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Piecewise Linear Models for Interfaces and Mixed Mode Cohesive Cracks 1

G. Cocchetti2, G. Maier2 and X. P. Shen 3

Abstract: Interface models mean here relationships
between displacement jumps and tractions across a locus
of displacement discontinuities. Frictional contact and
quasi-brittle fracture interpreted by cohesive crack mod-
els are typical mechanical situations concerned by the
present unifying approach. Plastic-softening multidissi-
pative interface models are studied in piecewise linear
formats, i.e. assuming linearity for yield functions, plas-
tic potentials and relationships between static and kine-
matic internal variables. The properties and the pros and
cons of such simplified models in a variety of formula-
tions (fully non-holonomic in rates, holonomic and in fi-
nite steps), all mathematically described as linear com-
plementarity problems, are comparatively investigated in
view of overall analyses of structures (like e.g. concrete
dams) which include joints and/or are exposed to quasi-
brittle fracture processes.

keyword: Interface and joint models, piecewise lin-
earisation, time-integration.

1 Introduction

1.1 Antecedents and motivations

In a number of engineering situations, the computer sim-
ulation of nonlinear structural responses to loads involves
the definition of a locus (denoted henceforth by Γ) of pos-
sible discontinuities of the displacement field. This locus
has a lesser dimensionality (by one) with respect to that
of the domain of the problem and is characterised by a
constitutive model which relates the displacement jump,
represented by vector w, to the traction, say vector p, ex-
changed across it. Such model will be referred to herein
as interface model, briefly IM.
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The above general definition of IM concerns a variety
of localised, usually dissipative, phenomena and cov-
ers idealisations of them frequently adopted for overall
analysis and design of engineering structures: unilateral
contacts; artificial joints; interfaces prone to debonding
in heterogeneous structures (and in laminates and com-
posite materials at the microscale); existing cracks; pro-
cess zones interpreted by cohesive crack models in quasi-
brittle fracture mechanics.

In some categories of structures, specifically in concrete
dams which promoted this study, the afore-listed kinds of
interfaces may occur simultaneously and, hence, make a
unifying frame desirable. The above localised phenom-
ena frequently represent the main source of nonlinearity
and dissipation; therefore they lead to structural analysis
procedures which assume elastic material behaviour ev-
erywhere outside Γd and, in kinematically linear (“small
deformation”) regimes, confine all nonlinearities on Γ d .

In the above specified broad sense, several IMs have
been proposed in the literature, with a diversity of ba-
sic features and contexts, see e.g. Abraham (2000), Ah-
madi, Izadinia and Bachmann (2001), Carol, Prat and
Lopez (1997), Corigliano (1993), Fakharian and Evgin
(2000), Hassanzadeh (1990), Lotfi and Shing (1994),
Mroz and Giambanco (1996), Xu and Needleman (1994),
Wei, Chow and Liu (2000). In the variety of proper-
ties exhibited by available IMs the following ones are
worth mentioning: an elastic phase, sometimes suscep-
tible to damage in the sense of stiffness deterioration;
alternatively rigid-inelastic behaviour; perfect plasticity
(like in traditional Coulomb friction models) or soften-
ing, which is essential ingredient of fracture process sim-
ulations in concrete-like solids; associative flow rules
or non-associativity as a manifestation of internal fric-
tion; history-dependent (non-holonomic) models, realis-
tically reflecting irreversible energy dissipation, or path-
independent (holonomic) models practically admissible
sometimes under proportional loading monotonically in-
creasing in time; time-independence or viscoplastic time-
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dependence.

In this paper piece-wise linear (PWL) time-independent
elastic-plastic-softening and rigid-plastic-softening in-
terface models are developed and investigated as for
their potentialities and limitations in the approximate,
engineering-oriented description of nonlinear behaviours
localised on discontinuity loci Γ d .
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Figure 1 : Piecewise linear cohesive crack models for
mode I quasi-brittle fracture.

The antecedents and the possible advantages which mo-
tivate the present study can be outlined as follows.

(a) For the simulation of quasi-brittle fracture processes,
at present the most widely used approach appears to rest
on a PWL cohesive crack model in mode I with one or
two softening linear branches (Fig. 1), i.e. governed by
two or four parameters, respectively (see e.g. Guinea,
Planas and Elices (1994), Karihaloo (1995), Maier and
Comi (2000)). The generalisation of this model to mixed
mode fracture, by preserving its PWL features, is of ob-
vious interest, but not yet developed so far, to the writ-
ers’ knowledge.

(b) Limit and shakedown analyses based on PWL elastic-

plastic material models are popular since long time,
because their consequent reduction to linear program-
ming. In fact, PWL approximations of constitutive laws
have been adopted for “direct” (non step-by-step) ulti-
mate limit-state analyses of a variety of structural sys-
tems, namely: steel and reinforced concrete frames; earth
slopes; shallow foundations and other geotechnical sit-
uations; ductile, metal matrix composites; large dams,
also when they are interpreted as poroplastic in view of
diffused cracking (see survey Maier, Carvelli and Coc-
chetti (2000)). However, limit and shakedown analysis
rest on the constitutive stability hypothesis expressed by
Drucker’s postulate that rules out softening, which is in-
stead of paramount importance in the present context.

(c) The rate flow rules of plasticity are centred on, and
characterised by, a nonlinear relationship called linear
complementarity problem (LCP). Mechanically, it ex-
presses “Prager consistency” (which can be regarded as
a manifestation of irreversibility): for each active yield-
ing mode, either the (non positive) yield function rate or
the (nonnegative) plastic multiplier rate, or both, must
vanish. Mathematically, when the current stress state be-
longs to the yield locus, say to the intersection (“cor-
ner”) of say ny yield surfaces, the two sign-constrained
ny-vectors of the relevant yield function rates and of the
plastic multiplier rates are orthogonal and related to each
other also through a suitably arranged linear expression
of the former vector, where the stress rates (or the strain
rates) are regarded as given. A peculiar feature of PWL
models is that the LCP construct carries over from the
flow rules in rates to finite-step formulations for time in-
tegration (which always rests on a step-wise holonomic
interpretation of the non-holonomic constitutive model)
and, further, to single-step, holonomic versions of the
constitution, in the spirit of the “deformation theory” of
plasticity. Holonomic plasticity (conceivable as a spe-
cial case of nonlinear elasticity) is applicable in practice
when local unstressing is unlikely to occur, typically in
structures under monotonic proportional loading, see e.g.
De Donato and Maier (1976), Lloyd Smith (1990), Maier
(1970, 1976). Under the frequently reasonable hypothe-
sis of infinitesimal strains and linear kinematics, the LCP
pattern carries over to the overall structural analysis, if
this is performed on the basis of a space discretisation,
say by a finite element or boundary element method. The
above potentially unifying and computationally benefi-
cial role of PWL-LCP models in engineering plasticity
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emerges more or less explicitly in a fairly abundant lit-
erature, see e.g. the book edited by Lloyd Smith (1990),
mostly again ruling out softening (with a few exceptions,
such as Bolzon, Maier and Tin-Loi (1995, 1997)). For
interfaces, however, softening represents a material in-
stability which plays a crucial role.

(d) From the standpoint of computational efficiency, the
PWL-LCP formulations exhibit the “contra” of the sig-
nificant increase in the number of yield modes and,
hence, of variables. For the material description in 2D
or 3D problems, this “con” may prevail over the pros of
reduction from nonlinear programming (NLP) to linear
programming (LP) in limit analysis, and of the system-
atic use of LCP algorithms, instead of nonlinear com-
plementarity problem (NLCP) or other (say Newton-
Raphson type) algorithms. However, for interfaces of
concern here, PWL models involve traction and displace-
ment vectors with two or, at most, three components;
moreover, in general, provisions apt to drop presumably
inactive yield modes and relevant variables can easily be
devised and implemented, see e.g. Tin-Loi (1990), as
shown in a forthcoming paper on overall analysis of con-
crete dams.

1.2 Objectives and organisation of this paper

Motivated by the remarks which precede, the topics to
be considered herein and the aims to be pursued are as
follows.

Piecewise linearisation IM will be developed for soften-
ing and multicomponent situations (mixed modes) com-
bined, thus relaxing the restrictions of PWL IM to mixed
modes with material stability or to mode I with softening
(Section 2).

The close links between holonomic and non-holonomic
PWL models will be pointed out together with “exact”
and approximate time integration procedures proposed in
Section 3.

Two kinds of PWL IMs are formulated in Section 4 and
specialised and discussed through numerical tests in Sec-
tion 5: a PWL IM for frictional contact; a PWL IM
intended to simulate fracture processes in quasi-brittle
structures and debonding in laminates and composites
at the microscale. Since LCP will be shown to be the
recurrent, unifying mathematical construct, a typical al-
gorithm available nowadays for solving general LCP is
briefly outlined in Section 6. Section 7 gathers some con-

clusions in view of the practical usage of PWL models in
overall analyses of concrete dams and other structures.

Notation Matrix notation is adopted throughout. Ma-
trix and vectors are represented by bold-face characters.
Transposition is indicated by superscript T . A dot marks
rate, i.e. derivative with respect to ordering, not neces-
sarily physical, time t. Vector inequalities apply compo-
nentwise

2 Piecewise linear interface models

2.1 General elastic-plastic interface models.

The locus of possible discontinuities for the displace-
ment field in a solid is assumed henceforth to be repre-
sented by a “smooth” surface Γd . In view of the assumed
smoothness, at any point x of Γ d a normal and two tan-
gential directions (say, along the directions of the prin-
cipal curvatures) can be defined and taken as unit vec-
tors of a Cartesian reference frame. In this reference,
the displacement jump w = fwn wt1 wt2g

T and the trac-
tion p = fpn pt1 pt2g

T across Γd are defined, so that the
scalar-product pT ẇ represents the energy rate (stored or
dissipated) per unit surface on Γ d in x.

Any (generally path– and time–dependent) relationship
between the above two vectors is understood herein as
interface model (IM) or interface “law”. The particu-
lar, but broad, class of inviscid, path-dependent (non-
holonomic) IM can be represented by the following set
of relationships in a format which is customary in en-
gineering plasticity of materials and structures (see e.g.
Maier and Frangi (1998)):

p =
∂E (we)

∂we ; w = we +wp (1)

ϕϕϕ = ϕϕϕ(p;χχχ); ΨΨΨ=ΨΨΨ(p;χχχ) (2)

χχχ =
∂U (ηηη)

∂ηηη
(3)

ẇp =
∂ΨΨΨT

∂p
λ̇λλ; η̇ηη = �

∂ΨΨΨT

∂χχχ
λ̇λλ (4)

ϕϕϕ � 0; λ̇λλ � 0; ϕϕϕT λ̇λλ = 0 (5)

Equations (1a) and (1b) express (generally nonlinear)
elasticity through a strictly convex elastic potential E and
additivity of elastic we and plastic wp relative displace-
ments, respectively. Damage, in the sense of continuum
damage mechanics, might be allowed for by assuming
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that the elastic potential E depends also on some of the
kinematic internal variables collected in vector ηηη.

Yield functions and plastic potentials (gathered in n y–
vectors ϕϕϕ = fϕ1; :::;ϕyg

T and ΨΨΨ= fΨ1; :::;Ψyg
T ) are in-

troduced in Eq.2 as differentiable (“smooth”) and con-
vex (but not necessarily strictly convex) functions of trac-
tions and of static internal variables collected in the n y–
vector χχχ. This vector acquires in Eq.3 the meaning of
gradient of another potential function U (interpreted as
part of Helmholtz free energy locked-in by microscale
re-arrangements) with respect to the kinematic variable
vector ηηη which is work-conjugate to χχχ.

The evolution of the inelastic (“plastic”) displacement
jumps wp and of the internal variables ηηη is governed by
Eq.4 and by the complementarity relationship Eq. 5.

The rate relationship (or “flow laws”) implied by Eqs.1–5
at a given state (p̂;η̂ηη) read:

ϕ̇ϕϕ0 =
∂ϕϕϕ0(p̂;χ̂χχ)

∂pT
ṗ�H(p̂;η̂ηη)λ̇λλ

0

� 0; λ̇λλ
0

� 0; ϕ̇ϕϕ0T λ̇λλ
0

= 0

(6)

where (“hardening matrix”):

H(p̂;η̂ηη) =
∂ϕϕϕ0(p̂;χ̂χχ)

∂χχχT

∂2U(η̂ηη)
∂ηηη∂ηηηT

∂ΨΨΨ0(p̂;χ̂χχ)T

∂χχχ
(7)

For assigned traction rates ṗ, Eqs.6 and 7 represent a LCP
in ϕ̇ϕϕ0 and λ̇λλ

0

, where primes denote the subvectors of ϕ̇ϕϕ0

and λ̇λλ
0

, respectively, pertaining to the yield modes which
are “active” at (p̂;η̂ηη), i.e. whose yield functions vanish
there (ϕϕϕ0 = 0).

Eqs.1–7 can be regarded as the “direct” formulation of a
path-dependent (irreversible, non-holonomic) IM, briefly
as a relationship of the type: w(t) = f [p(τ);0 � τ � t].
An “inverse” formulation for given discontinuity history,
i.e. p(t) = g[w(τ);0� τ � t], can be achieved by tradi-
tional provisions, here omitted for brevity.

Consistently with the above IM, the power per unit area
reads:

Π̇ � pT ẇ = pT ẇe +pT ẇp = Ė +U̇ + Ḋ (8)

where the specific dissipation Ḋ is subjected to the usual
thermo-dynamical requirement of nonnegativeness:

Ḋ = pT ẇp�χχχT η̇ηη � 0 (9)

In plasticity, stability is characterised by nonnegativeness
of the second order work δ2Π for all kinematic distur-
bances, namely, in the present case, by the condition:

δ2Π =
1
2

ẇT ṗ(ẇ)δt2 � 0;8ẇ (10)

Using Eqs.1–5 and 6c, we can write:

δ2Π =
δt2

2

�
ẇT DẇT � ẇT D

∂ΨΨΨT

∂p
λ̇λλ(ẇ)

�
(11)

The tangential elastic stiffness matrix (symmetric and
positive-definite in view of the strict convexity of E )
reads:

D(we) �
∂2E (we)

∂we ∂weT (12)

Drucker’s stability postulate, can be formulated in the
following form.

If for any traction path Γ starting from any state (p�
;ηηη�)

such that ϕϕϕ(p�;ηηη�)� 0 it is verified that:

Z
Γ
(p�p�)T ẇdt � 0 (13)

then the material is stable.

This strong “stability postulate” could be easily proven
to imply: (i) associativity, namely ϕϕϕ = ψψψ; (ii) convexity
of any current elastic domain ϕϕϕ � 0; (iii) stability in the
sense of Eq.10. Variational properties of systems with
nonlinearity due to general IM have been recently estab-
lished in Carini and Maier (2000).

2.2 Piecewise linear elastic-plastic models in general

The category of IMs described in the preceding Subsec-
tion is specialised below to the PWL class by means
of the following restrictive assumptions: (a) the elastic
strain energy E is a homogeneous quadratic function of
we, so that its Hessian Eq.12 becomes the elastic stiff-
ness matrix D; (b) also the stored free energy U is ho-
mogeneous quadratic function of ηηη defined by a constant
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matrix C; (c) the yield functions in ϕϕϕ are linear in their
arguments (p;χχχ), so that their gradients are constant (and
will be gathered henceforth in matrix

�
N;Nχ

�
; (d) all the

plastic potentials are linear in (p;χχχ), with constant gradi-
ents collected, say, in matrix

�
V;Vχ

�
.

In view of the above assumptions and new symbols,
Eqs. 1–5 specialise to:

p = Dwe
; w = we +wp (14)

ϕϕϕ = NT p+NT
χ χχχ�Y; ΨΨΨ= VT p+VT

χ χχχ (15)
χ = Cηηη; wp = Vλλλ; ηηη =�Vχλλλ (16)

ϕϕϕ � 0; λ̇λλ � 0; ϕϕϕT λ̇λλ = 0 (17)

Here the constant vector Y can be regarded as collect-
ing “yield limits”, since the i-th component of it repre-
sents the original distance of the i-th yield plane from the
origin in the traction space after a normalisation which
makes all columns in matrix N to become unit vectors
in space p (the same is herein assumed for matrix V). It
is worth noting that the above linearisations, namely as-
sumptions (b), (c) and (d), permit to substitute for χχχ and
ηηη the (time-integrated) plastic multipliers λλλ which thus
acquire also the role of internal variables.

If the input is represented by a given time history of trac-
tion p(t), then the response in terms of displacement dis-
continuity w(t) through the PWL IM, Eqs.14–17, turns
out to be governed by the following relations (“direct”
PWL IM formulation):

ϕϕϕ = NT p(t)�Hλλλ�Y � 0; λ̇λλ � 0; ϕϕϕT λ̇λλ = 0 (18)

w(t) = D�1p+Vλλλ (19)

where “hardening matrix” H, Eq.7, now is constant and
reads:

H = NT
χ CVχ (20)

Similarly, the “inverse” formulation of the PWL IM, gov-
erning the traction response p(t) to an assigned path of
relative displacements w(t), can be easily seen to materi-
alise in the relationship:

ϕϕϕ = NT Dw(t)�Kλλλ�Y � 0; λ̇λλ � 0; ϕϕϕT λ̇λλ = 0 (21)

p(t) = Dw�DVλλλ (22)

having set:

K � H+NT DV (23)

In both the direct and the inverse PWL IM, all non-
linearities are confined to Eqs.18 and 21, respectively.
When the rate vector λ̇λλ(t) and, hence, λλλ(t) are computed
through them, then the response w(t) or p(t) results from
explicit linear transforms, Eq.19 or 22, respectively.

In terms of rates (i.e. of infinitesimal increments) starting

from a state
n

p̂;λ̂λλ
o

where only a subset of yield planes

are active (marked by a prime), Eqs.18 and 21 generate
straightforwardly the following direct and inverse flow
rules, respectively, in the LCP format:

ϕ̇ϕϕ0 = N0T ṗ�H0λ̇λλ
0

� 0; λ̇λλ
0

� 0; ϕ̇ϕϕ0T λ̇λλ
0

= 0 (24)

ϕ̇ϕϕ0 = N0T Dẇ�K0λ̇λλ
0

� 0; λ̇λλ
0

� 0; ϕ̇ϕϕ0T λ̇λλ
0

= 0 (25)

Clearly, Eq.24 is a trivial specialisation of Eq.6, with the
new symbols for the coefficient matrices. All these matri-
ces are now always submatrices of their counterparts (de-
fined once for all) in the full IM, Eqs.14–17, and, hence,
must be singled out in them on the basis of the current

state
n

p̂;λ̂λλ
o

, but otherwise they do not depend on it. A

similar remark obviously holds for the inverse flow rules,
Eq.25, the counterpart of which in the more general con-
text of Subsection 2.1 was not written for brevity

2.3 Remarks

The main peculiar feature of PWL IMs of concern herein
is represented by the fact that the yield surfaces in the
3D traction space are “yield planes”, which may merely
translate at yielding and “interact” (in the sense that the
activation of one can induce others to translate). Clearly,
these motions and interactions are governed by the hard-
ening matrix H. In fact, if matrix N is normalised (in the
sense that each column of it, say vector Nr, r = 1,..., ny,
represents the outward normal unit vector), then the dis-
tance of the yield plane from the origin, denoting by H r

the r-th row of H, reads:

Yr +Hr λλλ = Y 0

r ; (r = 1; :::;ny) (26)

The following circumstances are worth noticing on ma-
trix H (of order ny).
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If H is diagonal, there is no interaction among yield
planes (“Koiter’s rule” of noninteracting yield modes, in
the jargon of classical plasticity).

In classical plasticity, Prager’s kinematic hardening and
isotropic hardening mean rigid-body translation and, re-
spectively, shape-preserving homothetic expansion of the
entire yield locus. In the PWL context, such restrictive
assumptions reduce drastically (to a single one, say h and
k, respectively) the available hardening/softening param-
eters and imply (as shown in Maier (1970) for materials)
the following specialisation of matrix H, respectively:

H = kNT N; H = hY
�

1
Y1
; : : : ;

1
Yny

�
(27)

Rigid-plastic PWL IMs can be regarded as the limit case
for increasing elastic stiffness, i.e. for s ! ∞ having as-
sumed D = s D0. The direct formulation, Eqs.18 - 19,
straightforwardly specialises to a rigid-plastic one just by
dropping the elastic addend in Eq.19. Clearly, not so in
the inverse formulation, which gives rise to the following
remarks.

In interface models, elasticity has usually a computa-
tional role rather than a physical meaning. In the present
PWL IM, a large scalar s acts as penalisation factor
against compenetrations (like in the “smooth” exponen-
tial IM proposed in Xu and Needleman (1994)).

The popular PWL IMs for mode I cohesive crack model
of quasi-brittle fracture (Fig. 1) are rigid-plastic. It is
worth noting that the LCP descriptions established in
Bolzon, Maier and Tin-Loi (1995), Maier and Comi
(2000) for mode I are substantially different from the
present LCP description. In fact, wn is there a sign-
constrained variable like the plastic multipliers (or “aux-
iliary variables”), not a free (and possibly input) variable
like here.

Clearly, convexity of all current elastic domains implied
by Drucker’s postulate, Eq.13, is intrinsic in the PWL
approximation, since all yield modes are represented (in
3D contexts) by translating and interacting yield planes
associated to half-spaces, the intersection of which is a
convex polyhedron.

The internal static and kinematic variables have been
assumed by Eqs.3 and 16a to be related to each other
through a potential U which is quadratic in PWL IM and
has the meaning of density of recoverable energy stored

at the microscale. Matrix C, being Hessian of U , turns
out to be symmetric (and constant in PWL IM). Then as-
sociativity in the sense of Nχ= Vχwhich does not imply
associativity in the p space, as usually understood in plas-
ticity) implies the symmetry of the hardening matrix H.
However, nonsymmetric C and, hence, nonsymmetric H
in associative cases (even if fully associative, namely for
Nχ= Vχnd N = V) are quite admissible, since nondissi-
pative rearrangement at the microscale is an assumption,
not a thermodynamic law of nature.

In order to evidence the meaning and the instabilising
effects of softening in PWL IM, the second order work
δ2Π through easy manipulations of Eqs. 18-20, can be
expressed in the following form, alternative to a straight-
forward PWL specialisation of Eq.11:

δ2Π =
δt2

2

�
ẇeT Dẇe + λ̇λλ

T
Hλ̇λλ + ṗT

�
∂ΨΨΨT

∂p
�

∂ϕϕϕT

∂p

�
λ̇λλ
�

(28)

Since the elastic strain energy E is assumed as strictly
convex (and, hence, its Hessian matrix in Eq.12 as pos-
itive definite), associativity (ϕϕϕ = ψψψ) implies that insta-
bility may occur only when U is nonconvex (i.e., H is
nondefinite): a circumstance which means softening be-
haviour and may have crucial consequences on the over-
all structural response to loads (see e.g. Bolzon, Maier
and Tin-Loi (1997), Cen and Maier (1992)).

3 Time integration procedures for piecewise linear
models

3.1 Exact integration

Let us now focus on the step-by-step time integration of
a PWL IM. To this purpose, as usual in computational
plasticity, we consider the given traction path p̂(t) as a
sequence of data p̂0; p̂1; : : : ; p̂n; p̂n+1; : : : ; in correspon-
dence with a sequence of instants t = 0, t1,. . . , tn, tn+1,. . . ,
assuming a proportional monotonic variation of the in-
put quantity (marked by a cap) along each time interval,
namely over ∆tn = tn+1 �tn:

p̂(tjtn � t � tn+1) = p̂n +(t� tn) ˆ̇pn ; (29a)

ˆ̇pn =
∆p̂n

∆tn
=

(p̂n+1� p̂n)

∆tn
(29b)
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Under this weak assumption, the following procedure of
“exact” integration can be devised as a computationally
advantageous consequence of the particular properties
of PWL modelling, see e.g. Maier (1976), Nappi and
Perego (1988). The exact procedure is outlined phase-
wise and justified below. Barred symbols will denote
quantities which have already been computed. Single and
double primes will mark the subvectors in ϕϕϕ and ΨΨΨ (and
consequently the submatrices in N and H) which corre-
spond to yield planes currently active (ϕϕϕ0 = 0) and non
active (ϕϕϕ00 < 0), respectively.

(a) At the (known) starting state
�

p̂n;λλλn

�
solve the LCP,

Eq.24, of the flow rule for given rate ˆ̇p. Let λ̇λλ1
0

be the
(or a) solution of this first problem in rates, having un-

derstood that λ̇λλ
00

1 = 0.

(b) Noting that the LCP of Eq.24 is linear homogeneous
in an amplifier ∆t of both data and variables, compute the
value ∆t1 such that a new yield plane (or more than one)
is “activated”, i.e. is reached by point p̂n + ˆ̇pn∆t:

∆t1 = max
�

∆t
��ϕϕϕ00 (∆t)� 0

	
(30)

where, with self-evident meaning of the symbols (in par-
ticular: ”H’ is the submatrix of H formed by the intersec-
tion of its rows corresponding to ϕϕϕ00 < 0, with its columns
corresponding to ϕϕϕ0 = 0):

ϕϕϕ00 (∆t) = ϕϕϕ00

n +

�
N00T ˆ̇p�00H0λ̇λλ

0

1

�
∆t (31)

(c) In view of the new active and new inactive
yield modes, re-arrange vectors and matrices by re-
decomposition into primed and double primed portions.
Thereafter go to (a) and repeat the operative sequence (a)
and (b).

(d) Stop when ∆t1+∆t2+ :::+∆tl � ∆tn, and, in the case
of strict inequality, reduce the last substep ∆t l , so that the
equality holds.

Summing up the results of all substeps, the plastic multi-
plier increment due to the assigned ∆ p̂n turns out to be:

∆λλλ=

(
λ̇λλ
0

1

λ̇λλ
00

1 = 0

)
∆t1+

(
λ̇λλ
0

2

λ̇λλ
00

2 = 0

)
∆t2+: : :+

(
λ̇λλ
0

l

λ̇λλ
00

l = 0

)
∆tl

(32)

which defines through Eq.19 the response ∆w (“exact”
according to the PWL model).

Clearly, the same algorithm applies to the inverse
PWL IM, Eqs.21-22, i.e. for input ŵ(t) and response
p(t). With reference to the inverse model, and to the n-
th proportional input step ˆ̇wn∆tn, the “exact” algorithm is
described below again for later use.

(a) At the beginning of the i-th substep (i = 1,2,...) within
the step n over the time interval ∆tn, consider the staten

ŵi;λλλi

o
reached so far and the consequent ny-vector ϕϕϕi

of yield functions. Distinguish active ( ’ ) from inactive
( ” ) yield models at ti and partition vectors and matrices
accordingly:

ϕϕϕi =

�
ϕϕϕ0

i = 0
ϕϕϕ00

i < 0

�
; λ̇λλi =

(
λ̇λλ
0

i � 0

λ̇λλ
00

i = 0

)
(33)

Ni = [N0 N00]i; Vi = [V0 V00]i; Ki =

�
K0 0K00

00K0 K00

�
i

(34)

(b) Solve the following LCP in
n

ϕ̇ϕϕ0

i;λ̇λλ
0

i

o
to obtain�

ϕ̇ϕϕ0

i;λ̇λλ
0

i

�
:

ϕ̇ϕϕ0

i = N0T
i D ˆ̇wn�K0

iλ̇λλ
0

i � 0; λ̇λλ
0

i � 0; ϕ̇ϕϕ0T
i λ̇λλ

0

i = 0 (35)

(c) Solve the LP problem, thus obtaining ∆t i:

∆ti = max

�
∆tjϕ̂ϕϕ00

i +

�
N00 T

i D ˆ̇wn�
00 K0

i λ̇λλ
0

i

�
∆t � 0

�
(36)

(d) Update the vectors:

ϕϕϕi+1 = ϕϕϕi + ϕ̇ϕϕi ∆ti; λλλi+1 = λλλi + λ̇λλ i ∆ti (37)
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(e) Go to (a) and re-arrange according to the criteria spec-
ified there.

(f) Stop when
l
∑
i

∆ti = ∆tn, by scaling down the last ∆t i

if necessary; then accumulate the results of the substep
sequence to obtain:

∆pn = D∆ŵn�DV
l

∑
i=1

(
λ̇λλ
0

i

λ̇λλ
00

i = 0

)
∆ti (38)

3.2 Stepwise holonomic integration

The exact integration which precedes exhibits the pecu-
liar feature that the number of substeps ∆t i (i = 1, 2, ..., l)
within each given ∆tn cannot be chosen a priori, but de-
pends on the model and on the input path. Clearly, this
fact becomes computationally disadvantageous in struc-
tural analysis, when yield modes are simultaneously ac-
tive in many points on the displacement discontinuity lo-
cus Γd according to the adopted space discretisation on
it.

In order to avoid the consequent, possibly drastic, re-
duction of substep amplitudes ∆t i, let us assume that
the path-dependence does not hold within each step; in
other terms, the intrinsic irreversibility of the model is
accounted for only in updating the internal variables at
the transition from step to step. Such frequent “stepwise
holonomic” interpretation of the evolution of a dissipa-
tive systems, if applied to the PWL IMs in point, leads to
a step-governing relation set once again in LCP format
(like above for the flow rules).

In fact, with reference to the inverse model only (in view
of the formal similarity with the direct model), and to the
assigned step ∆ŵn over the time interval ∆tn = tn+1 �tn,
we can write the following LCP in variables f∆ϕϕϕn;∆λλλng:

ϕϕϕn +∆ϕϕϕn = NT D � (ŵn +∆ŵn)+

�Kλλλn�K∆λλλn�Y � 0; ∆λλλn � 0 (39)

(ϕϕϕn +∆ϕϕϕn)
T ∆λλλn = 0 (40)

supplemented by the application of Eq.22 apt to linearly
update the traction response as soon as ∆λλλn is computed:

∆pn = D∆ŵn�DV∆λλλn (41)

3.3 Remarks

The meaning and implications of the above LCP in finite
increments are clarified by the following remarks.

(a) Since the model relations Eq. 21a and Eq. 21b hold
at any time, Eqs.39 are rigorous consequences of them.
Not so the complementarity Eq.40, which embodies an
assumption intended to establish a path-independent link
between input and output finite increments in the step
∆tn. It is worth noting that such an assumption is gener-
ally an approximation, but is exactly fulfilled in the case
of “regularly progressive yielding” (RPY), i.e. no local
unstressing over ∆tn. This RPY notion formally means:

if λ̇r (t
�)> 0; then ϕr(t) = 0;

�
8 t : tn � t� � t � tn+1

r = 1; : : :;ny

(42)

and thus the sheer existence of any RPY path over ∆t n is
seen to imply Eq.40.

(b) Now let the further assumption of “no new yielding”
over ∆tn be admitted in the (undefined) actual path over
∆tn; formally:

if ϕr(tn)< 0; then λ̇r(t) = 0;

�
8 t : tn � t � tn+1

r = 1; : : :;ny
:

Then ϕϕϕT
n ∆λλλ = 0, and, hence, Eqs.39 and 41 generate the

following LCP:

∆ϕϕϕn = NT D∆ŵn�K∆λλλn � 0; ∆λλλn � 0; ∆ϕϕϕT
n ∆λλλn = 0

(43)

(c) In computational plasticity, quasi-static and dynamic
time-stepping analyses of structures are always stepwise
holonomic and are usually carried out by finite differ-
ence schemes resting on the following assumptions: (i)
the constitutive law is enforced only at some instant
tα= tn + ρ∆tn, 0 � ρ �1; (ii) all variables vary linearly
over the time interval ∆tn; (iii) the variation rates of dis-
placements and velocities equal their time derivatives and
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equilibrium is enforced at a priori fixed instants t β, tγ and
tδ, respectively. While (iii) is not pertinent here, let us
apply hypotheses (i) and (ii) to the PWL IM, Eq.21, thus
obtaining the following LCP in finite increments:

ϕϕϕn +ρ∆ϕϕϕn = ϕϕϕn +ρ(NT D∆ŵn�K∆λλλn)� 0;

∆λλλn � 0; (ϕϕϕn +ρ∆ϕϕϕn)
T ∆λλλn = 0 (44)

The above formulation for ρ= 1, i.e. specialised to the
backward difference scheme, is seen to coincide with the
stepwise holonomic formulation Eqs.39 and 40. The fur-
ther “no new yielding” hypothesis leading to formulation
43, see preceding remark (b), makes the midpoint instant
ρ immaterial.

(d) Of course, the above circumstances noted at (a)–
(c) are consequences of the PWL approximation which
makes the gradients in Eqs.1, 3 and 4 independent from
ρ (and constant). It is worth remembering that the back-
ward difference scheme is often adopted in view of its
computationally favourable properties: in particular, al-
gorithmic stability (in the sense of contractivity of dis-
turbances along the step sequence), which turns out to
be unconditional for stable laws, conditional (i.e. for ∆t n

below a suitable threshold) in the presence of material
instability (see e.g. Comi, Corigliano and Maier (1992)).

(e) Damage has been ruled out herein by hypothesis.
However, elastic-plastic-damage PWL IMs can easily be
dealt with through the very same time-stepping proce-
dures of Subsections 3.1 and 3.2 by preserving the cen-
trality of the LCP format. In fact, the elastic stiffness ma-
trix D can be updated at the beginning of each step on the
basis of the internal variables λλλn, when the dependence
D(λλλn) is provided by experiments and suitable idealisa-
tion. Of course, thus an approximation is introduced into
the time-integration technique of Subsection 3.1, which,
hence, is no longer “exact”.

3.4 Holonomic modes

Consider now a single step of the input displacement dis-
continuity from the origin of its reference frame (namely:
ϕϕϕn = 0; ŵn = 0; λλλn = 0). Then, Eqs.39–41 give rise to
the fully holonomic model in its inverse (w! p) formu-
lation:

ϕϕϕ = NT Dw�Kλλλ�Y � 0; λλλ � 0;

ϕϕϕTλλλ = 0; p = DW�DVλλλ
(45)

The direct (p !w) holonomic formulation reads:

ϕϕϕ = NT p�Hλλλ �Y � 0; λλλ � 0;

ϕϕϕTλλλ = 0; w = D�1p+Vλλλ
(46)

Holonomic means here independent of the response from
the input history, like in (nonlinear) elasticity and in clas-
sical “deformation theory” of plasticity. A prototype of
holonomic PWL IM is represented by frictionless unilat-
eral contact in Signorini-Fichera problems. As a special-
isation of Eq.45 for N = V = 1, it reads:

ϕ = Dw� (D+H)λ�Y +Dw0 � 0; λ � 0; (47a)

ϕλ = 0; p = D(w�λ+w0) (47b)

Here w0 ( �0) represents the pre-existing gap and Y = 0,
D ! ∞; H !0. By these further specialisations, the
direct IM (p as input) is arrived at in its traditional for-
mulation:

ϕ = p � 0; λ = w+w0 � 0; pλ = 0 (48)

It is worth noting that also elastic-locking behaviours
can be modelled as special cases of holonomic PWL IM.
Such models are practically useful in analysis and design
of structures containing slackening elements (e.g. cables
in tension, semi-rigid joints), but will not explicitly con-
sidered herein.

Clearly, in a variety of engineering situations, both
dissipative (non-holonomic, irreversible) and reversible
(holonomic) behaviours must be considered simultane-
ously in order to realistically model the same interface,
e.g. when loss of contact (and, hence, holonomy) inter-
venes after frictional contact. Such transitions are easily
accounted for at the beginning of each step while for-
mulating the LCP to solve, both in the “exact” (Subsec-
tion 3.1) and in the stepwise holonomic procedure (Sub-
section 3.2).
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4 Special cases of mixed-mode piecewise linear
models

4.1 Models for joints

As a first example, we consider a simple PWL model
apt to describe the essential features of the nonlinear me-
chanical behaviour of an interface such as a joint in a
gravity dam, in view of quasi-static overall analysis of it.
A two-dimensional holonomic interpretation of the con-
sidered PWL IM is visualised in Figs. 2 and 3 according
to the direct (p !w) formulation Eq.46 with no elasticity
(D�1 = 0).

Three yield loci (yield “planes” or modes) show up in the
pT = fpn; ptg plane of Fig. 2a.

The locus ϕ1 = 0 prevents tensile tractions, does not move
and is associative: only a detachment (wn > 0) can be
generated, independently from the value of the shear trac-
tion. Clearly, this unilateral contact mode I (r = 1) can be
expressed in the form 48 with w0 = 0 and subscript 1. For
compressive traction (pn < 0), the yield shear traction pt

increases linearly with jpnj, according to the friction pa-
rameter µ like in classical Coulomb model. The yield
shear traction pt gives rise to relative displacement along
direction V2 or V3, generally deviated from the outward
normal N2 or N3 in order to avoid excessive dilatancy.
Since the smoothing of the asperities reduces cohesion
(to zero for pn = 0), the loci ϕ2 = 0 and ϕ3 = 0 move
inward at yielding of either of them, i.e. they exhibit
softening and interaction. Therefore, the residual shear
strength (and cohesion) c should depend on the plastic
multipliers (and internal variables) λ r gathered in vector
λλλ:

ϕ2 = pt +µpn�c(λλλ)� 0; λ2 � 0; ϕ2λ2 = 0 (49a)

ϕ3 =�pt +µpn�c(λλλ)� 0; λ3 � 0; ϕ3λ3 = 0 (49b)

Clearly, the translation of the above yield loci 2 and 3
stops at the loci shown by dashed lines in Fig. 2, since
afterwards a truly Coulombian behaviour is assumed, as
visualised in Fig. 3. In order to account for this fact in the
PWL model, a fourth internal variable λ4 is introduced
and the dependence c(λλλ) is assumed linear as follows:

c(λλλ) = c0 +Ht(aλ1+λ2 +λ3�λ4)� �ϕ4 � 0; (50a)

λ4 � 0; ϕ4λ4 = 0 (50b)
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µ′ 2N
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µ
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O

0n np p= <

0c
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3λ 2λ
4λ

4λtH

tw

(b)
Figure 2 : Simple two-dimensional PWL frictional
model for a joint with cohesion c0: (a) yield modes in the
traction plane; (b) specialization to a case with assigned
compressive normal traction (pn < 0).

The idealised behaviour, visualised in Fig. 2, can be
mathematically described by the following relations:

8>><
>>:

ϕ1

ϕ2

ϕ3

ϕ4

9>>=
>>;=

2
664

1 0
µ 1
µ�1
0 0

3
775
�

pn

pt

�
�Ht

2
664

000 0
a11�1
a11�1
a11�1

3
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>>:
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λ3

λ4

9>>=
>>;�

8>><
>>:

0
c0

c0

c0

9>>=
>>;

(51)

ϕr � 0; λr � 0; ϕrλr = 0 (r = 1; : : :;4) (52)

�
wn

wt

�
=

�
1 u0 u0 0
0 1 �1 0

�8><
>:

λ1
...

λ4

9>=
>; (53)

where parameter Ht (�0) can be interpreted as a soften-
ing modulus and the coupling parameter a quantifies the
cohesion reduction due to the detachment mode I mea-
sured by λ1.
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Figure 3 : Specialization of the model of Figure 2 to
Coulomb friction models without dilatancy (a) and with
dilatancy (b).

The internal variable λ4 has been introduced in order to
stop the aforementioned translation when the cohesion c
vanishes. In fact, it neutralises the effects of the others
(λ1, λ2, λ3) when and only when c = 0, if c is interpreted
as a fourth yield function (ϕ4 �–c) related by comple-
mentarity to λ4, as expressed in Eq.50. It is worth not-
ing that the fourth yield mode does not involve tractions
and, hence, cannot be represented in the traction space
of Fig. 2a (this “hidden mode” might be visualised in the
“augumented (hyper) space” of all variables: tractions pn

and pt and internal variables λ r).

In the light of the above considerations, Eqs.51–52 rep-
resent a LCP with a nonsymmetric indefinite matrix, and
Eqs.51–53 can be regarded as a special case (with ny = 4)
of Eq.46.

Consider now, as specialisation of the above PWL model,
the classical Coulomb friction model with no dilatancy,
Fig. 3a, and with dilatancy attenuated through nonasso-
ciativity (µ0 < µ), Fig. 3b. In both cases one has to set
Ht = 0 in Eq.51 (which thus no longer involves plastic
multipliers λ r) and to remove from Eq.51 the “hidden”
4-th yield mode ϕ4 = 0. In the latter case, with µ0 > 0,

displacement wn can be generated at the origin p = 0 by
linear combinations of the unit vectors V 2, V3 projected
on axis wn (wn = λ2 V2n + λ3 V3n). Therefore, yield mode
r = 1 is not needed and, hence, wn = µ0(λ2 + λ3) from
Eq.53: thus, consistently with an idealised physical links
between dilatancy and asperities, the set of displacement
jumps correponding to p = 0 is confined to the angle be-
tween V2 and V3 centered in the origin O, as shown in
Fig. 3b. In Coulomb’s simplest special case, after the
above specialisations, the w !p relationship, inverse to
Eqs.51–53, reads:

�
ϕ2

ϕ3

�
=

�
µDn Dt

µDn �Dt

��
wn

wt

�
+

�

�
µµ0Dn+Dt µµ0Dn�Dt

µµ0Dn�Dt µµ0Dn+Dt

��
λ2

λ3

� (54)

ϕr � 0; λr � 0; ϕrλr = 0 (r = 2;3) (55)

�
pn

pt

�
=

�
Dn 0
0 Dt

��
wn

wt

�
�

�
µ0Dn µ0Dn

Dt �Dt

��
λ2

λ3

�
(56)

It is worth noting that the LCP in Eqs.54�55 has a sym-
metric positive-definite matrix and, therefore, its solution
λλλ is unique (see e.g., Cottle, Pang and Stone (1992)). It is
readily seen that p = 0 corresponds to any displacement
jump w belonging to the open angle V 2ÔV3, like point
a in Fig. 3b. In the former, no-dilatancy case of Fig. 3a,
the yield mode ϕ1 = 0 is preserved in Eqs.51–53 and all
points in both quadrants wn > 0 correspond to p = 0.

The possible presence of an initial gap w0n > 0 in the
joint can be accounted for simply by replacing wn by
wn + w0n in the preceding models.

In some nonlinear IMs proposed in the literature
(e.g. Carol, Prat and Lopez (1997), Lotfi and Shing
(1994)) the dilatancy decreases for increasing compres-
sive normal traction. This feature can easily be accomo-
dated in the present PWL category of IMs by adding two
(or more) yielding modes as shown in Fig. 4. The rele-
vant LCP description, which extends Eqs.51–53, reads:
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It is worth noting that the 6-th yield mode (ϕ 6 = 0) is
“hidden” like the 4-th in the preceding model (Fig. 2):
in fact, it cannot be represented in the traction plane, but
acts here as arrestor of the shrinking motion of modes 2,
3, 4, and 5 due to softening (Fig. 4).

There are six material parameters in this model: the
softening modulus Ht; the original cohesion c0 (origi-
nal shear strength); the shear strength growth ∆c due to
high compression; the friction coefficient µ; the devia-
tion from normality µ�µ0, intended to reduce dilatancy;
the coefficient a which quantifies the interaction of yield
mode 1 with the others.

4.2 A cohesive crack model

Then a quasi-brittle fracture process has to be described
by a PWL model, adhesion must be allowed for, consis-
tently with the popular cohesive crack p n versus wn rela-
tion for mode I visualised in Fig. 1a. To this purpose, the
PWL model of Fig. 4 is adjusted as shown in Fig. 5 by
conferring tensile strength χ0, i.e. merely translating out-
ward the yield mode ϕ1 = 0. Clearly, this yield locus is
characterised by a softening modulus Hn < 0 and, hence,
at yielding it translates inwards up to the origin O. When
the origin is reached, this translation stops by the activa-
tion of another mode, i.e. the seventh one. The role of

this mode (ϕ7 = 0) is similar to that of the 6-th one in the
model of Fig. 4, namely it does not involve the tractions
(and hence, can not be represented in Fig. 5), but it lin-
early involves the plastic multipliers λ 1 : : :λ5, of all the
5 yield modes visible in Fig. 5 and λ 7: in the framework
of the yield mode interaction, this 7-th mode stops the
softening re-entrant motion of the yield mode 1.

Mathematically, the mixed mode PWL cohesive crack
model in point is represented by the following general-
isation of Eqs.57–58:
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Besides possible elastic stiffnesses in matrix D (assumed
as diagonal), the material parameters to identify on the
basis of experimental data are now: Hn, Ht , c0, ∆c, χ0, µ,
µ0, a, b. Their meanings partly emerge from Eq.60 and
partly are specified in Fig. 5.

5 Numerical tests

This Section is intended to investigate and illustrate the
behaviour and the representation capacity of the PWL in-
terface models formulated and discussed in general terms
in Section 2, and specialised to some representative cases
in Section 4. The algorithm employed for the numerical
solution of the LCPs arising in the tests which follow, is
outlined in Section 6.
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Figure 4 : Improvement of the interface model of Fig-
ure 2 by the elimination of unrealistic dilatancy through
additional yield modes, see Eqs.57-59.

5.1 A joint model

First, consider the interface model depicted in Fig. 4
in its holonomic formulation described by Eqs.51-53
and quantified here by assigning the following values
to the available parameters (in accordance with data
in Ahmadi, Izadinia and Bachmann (2001)): soften-
ing modulus Ht=–2 MPa �mm�1; cohesion c0=4.0 MPa;
∆c=14 MPa; friction coefficient µ = 0:7; dilatancy µ 0 =
0:364; interaction coefficient a = 0:8; elastic stiffness
Dn=40 MPa �mm�1, Dt = 20 MPa �mm�1 without in-
teraction.

Figure 6 provides checks of, and insight into, the direct
relationship p !w, namely: two p-paths, (a,b,c,b,a) and
(a’,b’,c’,d’,e’,d’,c’,b’,a’) are assumed as input and are in-
dicated in Fig. 6a, where the quantified yield modes are
also represented. In Fig. 6b points mark the holonomic
responses, i.e. vectors w computed for the input data p
with the same symbols; the graph (c) shows the non-
holonomic responses computed exactly (cp. Section 3)
for the two paths now conceived as cyclic starting from
the origin a and going back to it. In Figs. 7a-c the
inverse relationship w !p is dealt with, like the direct
one in Figs. 6a-c.

The numerical exercises illustrated in Figs. 6 and 7 give
rise to the comments which follow.

(i) Consider first the sequence of points a, b, c (i.e. of
vectors pa, pb, pc) in Fig. 6a, and the holonomic model.
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Figure 5 : Piecewise linear cohesive crack model for
mixed-mode quasi-brittle fracture, see Eqs.60-62, as an
extension (by conferral of tensile strength) of the model
of Figure 4.
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Figure 6 : Tests on the joint model of Figure 4: (a) two
inputs in terms of proportional tractions (a,b,c,b,a) and
(a’,b’,c’,d’,e’,d’,c’,b’,a’);

With the input pa = 0, the LCP formulated by Eqs.51 and
52, through the solution by the enumerative algorithm of
Section 6, leads to output vectors w a1 and wa2, i.e. to
points a1 and a2 in Fig. 6b. These are singular points
for the infinite set of displacements w corresponding to
pa = 0. Mathematically, this set is related to the singu-
larity of matrix H (of order 4 and rank 1). Mechanically,
the set can be singled out as follows: since λ 1 > 0 and,
hence, the detachment wn > 0 grows, the shear strength
decreases and this decohesion is reflected in the model
by the interaction of yield mode 1 on yield mode 2 and
3. The cohesion vanishes when wn = λ1 = 2.5, i.e. in
point a1; then any combination of opening and sliding
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Figure 6 : (Continued) (b) displacement discontinuities
corresponding to the tractions marked in (a) through the
model Eqs.51-53 in the holonomic version; (c) paths
of relative displacements corresponding to the traction
paths assumed in (a) obtained with the non-holonomic
model, Eqs.18-19.
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Figure 7 : Same meaning of the graphs as in Figure 6,
but using the inverse relationship w ! p.
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displacements in the fan shown in Fig. 6b corresponds to
pa = 0, the fan being defined by vectors V2 and V3. The
numerical solution of LCP, Eqs.51–52, for pa = 0 pro-
vides, besides wa1, also vector wa2 (point a2 in Fig. 6b).
In fact, the origin a of the p-plane can be attained af-
ter the loop (a, c, a) with activation in c of only yield
mode ϕ2 = 0; this model “softens” along the return of p
to the origin, thus generating at the end the displacement
wa2 marked by a2 in Fig. 6b. Thereafter, any further dis-
placement may occur with p = 0 within the fan V2 â2V3

centered in a2, as visualised in Fig. 6b. Contrary to the
multiplicity of solution for p a = 0, a unique holonomic
response wc is noticed to correspond to pc at the vertex
of the yield domain (Fig. 6a).

(ii) A path of reasoning similar to the preceding one and
not presented herein for brevity, may lead to similar me-
chanical interpretations of the multiple solutions to the
LCP, Eqs.51–52, indicated in Fig. 6b with numbering
subscript (e.g. c’1, . . . c’4), for various inputs (e.g. point
c’) specified in Fig. 6a.

(iii) Let us focus now on the present PWL IM in its non-
holonomic version according to Eqs.18–19. Exact inte-
gration in the sense of Subsection 3.1 leads from the two
input paths shown in Fig. 6a to the output paths depicted
in Fig. 6c. Point b is automatically skipped in the exact
integration because no new yield mode is activated in it.
Multiplicity of solutions is noticed to be drastically re-
duced, as expected from the irreversibility of the model.

Figure 7 is intended to illustrate the relationship w !p
inverse to Eqs.51–53, i.e. to the joint PWL IM quali-
tatively depicted in Fig. 4. The w-input considered, the
computed tractions pa, pb ... corresponding to wa, wb ...
through the holonomic model and the non-holonomic re-
sponse paths computed by the “exact” integration of Sub-
section 3.1, are specified in Figs. 7a, b, c, respectively.
The main general feature to be observed in these pictures
is the uniqueness of the holonomic output, in contrast
to what was noticed, see remark (i), for the direct holo-
nomic output of Fig. 6b. Clearly, this (“stabilising”) ef-
fect of the inversion, well expected in mechanical terms,
mathematically is a consequence of the rank increase in
passing, in the LCP to solve, from matrix H to matrix K,
Eq.23, through the addition of the elastic stiffness D. In
fact, the 4-th order matrix K in the present case is of rank
3 (though still nonsymmetric and nondefinite).

5.2 A cohesive crack model

Focus is now on the mixed-mode cohesive crack model
with 7 yield modes, described by Eqs.60–62 and visu-
alised in Fig. 5. The nine material parameters, defined in
Subsection 4.2, are given the following values (selected
in accordance with data in Carol, Prat and Lopez (1997)):

Hn =�60 MPa �mm�1; Ht =�28 MPa �mm�1; ∆c= 20
MPa; c0 = 7:0 MPa; χ0 = 3 MPa; µ = 0:9; µ0 = 0:364;
a = 0:8; b = 0:2. Like in Subsection 5.1, the elastic stiff-
ness matrix is regarded as diagonal with Dn = Dt = 200
MPa � mm�1. Several numerical tests are presented in
Figs. 8 and 9 and give rise to the following remarks.

(i) As specified in Subsection 4.2, the novelties with re-
spect to the joint model of Fig. 4 discussed in what pre-
cedes, are as follows: the yield mode ϕ1 = 0 is now en-
dowed with tensile strength χ 0 and softening; the soften-
ing yield modes 4 and 5 are added in order to reduce the
influence of significant compression pn on shear strength.
Otherwise the essential features are the same, a circum-
stance which shortens the present discussion.

(ii) The model is assumed as holonomic when irre-
versibility manifestations are ruled out by hypothesis,
since proportional traction paths are considered as in-
put, like the two indicated in Fig. 8a: (a, b, c, d) and
(a’, b’, c’). Like in Subsection 5.1, the questions are:
which displacement vectors fwn;

wtg = wT correspond,
through the model, to a given traction vector fp n;

ptg =
pT ; inversely, which p to given w. Answers are achieved
by solving the LCP Eqs.60–61. They are visualised in
Figs. 8b, c and 9b, respectively. Paying special attention
to solution multiplicity, the set of displacement jumps
corresponding to pa = 0 is analogous to that in Fig. 6b,
but only the fan centered in a’3 is visualised in Fig. 8b,
since the counterpart a1 (0:31; 0) to point a1 in Fig. 6b
is too far from the reference origin. In view of the sim-
ilarity with the remark (i) in Subsection 5.1, a detailed
discussion is omitted.

(iii) The non-holonomic version of the direct and inverse
multidissipative PWL IM in point and the interpretation
of the primed and unprimed sequences of data (Figs. 8a
and 9a) as assigned closed-loop paths (a !a), lead to the
response paths which are visualised in Figs. 8d and 9c,
respectively: they were computed by the “exact” integra-
tion procedure described in Subsection 3.1, using once
again, at every new yield mode activation, the LCP algo-
rithm outlined in the next Section.
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Figure 8 : Tests on the cohesive model of Figure 5: (a) given proportional traction sequences (a,b,c,d,c,b,a) and
(a’,b’,c’,b’,a’); (b) and (c) relative displacement corresponding to the tractions marked in (a) through the holonomic
version of the model; (d) paths of relative displacements as nonholonomic responses to the traction paths visualized
in (a).
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Figure 9 : Same meaning of the graphs like in Figure 8,
but using the inverse relationship w ! p.

6 On algorithms for linear complementarity prob-
lems

From the computational standpoint, a recurrent pivotal
role, in what precedes, is played by linear complemen-
tarity problems (LCPs). In order to clarify some peculiar
features of this special mathematical construct and of its
solution algorithms, consider e.g. the LCP involved in
the direct (p !w) holonomic PWL model Eq.46. Setting
d � Y – NT p (vector of data), that LCP reads:

�ϕϕϕ = Hλλλ +d � 0; λλλ � 0; ϕϕϕTλλλ = 0 (63)

The treatise of Cottle, Pang and Stone (1992) provides
a comprehensive conspectus of the abundant knowledge
accumulated up to decade ago on LCP like Eq.63 in terms
of theorems on solution existence and multiplicity and of
(iterative and pivoting) methods for numerical solutions,
mostly related to special properties of matrix H. In the
present context, the already noted essential features of
the LCP problems are: small number of variables (since
local, constitutive relationship are considered); general
(indefinite, nonsymmetric) matrices H, due to soften-
ing, nonassociativity and mode interactions (in contrast
to traditional elastoplasticity with stability in Drucker’s
sense); multiplicity of solutions, frequently expected, es-
pecially for holonomic PWL models.

These peculiar features led to the adoption, for all the
computations, of the “enumerative” method developed
by Judice and Mitra (1988). It is briefly outlined below.

Consider the sequence of pairs (ϕ r , λr) for r = 1 ... n;
for n = 1, consider the alternatives ϕ 1 = 0 and λ1 = 0; if
n = 2, there are two other pairs of alternatives; in this
way for any ny a binary tree is generated where each
“node” can branch into either ϕr = 0 or λr = 0, a tree
with 2n�1 nodes at each level (2n–1 all together) with
n equal to the number ny of yield planes. In principle,
all solutions of a LCP can be found by exploring all the
nodes. The enumerative method is based on a strategy
which leads along all the ny levels of the above tree to
the LCP solutions: each move from one node to a neigh-
bouring one entails the solution of a linear programming
problem (LPP) (precisely, the linearly constrained min-
imisation of a λn one branch and a �ϕ on the other).
Each LPP solution provides guidance for skipping some
descending branch (“pruning”) and criteria for nonexis-
tence of LCP solutions and for singling out all solutions
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when level ny is reached. The process is initialised at
a vertex of the hyperpolyhedron defined in the λλλ-space
by the linear inequalities in Eq.63. This vertex or “basic
feasible vector” (which represents the first node of the bi-
nary tree) is computed by LP, like in “phase one” of the
classical Simplex method.

The sketchy outline which precedes corroborates the
following peculiarities of the enumerative algorithm
adopted: (i) all meaningful solutions of the LCP are cap-
tured (or evidence given that none exists) after a finite
sequence of LP subproblems solved by some advanced
pivotal LP algorithm, therefore with finite termination;
by “meaningful” solutions we mean here those which
characterise an infinity of other solutions, like point a 2

in Fig. 6b. (ii) exponential growth of computing time
with problem size in view of the combinatorial nature of
the strategy adopted.

Clearly, in the present study of multidissipative consti-
tutive models the pro (i) by far prevails on the con (ii).
For overall structural analysis purposes (dealt with else-
where) the contrary holds true, and, hence, recourse to
other, conceptually different algorithms becomes manda-
tory, such as a general pathsearch damped Newton
method (“Path”), proposed by Dirkse and Ferris (1995)
and employed in mode I fracture simulations e.g. by Tin-
Loi and Ferris (1997).

7 Conclusions

In this paper a peculiar class of elastic-plastic relation-
ships between tractions and work-conjugate displace-
ments has been studied, in order to provide simple and
unified mathematical modelling tools for inelastic anal-
ysis of structures where practically important nonlinear
dissipative phenomena can be assumed to be localised
on loci of displacement discontinuities. As a typical ex-
ample, in concrete dams these loci may include artificial
joints, existing cracks and process zones of quasi-brittle
fracture interpreted by cohesive crack “discrete” models.

The peculiarity of the constitutive relationships consid-
ered, referred to as interface models (IM), is the “piece-
wise linearisation” (PWL), i.e. the linearity both of yield
functions and of plastic potentials in all the multiple yield
modes adopted.

The conclusions achieved herein are as follows.

(a) A single mathematical construct, i.e. the linear com-
plementarity problems (LCP), provides a unifying frame-

work which encompasses: holonomic (path-independent,
single step) and non-holonomic (incremental) formula-
tions; direct (from tractions to relative displacements)
and inverse relationships; behaviours of joints and frac-
ture processes (obviously, with different selection of
yield modes and parameters).

(b) Softening and yield mode interactions imply that the
LCPs formulated for PWL IMs are centered on sign-
indefinite, generally nonsymmetric matrices, and that of-
ten multiplicity or nonexistence of solutions occur, as ex-
pected through physical insight.

(c) The above mathematical features require recourse to
“ad hoc” algorithms available in the recent literature on
mathematical programming. The one employed herein
for the numerical tests has been an “enumerative” method
capable to compute all solutions (or to prove that none
exists). This algorithm was found to be efficient and
robust for numerical checks intended to investigate the
capacity of the formulated PWL IMs to capture the es-
sential features of the considered relationships between
tractions and displacement discontinuities. The enumer-
ative method, because of its combinatorial basis, would
not be suitable to overall structural analyses. In fact,
structural analysis, which combine PWL IMs and mate-
rial constitutive models with equilibrium and geometric
compatibility, if all nonlinearities are confined to the IMs,
preserve the LCP format but, naturally, entail drastic in-
crease of the problem size.

The present subject, and the results achieved herein, re-
quire the following further developments: (α) effective
procedures for the identification of the model parame-
ters through experimental data or through data provided
by more sophisticated nonlinear interface models; (β) as-
sessment of merit in terms of computing cost in large-
scale overall analysis of structures, by comparison with
other nonlinear IMs; (γ) extensions and applications of
PWL IMs to three-dimensional structural analysis.
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