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Combining Lumped Parameter Bond Graphswith Finite Element Shaftsin a
Gearbox Model

J. Choil and M .D. Bryant?

Abstract: This paper presents an updated bond graph
model of a gearbox, which now includes bending of
shafts. The gearbox system has an input shaft, layshaft,
output shaft, spur gears, bearings, and housing. The bond
graph model integrates separate sub-models into a com-
posite model. Sub-modules include tooth-to-tooth con-
tact, rotor dynamics of shafts, global dynamics of the
gearbox housing structure, and shaft bending modeled
by finite element modeling. The tooth-to-tooth model
includes tooth bending; shaft torsion; gear inertia; con-
version of gear torque into tooth forces; tooth contact
mechanics; and multiple tooth contact. To analyze shaft
dynamics more precisely, elementary finite element the-
ory was adopted into the shaft bending module. The
complete dynamics model was simulated, combining nu-
merical methods for lumped elements and finite element
techniquesinto a single code.

We will briefly review the gearbox bond graph model,
present egquations and numerical methods, explain simu-
lation algorithms, and then present simulation results.

keyword: Gear, Gearbox, Bond graphs, Newmark's
method, Finite element method (FEM).

1 Introduction

In this article, an existing model of a layshaft gear-
box will be updated with bending of shafts. The gear-
box system has input shaft, layshaft, output shaft, gears,
bearings, gear tooth contacts, and gearbox housing.
Our model employs bond graphs, an abstraction of the
lumped parameter equivalent circuit analysis technique
of electro-mechanics. Bond graphs can describe the
dynamics of any physical system: mechanical, electri-
cal, fluidic, thermodynamic, etc [Paynter (1960)]. Bond
graphsmap how and where power flows through, and en-
ergy isstoredin, aphysical system. Bond graphsaresim-
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ilar to circuit analysis techniques, applying Kirchoff like
conservation laws to balance the physical effects of gen-
eralized sources, resistances, capacitances, inertances,
transformers, and other elements. Bond graphs usually
employ lumped parameter approximations. Bond graphs
arealso modular: an overall system model can be created
by linking together models of individual components or
sub-systems. State equationsrepresentative of the system
dynamics can then be extracted from the bond graph for
simulations[Karnopp, Margolis and Rosenberg (2000)].

Prior gear and gearbox models were piecemeal: these
models examined certain facets of gear systems or gear
tooth contacts separately [ Ozgiiven and Houser (1988)].
Interactions were neglected. In thisarticle, we have inte-
grated whole gearbox physics into a composite model.
Lumped parameter techniques — bond graphs — com-
prise most elements of this model. The model was aug-
mented with finite elements, to account for multiple crit-
ical speeds of shafts. This presents special problems,
combining the seemingly incompatible numerical meth-
ods of state equations with the second order matrix or-
dinary differential equationsfrom FEM. Thisarticle for-
mul ates the af orementioned model, derives the mixed set
of differential eguations, generates a mixed numerical
method for the gearbox system, and then presents solu-
tions.

2 Layshaft gearbox model

An early bond graph model of a typical manua trans-
mission layshaft gearbox for rear wheel drive vehicles
was devel oped by Hrovat and Tobler [Hrovat and Tobler
(1991)]. Utilizing a gear tooth contact sub-model [Kim
and Bryant (1999)] and Hrovat and Tobler’s bond graph
model, a more detailed rotary model of a layshaft gear-
box was assembled [Kim (1999)]. A schematic is pre-
sented in Fig. 1.

The system is composed of two pairs of gears, an input
shaft, alayshaft, an output shaft, and a box which houses
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al gears and shafts. The box is mounted to the foun-
dation with stiffness k, and damping Rp. The angular
velocities of input shaft, layshaft and output shaft are w i,
w3 and wy, respectively. Each of gearsis numbered and
has a velocity w1, Wy, ws, and wy. Due to the differ-
ence in torque on input and output shafts, the box can
rotate around axis A-A/ with velocity wg. Relative ve-
locitieswith respect to a coordinate frame attached to the
box, and reaction forces acting on bearings attached to
the box, are also shown in Fig. 1. Because the bearings
are attached to the box, these reaction forces will be ap-
plied to the box and will generate torques on the box.

Figure1: Typical manual transmission layshaft gearbox
[Hrovat and Tobler (1991)]

Fig. 2 containsa bond graph model updated from Hrovat
and Tobler [Hrovat and Tobler (1991)] of the overall sys-
tem shown in Fig. 1. All Inertance (1) elements are ro-
tational mass moments of inertia associated with shafts,
gears, or the gearbox housing. Likewise, al compli-
ances (C) are torsional springs, and all resistances (R)
are losses from bearings, except for the resistance at the
bottom center of the bond graph which represents box
to foundation damping Ryp. The resistance next to the
source ‘M SF’ located on the far left represents the losses
of the bearing that supports the input shaft. The adja
cent ‘C’ element represents the torsional compliance of
the input shaft, and the accompanying ‘I’ element rep-
resents the rotational mass moment of inertia of the in-
put shaft and first gear. The dashed boxes include gear
teeth contact sub-models (shown as ellipses) and resis-
tances that model losses of layshaft bearings. The power
bonds extending from the bottom 1-junction in the gear-
box housing and foundation section that form the ‘tri-
angular structure’, model the reaction torque applied to
the box by the shaft, bearings, and gears. The two in-
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ertias and one capacitance between the two dashed rect-
angles represent the inertia of the second gear plus the
inertia of the left half of the layshaft, the inertia of the
third gear plustheinertiaof theright half of the layshaft,
and the torsional compliance of the layshaft. The fourth
gear inertia, the output shaft compliance, and the bear-
ing resistance are to the far right. The two ellipsesinside
the dashed rectangles each have the bond graph structure
shown in Fig. 3, which represents dynamics of meshing
gears. Returningto Fig. 2, the bearing resistancesrelated
to the layshaft rotation are shown as two ‘R’ elements
off the O-junctions directly below and between the two
dashed rectangles. Because these bearings are mounted
to the box, the velocitiesfor these bearings are the differ-
ences between the shaft angular vel ocity and the angular
velocity of the gearbox’s rigid body motion. These ve-
locity differences are constructed by the O-junctions.

Input shaft ! Gears : Layshatft ; Gears : Output shaft

—
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Figure 2 : Bond graph model of layshaft gearbox in Fig.
1[Kim (1999)]

3 Meshing gear teeth sub-model

Fig. 3, taken from reference [Kim and Bryant (1999)],
isabond graph model of tooth contact. This bond graph
has symmetric upper and bottom parts, and symmetric
right and left parts. The symmetry of upper and bottom
parts represent the distribution of transmitted force be-
tween two pairs of teeth. In the case of low contact ratio
(1 < contact ratio < 2), the load on a given tooth is not
constant, but is shared by another pair of teeth in contact.
Thetooth forces transmitted across a particul ar tooth pair
depends on the angular position 0, of the pinion. These
forces vanish when teeth separate. The signal from the
ON/OFF switching signal element in the middle of the
bond graph model conveys thisinformation.

The right and left parts of the bond graph of Fig. 3,
respectively describe the dynamic behavior of contact-
ing teeth between driving and driven gears. Parame-
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Figure 3 : Bond graph of a pair of meshing gears [Kim
and Bryant (1999)]

ters C; through C4 and |4 through |4 represent bending
compliances (from beam theory) and equivalent masses
of the two pairs of contacting gear teeth. Compliances
Cs and Cg associated with surface contact between con-
tacting gear teeth incorporate a nonlinear Hertzian con-
tact stiffness that changes with angle 0, as the contact
progresses over the tooth faces, consistent with the in-
volute tooth profile. The MR resistance elements lo-
cated on the vertical centerline represent the dliding fric-
tion losses between contacting gear teeth. The friction
model is Coulomb, with normal force arising from the
(Hertzian) contact compliance elements Cs and Cg, and
friction coefficient dependent on sliding speed. The two
transformers (TF) on the left hand side convert the in-
put torque from the pinion into normal forces between
teeth, transmitted along the line of action. The two trans-
formers (TF) ontheright hand side act oppositely for the
gear. Each modulated transformer (MTF) located on top
and bottom left, converts pinion rotational velocity w1
into linear velocity tangentia to tooth surfaces. Coun-
terpart modulated transformers (MTF) to the right con-
vert tangential velocitiesto rotational velocities w . The
0-junctionsin between the modulated transformers con-
structs the instantaneous sliding (slip) velocities associ-
ated with friction between contacting gear teeth.

4 Forceonto shafts

To model energy storage due to bending of shafts gener-
ated from tooth contact forces, power bonds were added
toFig. 3. These groups of bonds and elements are shown
in Fig. 4-(a), to the immediate right and left of the verti-
cal centerline. For two meshing gears, power istransmit-
ted to both shafts from both pairs of teeth viathe gear at-
tached to the shaft. Since the shafts are assumed linearly
elastic, the applied forces and vibration motions separate
into x and y components, shown in each group as * shaft:
X" and ‘shaft: y’.

Normal and friction forces between teeth transfer to the
gear bodies, and then to the shafts. The normal loads
F, are directed along the pressure line of action between
contacting teeth, and the friction forces F; are perpendic-
ular to the normal forces F,. The multi-port transform-
ers contained in the new group of elementsin Fig. 4-(a)
perform coordinate system rotations ¢ from the n-t tooth
system to the x-y shaft system shownin Fig. 4-(b). The
forces and velacities transform according to

F| |cosp—sing| | F, Vn| | cos@ sing| [vx
K| [sing cosg | |R |’ [w]| |—singcosg| [v

D)

where the angle @is the pressure angle for the gears.

5 Finite element bending of shaftsin bond graphs
5.1 Layshaft

To analyze dynamics of distributed shafts, concepts of
finite elements will be adopted. Since the shafts were
assumed linearly elastic, the bond graph module derived
here for x directed bending motions apply to y directed
bending motions also. In Fig. 5, the layshaft is consid-
ered composed of four beam bending elements, giving
five nodes each with a linear displacement transverse to
the shaft, and an out of plane rotation.

The bending displacement for the uniform element in
Fig. 5-(a) is expressed using the standard beam shape
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Figure 4 : Teeth sub model with the power flow path to
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=(1- 3|2 +2|3) (0 + (| 2|2 +3|3)|W2(t) For assembly, we introduce an extended element nodal
X 5 , s displacement vector {W};, equal to vector {W}_i With as
_|_(3X_ 2X )W3(t)—|—(—x——|— X—)Iw4(t) 2)many zero components appended to makgthedmenson

12 I3 123 equal to N, the total number of nodal displacements of

the complete system [Meirovitch (1986)]. Similarly, we

extend the element mass matrix [M]; and element stiff-

With these displacements, the element kinetic co-energy  ness matrix [K]i. The total kinetic co-energy and poten-

and potential energy are tial energy of the complete systemis



Combining lumped parameter bond graphs with finite element shafts in a gearbox model 435
n . . . . _ _ -1

T(0)=5 T WO MW= W)} T MWy T=TRI=[MITp (12)

Vi(t)= %E {W(t) KT {W(t) = 2{W(t)} T[K]{W(t)} as the constitutive law for the inertance of the finite ele-
=1 © ment shaft in the bond graph.

The gear-attached layshaft system which has inertance

n n and compliance can be expressed in bond graph form us-

where [M] = 2 [MJiand [K] = ¥ [K]i are the 10x10 g yiti port | and C elements. Thisbond graph, shown

1= 1=
symmetric mass and stiffness matrices for the complete
4-element system. The kinetic co-energy given in equa-
tion (6) is a function of the velocity (or flow) variables

f={Wt} (7)
Bond graphinertancesin integral causality have constitu-
tivelaws f; = fi(p) wherein the flows f = [ f;] depend on
the momentum variables p = [p;] wherei, j =1,2,..., n.
To obtain this constitutive law, we require the kinetic en-
ergy T. = T.(p). From the Legendre transform [Kreyszig
(1988)], the kinetic energy T, = T, (p) and thekinetic co-
energy T = T(f) arerelatedvia

TLP+T(H=p-f

(8)

Partial derivatives of eguation (8) with respect to flow
vector components f; gives

ofp-f) _aT(f)

BD_ -
e T T

9)
In general, for application to bond graphs, equation (9)

must be inverted, i.e.

f=P(p) (10)

Substitutions of equations (4) and (6) into equation (9)

gives

p=[MH{W(t)} = M]f

(11)

Equation (11) presents the momenta p as a linear func-
tion of flow f. Inversion of equation (11) gives

in Fig. 6, accounts for only x-motions. Another identi-
cal model was introduced into the complete system for
y-motions. In Fig. 6, the flows on each 1-junction are
time derivatives of the respective modal displacements.
Odd numbered 1-junctions represent trandations, even
numbered 1-junctions represent rotations. Because the
transverse displacements of thefirst and the last elements
are influenced by the bearing stiffness, two power bonds
are connected to the 1% and 9" nodal displacement 1-
junctions. Likewise, gear forces generated from the tooth
contacts are applied to the 2" and 4™ nodes in Fig. 5,
shown as the power bonds on the 3" and 7t 1-junctions.

Although only 4 elements were used, important natu-
ral frequencies and vibration modes can be estimated.
Higher order frequencies and modes can be analyzed by
incorporating more elements. Using the material and ge-
ometrical properties of the two gears and layshaft shown
in Tab. 1, the mass and stiffness matrices were calcu-
lated.

The structure of Fig. 6, a multiport C interacting with a
multiport | through 1-junctions, instills the FEM model
into a bond graph. Each 1-junction can be associated
withthetimederivativeof anodal displacement of Fig. 5.
These 1-junctions also program into the bond graph dy-
namic equilibrium between moments and forces at each
node, provided by gear forces, bearing reactions, and
the multiport | and C, which involve the mass and stiff-
ness matrices. The bond graph of Fig. 6 shows how
these effectsinteract with therest of the physical system,
and how motion equations should be derived. From this
structure was derived the matrix differential equations of
equation (17), and the interaction terms of equation (13).
These will be presented |ater.

5.2 Input and output shafts

Bending of input and output shafts can be modeled in a
similar manner. For the input shaft, only one reaction
force arises from gear 1. Likewise, one reaction force
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Figure 6 : Finite element, multi port model of gear-
attached layshaft system

Table 1 : Material and geometrical properties of two

gears and layshaft

Mass [kg] 1.920 4.184
I~ Mass Moment of Inertia[kg] |0.001969|0.004291
| - Mass Moment of Inertia[kg] [0.003811| 0.01810
Density of carbon steel or

aloy steel [kg/m3] 7.70E+03
Young's modulus of carbon

steel or aloy steel [Pa] 2.10E+11

Lay shaft length [m] 0.1+0.2+0.2+0.1
Lay shaft radius[m] 0.01
Layshaft area moment of

inertia[m?] 7.85E-09
Layshaft cross sectional

area [m?] 3.14E-04

arises from gear 4 on the output shaft. Each shaft is sup-
ported by two bearings, and bonds that transfer power
from shaft to bearing should be attached to each bond
graph/FEM shaft sub-model. As in the layshaft model,
only four finite elements were considered.

5.3 Combining sub-modelsinto a complete model

Utilizing the modular characteristics of bond graphs,
sub-models can be linked. The complete gearbox model
showninFig. 7 isthemodel of Fig. 1 with two teeth con-
tact sub-models, two layshaft bending sub-models (for x
and y motions), two input shaft bending sub-models, and
two output shaft bending sub-models. State equations
were extracted from the entire gearbox model in Fig. 7.
These equations are presented in Appendix A. The state
variables are defined in the nomenclature.
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6 Numerical methods
6.1 1% order state equations from bond graph

State equationsfrom the lumped parameter section of the
bond graph can be expressed in the matrix equation form,

X =BX+PD+F (13)
Here, the state vector X consistsof all the state variables
of Appendix A, matrix P incorporates the effects of the
(FEM) shaft bending onto the other components in the
gearbox system, and F is the vector of input excitations
(the velocity source). In equation (13), nodal velocities
D appear instead of nodal displacements D, because the
relevant equations arose from kinematics of velocities,
rather than displacements. These kinematics are equiv-
alent, since velocities are time derivatives of displace-
ments.

At timet; 1, the state equations can be written as

Xj41=BXj41+PDj 114 Fji1 (14)
= BXj;+1+P(Dj+AD)) +Fja

where,

Xj+1—Xj)

Al (15)

Xj+1=
was approximated by backward difference, and AD j, the
vector of nodal velocity increments over time steps At,
derived from Newmark’s method, is explained in Ap-
pendix B. Term D; is the vector of nodal velocities at
timetj.
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Now substitute equations (B.10) from the Appendix B
and (15) into the state equations of motion, (14) to obtain

(Xj+1—Xj)

At

Y

= BXj;1+4 PD; +B PAD; — PR; 4 Fj;1.

Here, 3 and y are numerical parameters of Newmark's
method and AD; is the vector of nodal displacement in-
crements.

Collecting terms,

BZt B) Xira

1
=P(Dj~ RJ)"‘ Xt R

l
PAD; +
' ( (16)

In this case, the unknownsAD ; and X1 are grouped on
the left hand side of equation (16).

6.2 2" order matrix equationsfrom finite elements

Second order matrix ordinary differential equationswere
extracted from the 1-junctions between interacting mul-
tiport | and C's, asin Fig. 6.

From the inertance bonds arose equation

P=_KD+A

and from capacitance bonds arose

D=M"1p

By differentiating the second of these equations, and sub-
stituting the second into the first, we obtain a matrix dif-
ferential system in displacement variable D,

MD+KD = A=a+QX (17)
where, aistheinput force vector to thefinite element part
and Q isthe matrix which relatesthe finite element to the
lumped parameter bond graph part. We chose to use sec-
ond order matrix differential equations, rather than state
equations normally extracted from bond graphs, to avoid
calculating the inverse of the mass matrix, implied by

equation (12). Thiswould destroy the sparseness of the
mass matrix, key to quick and efficient solution of finite
elements.

Equation (17) reduces to

KAD; = DA (18)
viaNewmark's algorithm, where
AA;j = DA+ MQ; (19)

= (8 +Qj11Xj+1+ QX)) +MQ;

Substitution of equation (19) into equation (18), and ar-
ranging terms, gives

KADj — Qj11Xj+1 =43 + QjXj + MQ; (20)
The unknowns AD; and Xj11 are on left hand side of

equation (20).

6.3 Combined system

Assembling from equations (16) and (20) into matrix
form gives

A~

[ K , _1Qj+1 ] [

—okP Al-B

_ [ Aaj — QjX;+MQ ]
P(Dj—Rj) + 47X + Fjs1

AD; ]
Xj+1

(21)

At each step of the calculation, we can solve the un-
knowns AD; and X;,1; then D41, Dj41, and Dj41 can
be solved by equations (B.16), (B.17), and (B.18) from
the Appendix B during an auxiliary step. Before the next
step of calculation,

Qjand R; also must be updated using equations (B.11)
and (B.12) from the Appendix B.

6.4 Simple example of Combination of 1% and 2" or-
der systems

Fig. 8 is a schematic of a system and its bond graph
which has finite element shaft bending, and lumped pa-
rameter elements (mass m, and stiffness kj, ki1, and
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kor2). F istheinput force. The same material, geometri-
cal properties, and the finite element model asin Kim's
thesiswere applied. The results obtained using equation
(21) coded and solved in MATLAB® are represented in
Fig. 9-(a) and Fig. 10-(a) (Time step = 0.000005,y=1/2
and B = 1/4). For the purpose of comparison, the same
example was solved by ANSYS® and plotted in Fig. 9-
(b) and Fig. 10-(b).

7 Simulation of alayshaft gear box
7.1 Formulation for gearbox model

By extending the formulation to a finite element shaft
bending model with many elements, the layshaft gearbox
model in Fig. 7 can be smulated.

Asin equation (13), state equationsfrom the bond graph
part can be represented as

X=BX+F+PDM 4D (22)
—|—P3D|ay)(—|— P4Dlay_y_|_ pSDouu_I_ peDout_y

where, Py, P>, Ps, P4, Ps, and P; are matriceswhich relate

the lumped parameter bond graph parts of the system to
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Figure9: Displacement of nodes

the finite element model part, Input shaft-X (in x), Input
shaft-Y (in.y), Layshaft-X (lay x), Layshaft-Y (lay.y),
Output shaft-X (out x), and Output shaft-Y (out y), re-
spectively.

Versions of equation (17) describe each finite element
matrix model for the input, lay, and output shaft bend-
ingsin thex andy directions.

By applying Newmark’s procedures, equation (22) can
be rearranged as
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— g (PADIN* 4 PAD™ 4 PaAD|Y + RAD Y
+P5ADSU >+ PAD V) (A - B)x,+1_ A xJ +Fip1
|ny ain.y Iayx 5lay_x
—|—P1(D'”X R'”X)—|—P (BY—RM)+ps (D> -RP)
_I_P( Iayy Rlay y)_l_ps(DOut_X ROULX)_I_P ( OUt Y ROUt Y)

(23)

and equations (17) for the various shaft bendings become

K ADij nx __ Qij NXXi41 = Aai_n_x B Qi_n_ij i MQi_n_x
RADY — QI Xj41 = Ad™ — QX+ MQ™
RADP — QX 1= Aa' VX QX+ MR
K ADljay-y _ Ql_ay ij+ L= Aal_ay A Qjay yX +M Q' ayy
KAD§ —

j+1
Q?—|u-t]__XXJ+1 — Aa out_x QQULXXj + MQQut_X
KADYMY — Q7YX 1 = Adl °“‘ Y QX + MY
(24)

Converting equations (23) and (24) into matrix form
gives,

K [0 [0 [ [ [0 -Qr][ap]
O R [ [0 [ [0 -QY||abM™
O [0 K [0 [0 [0 -QF| |ad®
0 [ [© K [0 [ - adP¥
o [ [0 [0 K [0] —QM*| | Do
@ [ [0 [0 [ K -Q|| Y
__Bimpl —B%Pz —BLNP3 —pa "4 —Bimps —Bimpe A1-B] [ X1 |

[Aainx Qin_xx +MQiI’1X]
[Aamy QIJnyX +Mme]
[ Iayx IayxX+MQIayx]
[A Iayy QIayyX +MQ|aVY]
— [Aaout X Qout XX +MQOut X]
[Aaouty Qtj)ut yX +MQ0U[ y]
= (Dijn_x_ﬁjn_x)_i_P (Dlny Rn y)_i_Pa(Dl_ay_x_ﬁjay_x)
lay.y  Rlayy Jout_x _ [Rout Jout_y  Aouty
+Py (DY = RYY) 4+ Py (DX - RUX) 4Py (DY — R4
L +§XJ+FJ‘+1

(2_5)

By solving equation (25) and applying Newmark’s algo-
rithm, the layshaft gearbox model can be simulated.

7.2 Simulation results

Based on the bond graph model presented in Fig. 7, a
simulation was performed in MATLAB® with a time
step of 10~° and the values of system parameters shown
in Tab. 2 applied to both gear pairs.

The input to the flow source on the far left of Fig. 7 was
acycloidal step function from 0 to 50 rad/sec, starting at
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Table 2: Geometrical, material propertiesof spur gears,
standard full depth tooth system

Parameter Pinion | Gear
Module [mm] 6
Number of teeth 21 | 31
Pressure Angle [degree] 20°
Circular Pitch [mm] (=pi* module) 1885
[ps] Base Pitch [mm] 17.713
[rp] Pitch Circle radius[mm] 63 o3
[rp] Base Circle radius [mm] (=Pitch
Circle radius* cos(Pressure Angle)) | 202 | 874
Center Distance [mm] 156

Addendum [mm)] (=modul€) 6

Deddendum [mm)] (=1.25* module) 75
[me= (ua+ur)/ pp] Contact Ratio 1.615
Face width [mm] 20

|~ Mass Moment of Inertia[kg] |0.00381]0.0181

Density of carbon steel or

alloy steel [kg/m?] 7.70E+03
Young's modulus of carbon steel or
alloy steel [Pd] 2.10E+11
Friction coefficient between teeth 0.005

ts=0 sec and ending at te=0.5 sec. A mathematical de-
scription of thissignal is

At = Z-t) (26)
te—1ts
Qwmin At <0
Qout = { Qutin+ (Qmtax — Quiin) 2= 9 < At<en
(27)
where
Qumin  Starting value of the output signal. (0 rad/sec)
Qmax Endvalue of the output signal. (50 rad/sec)

ts Start time of the cycloid. (O sec)

te End time of the cycloid. (0.5 sec)
This cycloidal function is smoother and physically more
reasonable than a step input, which will generate enor-
mousforces at the step change. Theinput cycloidal angu-
lar velocity and load sharing ratio are represented in Fig.
11. The angular velocity ratio between input and output

CMES, vol.3, no.4, pp.431-446, 2002

60

50
Input angular velocity

140

1+
30
20
ot

Load sharing ratio

Load sharing ratio
Input angular velocity (rad/s)

. . . . . . . . 0
02 03 04 05 06 07 08 09 1
Time (sec)

0 01

Figure 11 : Cyclodia input angular velocity and load
sharing ratio

ra
42}

Output shaft anaular velocity (rad/s)

Output shaft angular velocity

o

Box angular velocity

120

=
=
=
@l

,ﬂi

0 Time (sec) 1

1
=
o
=]
al

Box angular velocity (rad/s)
o]

(a) Output velocity and box vibration

22.970

Output shaft angular velocity

- 22.945

1 22.920
Box angular velocity

Box angular velocity (rad/s)
o
o 8
. o

Output shaft angular velocity (rad/s)

-0.005 1 1
0.98 : 1
Time (sec)

(b) Magnified plot of (a)
Figure 12 : Output velocity of layshaft gearbox and box
vibration



Combining lumped parameter bond graphs with finite element shafts in a gearbox model

shaft must be (21/31)2 + (transmission errors) in accor-
dance with the teeth number ratio or pitch circle radii ra-
tio for two pairs of mating gears. The simulation results
shown in Fig. 12 reflect this ratio of input and output
shaft velocities, and transmission errors.

200}
Normal
— i —
= 100t orce \I \Z_/
8 2
Lo 1 18
© c
£ S
S 2
P4 ('
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L 1 | 1
04 0.6 08 1
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(a) Normal and friction forces
200
Normal
force
100 1
z z
L o b 11 L
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I I I -1

L
0.97_ 0.98
Time (sec)

0.95 0.96

(b) Magnified plot of (a)

Figure 13 : Normal and friction forces between surface
of meshing gears

In this simulation, the angular velocity input is a flow
source with acycloidal step function having 50 rad/s am-
plitude. The average power transmitted across the gear-
box is 825 W with average steady state input torque 16.5
N-m. If all components are rigid bodies, the expected
output velocity is 50*(21/31) % = 22.945 rad/s. To com-
pare this value with the simulation results, a portion of
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Fig. 12-(a) was magnified in Fig. 12-(b). The actual
output velocity in Fig. 12-(b) oscillates between 22.92
rad/sand 22.97 rad/s dueto transmission errors caused by
tooth bending compliances, compliances of shafts, and
contact mechanisms. These transmission errors will not
decay, because the number of pairs of teeth in contact
fluctuates between 1 and 2. This creates impact |oads
which activate oscillations. Moreover, the effective stiff-
ness of teeth bending and teeth in contact will increase
whenever teeth are in contact. The forces between con-
tacting teeth of meshing gears are represented in Fig. 13.
Here gears meshing in sequence with the load sharing
ratio act likeimpact sources.

Fig. 14 shows the response of each node (1-junction)
of the finite element shafts. The x-direction movements
of each shaft in Fig. 7 were plotted. The y-direction
movements had similar tendencies. We can see that the
center of each shaft hasthe largest trandational displace-
ment (ws), but the smallest value of angular displacement
(ws). Both ends of each shaft have the smallest transla-
tional displacement (wy and wy), but the largest angular
displacement (w, and wio) because the bearings at both
ends restrain the shaft displacements. Each shaft bends
in a bow shape with high frequency bending vibrations.

8 Summary and conclusions

We presented an updated bond graph model of agearbox,
which now includes bending of shafts. To analyze shaft
dynamics more precisely, elementary finite element the-
ory wasadopted. The complete model was simulated, us-
ing numerical methods derived via state equations from
bond graph model, and Newmark-3 method for lumped
and finite element techniques.

The updated model can simulate the dynamic behavior
of gear teeth, shafts, gearbox housing, and interactions.
This gearbox model will be used in such fields as fault
diagnosis and control, which need detailed descriptions
of dynamics.
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Appendix A: Bond graph modelswith index and state A.1.4 Parameters of gearbox housing and shafts

equations

A.1 Bond graph modelswith index

A.1.1 Gear teeth contact sub-model

MTF ——— 0 ¢

» 0

MTF,F—— 01

A.1.2 Parameters of gear teeth contact sub-model

voD)

S)yeyS 2 ST

Parameters Description Value |
l1,12,13,14 Equivaent mass of 0.001587
gear [kg]
C,1, Cy, C3, Cy4| Bendingcompliance of |9.203e-9
gear [m/N]
Cs, Cs Compliace of gear teeth  |2.76e-10
contact [m/N]
TF1, TR, Transformer (rotational to | 0.0592
trand ational)
TF3, TF4  |Transformer (translational to| 11.4416
rotational)
A.1.3 Layshaft gearbox model
“ R — PRGN f,ﬁk‘; 7
c“\/ © \ C"ﬁ/‘»z / ““\/C
O O o O R A o S
G\ T
R, JllZ C, ]
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C7-1,C7-2,Cg-1,Cg-»

Parameters Description Value
|1, |2, |3, |4 Rotational inertiaof 0.03
shaft [kg-m?]
Is Rotational inertiaof | 0.3
gearbox [kg-m?]
C1, Cy4,Cyg Torsional compliance of | 2e-7
shaft [rad/N-m]
Cuo Torsional compliance of | 5e-8
gearbox [rad/N-m]
Rl, Rz, R37R4, R5, Re Rotational resistanceof | 0.1
bearing [N-m-sec]
R~ Gearbox damping 0.1
[N-m-sec]
(:2-17 Cz-z, (:'3,-17 C3-2 Compliance of bearing
Cs-1,Cs5-2,Cg-1,Cs-2 at shaft [m/N] 5.7¢-9

A.2 State equations

The subscriptsgs and g, represent gear teeth contact sub-
models (oval shape) of the left and right hand side in
layshaft gearbox model, respectively.

A.2.1 Gear teeth contact sub-model: left hand side

. 1 1 1 . e
dgc; = (TR)g (thl + Ehls) - |—P91—i1 — €OS@Dinx_7 — SIN@Diny_7

g1

1
hi, +—=hig

o 1 (_ 1
foes = TRy \ T2 2 0

lg

1-i2

g3

s 1 (1
qgl_cﬁ_(TFUgl i

Cgl <6

1 1 - L
h, + E hIS) +|— Pg1i4 — COSOD)ayx 3— SINQD)ay_y. 3
g

oy cs

1-ig

1 .
) +——Py;i, — COS@D)ay_x 3—

Sin@D)ay.y 3

. 1 1 1 . o
C4 = (TFZ)gl (Hhh + EhIS) - |—P91—i3 - COS(PDin_xJ - s|r|(|)Din_y_7
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A.2.2 Gear teeth contact sub-model: right hand side
. 1 1
egz |_h|3 - |_h|5

3 5
. 1 1 1 - L
g, = (TR)g, (_ hi, - _hls) — 7 Papi; — C0S@Djay x 7 — SINQDyayy 7

I3 Is |92—|1
- 1 (out1)g,
Pgy.iy = Corcn oo c; — Carcr qu—Cz
. 1 1
Ugoc, = |—_P92—i - |—_P92—i2
-l 921

- outq
sz i = ( )

24 q
Cg o G2-C2 — Cg o 92-C3

. 1 1 . L
Qgoc3 = hl4 + = h|5 ——Pg, i, — €0S@Dout_x 3— SINPDout_y_3
(TF3) Is Ig -2

. 1 1 . o
Ugcq = (TR)g, (E hi, - Ehls) - |g—inz-i3 — C0S@Djay x.7 — SINPD)ay.y. 7
2-13

- 1 (outa)g

Poo.is = Qg4 — 2 0g,
92-13 C92-04 92-C4 ng_CS 92-C5

. 1 1

Ugpc5 = I Py — [ Py.ig

-3 O-ig

Poois = (), 9205 — : Ggz-c6

2 ng—cs > ng—Ce >
1

1 : L
h,+— h|5) o ——Pg, 04— €OS@Dout_x 3— SINPDout_y 3
2-ia

. 1
Bz =~ (TRa)g, ( la

A.2.3 Bearings on shafts
qcm = Din_><_17 qcu = Ijin_y_17 q03_1 = Din_><_97 qu_z = Din_y_9
q05_1 = DIay_><_17 q05_2 = DIay_y_17 qce_l = Dlay_x_gv qce 2 — DIay_y_9
q07_1 = DOLIL)LL q07_2 = Dout_y_L qu_l = Dout.x97 qc&z = Dout_y_9
A.2.4 Gearbox housing
1
C, — St — thl
. 1
hll = C—1QC1
TR TR
- (R2m91+(MTFl)91 Fg;)lutl (MTFZ)Ql Fg;)lutz ﬂqgl—cl-i_( )gl qgl—CA)
C91—01 Cg1_04

. 1 1
Wy, =6y, = thl + Ehls

Pt = g (2) arctn (14)(P) = (Far) e

(OUtl)gl

Co1-c0
1 1 1 1 1
Vgt = (MTFi)g, (thl + Eh's) " MTRe (Ehlz - Eh's)

SP = 100 (S ope Parameter ),

NOLIll

d1 g1-C2

p= Friction Coef ficient (0.005)

FOLI[Z — UNOU[Z (%) arctan ((\/8?2)(9))

(F12)0g 5

Nout2 — (OUtz)gl

- C91—05

1 1 1
ut2 _ = = -
Vgl = (MTF2)91 (|1h|1 + |5h|5) (MTF4)91

91-C5

1 1
(E%‘E%)
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: 1
hlz = - C—4QC4
—Retd, + ot Fa'? Qg1-c3 4 Qo1-c6
o (MTF3)91 (MTF4)91 (TF3)91C91—03 (TF4)91C91—06
1 1
(A)Igl = Eh|2 - Eh|5
1 1
0 —h,, — —h
ac, Izhl2 i3
1 1 1
= — —h,,— —h
hi, C4q04 I'-\)4(|3h|3 Is |5)
THh TR
- ((MTFl)nggOLM (MTFZ)QZFQOZMZ ( )gz QQz—Cl + ( )gz %2—04)
ng—Cl Cg2_04

outl — uNOLM (E) arctan ((vg;'tl)(@)) = (F1)dg,.c,

out
Ngzm t= (ngl)jz gz c,
\oul 1 1
= (MTF)g, Eh.s— Eh.5 M h|4+ h|5
P = g2 (2 ) arctn (12 P) = (Faz)ncn
NoU2 _ (Omz)gz e
C92—05 >
w2 _ 1.y 1 1, 1
Ve = (MTR)g, (|1h|1+ |5h|5) (MTF4)g, (lzhlz |5h|5)
. 1
h|4 = —C—qug R5( h|4 + — h|5)
X Fatt Fo*? Agz-c3 Gg-cs >
(MTF3)92 (MTF4)92 (TH)QZCQZ—CS (TF3)92C92—06
S
Ocy = L Iy — ReCo dce
. 1
Acio Ehls
W R, R R R
4T, T T L
chm I (Re+Rs+Rs+Rs+Ry)hyg
(T':l)g (Fu) ) (TR)g
Cor. 11 gy c; — ((MTFl)gl(Fll) + (MTF3)g, Uoc, — Coy. 41q91 Ca
Qg ( MT n (Fr2) ) T
(TF3)91C91—03 ( FZ)QI(FIZ) (MTF4)91 Sa.25 (TF4)91C91—06
(TFl)gz (FZl) (TF2)92
- Carcy Ogoc; — ((MTH)QZ(FH)"' (MTF3)92) qu—Cz_m%z—CA
Qg ( MT (Fr2) ) Qg
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Appendix B: Newmark-3 method

This section explains the Newmark- method [Weaver
and Johnston (1987)] to simulate dynamics of finite ele-
ment shaft bending. For a general many degree of free-
dom system, the damped equation model is

MD +BD 4 KD = A(t) (B.1)



Combining lumped parameter bond graphs with finite element shafts in a gearbox model

where M is the mass matrix, B is the damping matrix, K
is the stiffness matrix, A(t) is an external force vector,
and D is the displacement vector.

At timet;, equation (B.1) can be represented as

MD; +BD; +KD; = A, B.2
J J J ]

Similarly, at the next timetj1 = tj 4 At;, equation (B.2)
becomes

M(Dj+ADj) +B(Dj+ADj)+K(Dj+ADj) = Aj+AA;

(B.3)

Subtraction of equation (B.2) from equation (B.3) pro-
duces the incremental equation of motion as

MAD; +BAD; + K ADj = AA| (B.4)
where, ADj, ADj, and AD; are the incremental acceler-
ation, velocity, and displacement vectors, respectively;
AA| istheincrement in load between timest; and tj, 1.
To numerically solve these equations, Newmark approx-
imated the velocity and displacement of a single degree
of freedom system at timet;j 1, asfollows.

(B.5)
(B.6)

Ujy1 =05 +[(1—y) Uj+yUj1] At;
+[(1/2—B) tij + Blij1a] (At))

where At; is the time step, and B and y are numerical
parameters chosen by the user to expedite stability and
speed. The parameter (3 is generally between 0 and 1/4,
and y is often 1/2.

Uj+1 = Uj + U;At;

When we consider a many degree of freedom structure
and cast the Newmark-3 method into matrix form, equa-
tions (B.5) and (B.6) can be written in the incremental
matrix form.

AD; = [(1—y)Dj+yDj41)At = DAL +yAD AL (B.7)

AD; = D;Aj + (5 ~B) C
= Djt; + 3D;

Solving for AD; and ADj, we get

1
B(At))?

Y
e 2P Rj

AD; = AD; - Q;

AD; =
where,

. 1 . 1.
- Dt —D
Qj B, J‘|‘2|3 i

FAQJ' EID —I-(2I3 1)Atj|5j
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(B.9)

(B.10)

(B.11)

(B.12)

If we substitute equations (B.9) and (B.10) into theincre-

mental eguations of motion (B.4), then we have

KAD;j = AA,

where,

n 1 Y

K=K+ M + C
B(At)2 T BAL

AAj = AAj +MQ;j +CR

(B.13)

(B.14)

(B.15)

From equations (B.13), the unknown incremental dis-
placements AD; are obtained. Finally, the values of Dj,

Dj, and Dj at the next timet; . are

Appendix C: Nomenclature

B,y  Parameters of Newmark’'s method

(0} Pressure angle

p density

M friction coefficient

A(t), A external force vector in
Newmark’s method

a input force vector to afinite
element part

(B.16)

(B.17)
(B.18)
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B damping matrix in Newmark method,
state pace matrix

D displacement vector

AD, AA incremental displacement vector
and increment in load

F input source vector applied to abond
graph part

Fn, R normal and tangential forces at

contact surface of gear teeth

f,p vector of flows and momentum variables

M, K mass and stiffness matricesin
Newmark’s method

[m], [K] mass and stiffness matrices of an element

[M]i, [K]i  extended mass and stiffness matrices
of elements

P matrix which relates a bond graph part
to afinite element part

Q matrix which relates a finite element part
to abond graph part

u displacement of single degree of freedom

Vn, normal and tangential velocities at
contact surface of gear teeth

{W} extended nodal displacement vector
of elements

{w}i nodal displacement vector of an element

X state vector of a bond graph part

6g,,6g, rotational anglesin gear contact
sub-models, g; and g2

hig angular momentum of gearbox housingin
gearbox model

hi,, hy,, angular momenta of shafts

hi,, hi, in gearbox model

Pgl—i17 Pgl_izv

Py..is» Pgris» momenta of gear teeth by gear tooth

Py,.i1+ Pg,ip» iNErtiain contact sub-models,

sz-iav sz-i4 01 and 02

qgl-Cl ) qgl—CZ 3
Ogr-c3,Ags-c4» ENiNg deflections of gear teeth
Ogz-c1>Agz-c,» 1N coOntact sub-models, g1 and g,

qu-Cav qu-C4

Og:-cs, Ogycs» deformations of gear teeth flank by
Ogz-cs,Ogocs  CONtact in contact sub-models, g1 and g».
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qCle qCsz

Ocs.15 Oes o

Ocs,:Ocs,,  deflections of bearingsat both ends
Ocs s Gcgns  Of Shaftin finite element

Oc,1,0c,,, Shaft sub-model

qu_lv qu_z

0c,,0c,, Oc, angular displacements of each shaft by
torsion in gearbox model

Ocuo angular displacement of gearbox
housing in gearbox model



