recent literature. However, the in-
ability of other empirical potentials to predict the correct
SP reconstruction suggests that the transition seen here is
similarly an artifact of the Tersoff potential and its lim-
ited range. For the cells under zero or low pressure, the
symmetric reconstruction is metastable and transforms
spontaneously to the unreconstructed core ( Fig. 1(a))
which is significantly higher in energy than both the DP
core and the asymmetric SP core. However, as the pres-
sure is increased, the lattice constant and hence the av-
erage bond length decreases. When the lattice constant
becomes small enough, more atoms may fall within the
cutoff defined by the Tersoff parameters for Si, making
the symmetric reconstruction (with five neighbors rather
than four) more energetically favorable. Although it is
clear that these calculations should be repeated using
more accurate methods, the trend observed for the low
pressure curves of Fig. 8 (if correct) suggests that the sta-
ble core structure may change from DP to SP upon appli-
cation of an external pressure. If electronic states of the
two cores can be identified so as to allow one to distin-
guish them experimentally, it may be possible to observe
this transition directly.

5 Discussion and conclusions

In summary, the calculations presented here form an ini-
tial study of the deformation behavior of the core of the
90Æ partial dislocation in Si. Specifically, it is demon-
strated that the deformation of the core leads to 1) a shear
stress asymmetry in the difference in core energies be-
tween the DP and SP cores, and 2) the possibility of a
shear and hydrostatic stress induced core transformation.
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Figure 8 : Plots of ∆E = E(DP)�E(SP) for the L = 6,
D = 8 cell, with a hydrostatic pressure imposed. As the
pressure is increased, the DP core becomes less stable
with respect to the SP core.

The shear-stress asymmetry may well be important, in so
far as it suggests that the mobility of this partial may de-
pend on the sign of the stress. The implication is that the
magnitude of the dislocation velocity may depend on the
sign of the applied stress, and whether or not the 90 Æ par-
tial is leading or trailing, much as is expected for disloca-
tions in wurtzite materials [Maeda and Takeuchi (1996)].

The possibility of a stress induced core transformation
may also have significant implications for the mobility of
the dislocations. If dislocations move through the nucle-
ation and lateral motion of kinks, then one might expect
that both the double kink nucleation barrier and the the
kink-migration barrier would depend on the structure of
the core. Hence a proper theory of dislocation mobility
must necessarily include the thermally-assisted forma-
tion of the unstable core phase, and reflect the changes
in kink dynamics so expected. In addition, dislocation
dynamics simulations, reflecting simple empirical mobil-
ities may not capture the essential features of the dynam-
ics of these dislocations.

Finally, it is noted that the atomic scale calculations re-
ported here are computed using Tersoff potentials, and
result in very small energy differences between the two
core states. Though these energy differences are simi-



210 Copyright c
 2002 Tech Science Press CMES, vol.3, no.2, pp.201-211, 2002

(110) plane (111) plane

Figure 9 : Symmetric, quasi-fivefold coordinated recon-
struction of the 90Æ partial dislocation viewed from above
the (110) and (111) planes. Shaded area indicates stack-
ing fault.

lar to those reported based on ab initio techniques, the
energy differences are probably below the resolution of
the potentials. Nevertheless, these calculations do sug-
gest that further investigations, using more predictive to-
tal energy techniques are warranted. The calculations
further establish the approximate size of a periodic su-
percell necessary to produce the required accuracy ( 2000
atoms). These calculations, while extremely numerically
taxing, are, perhaps, within reach. Hence in the not too
distant future, it will be possible to conduct studies of
this sort using ab initio electronic structure total energy
techniques.

In conclusion, this paper addresses three aspects con-
cerning the study of edge dislocation cores. First, it is
demonstrated in detail how one may use the isotropic lin-
ear elastic treatment of tilt boundaries to extract disloca-
tion core radii from atomic scale calculations employing
periodic supercells. Second, it is demonstrated how one
can use linear isotropic elasticity theory to study system-
atically the dependence of dislocation core structures on
imposed stress states. This demonstration suggests that
similar calculations employing ab initio electronic struc-
ture techniques would be insightful. Third, it is suggested
that applied shear stresses and hydrostatic pressures may
induce a structural transformation in the core of the 90 Æ

partial dislocation in Si. A transformation of this type
may impact the mobility of the dislocation substantially.
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