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Thermohydrodynamic Analysis of Journal Bearings Lubricated with Multigrade
Oils

J.Y. Jang1 and M.M. Khonsari2

Abstract: Thermohydrodynamic analysis of journal
bearings lubricated with multigrade oils is presented. De-
sign charts are presented that enable one to readily es-
timate the bearing maximum temperature and the shaft
temperature using a series of dimensionless parameters
introduced in this paper.

Nomenclature

C Clearance (m�
co Lubricant specific heat (J/Kg K)
D Diameter of the shaft (m�
h Film thickness (m�
hconv Convective heat transfer coefficient (W�m2K�
kb Thermal conductivity of the bushing (W�mK�
ko Thermal conductivity of the lubricant (W�mK�
L Bearing length in the axial direction (m�
N Shaft speed (rpm)
P Pressure (Pa)
Pa Ambient pressure (Pa)
Pmax Maximum pressure (Pa)
Ps Supply pressure (Pa)
Qrec Recirculating flow rate (m3�s�
Qs Supply flow rate (m3�s�
R Radius of the shaft (m�
Rbi Inner radius of the bushing (m�
Rbo Outer radius of the shaft (m�
T Temperature (ÆC)
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Ta Ambient temperature (ÆC)
Tb Temperature of the bushing (ÆC)
Tmax Maximum temperature (ÆC)
Tmix Mixing temperature (ÆC)
Trec Recirculating temperature (ÆC)
Tshaft Shaft temperature (ÆC)
Ts Lubricant temperature supplied (ÆC)
U Velocity of the shaft (m�s�
u, v, w Velocity component along, across the film and

in the axial direction (m�s�
W Bearing load-carrying capacity (N�
x, y, z Coordinate system (m�
rb, θb Coordinate system used in the bushing (m�
β Zero-shear-rate viscosity vs. temperature

coefficient (1�K�
β∞ Infinite-shear-rate viscosity vs. temperature

coefficient (1�K�
βσ Curve fitting variable vs. temperature

coefficient (1�K�
ε Eccentricity ratio
γ̇ Shear rate (1�s�
η Non-Newtonian viscosity (Pa � s�
κ1� κ2 Temperature-rise parameters
µ0 Zero-shear-rate viscosity (Pa � s�
µ0i Initial zero-shear-rate viscosity (Pa � s�
µ∞ Infinite-shear-rate viscosity (Pa � s�
ρo Density of the lubricant (Kg/m3�
σ Curve fitting variable (Pa)
τ Shear stress (Pa)
ω Angular velocity of the shaft (rad/s)
Λ Aspect ratio of the journal bearing

1 Introduction

The classical hydrodynamic lubrication theory assumes
that the lubricant behaves essentially as a linearly vis-
cous (Newtonian) fluid. There exists, however, an impor-
tant class of lubricants that can not be classified as New-
tonian. Analytical and computational tools are needed
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to accurately predict performance of bearings lubricated
with such lubricants. Various modeling schemes are
available for this purpose. Of particular interest is a
class of non-Newtonian lubricants in which the appar-
ent viscosity decreases with increasing rate of shear if
the temperature and mean temperature remain constant.
This type of lubricants is classified as a shear-thinning
fluid and there are several rheological expressions avail-
able for expressing their behavior. Tanner (1963) ap-
plied the power law model as a constitutive equation
to model an infinitely short journal bearing. Dien and
Elrod (1983) also used the power model to solve the
Couette-dominated flow in the infinitely wide slider bear-
ing and journal bearing. Buckholz (1986) followed
the same procedure as Dien and Elrod for the Couette-
dominated flows in plane slider bearing, and compared
to the matched asymptotic theory.

The power law model is a very simple and widely used
constitutive equation. However, Gecim (1990) showed
that the power law model fails to match the viscosity of
multigrade oils - that are commonly used for the engine
lubrication - at the low or high ends of the shear rate spec-
trum. Using a general apparent-viscosity function for
the constitutive equation taking into account most of the
rheological laws, Gecim derived a governing differential
equation, similar to the generalized Reynolds equation
reported by Dowson (1962) for Newtonian fluids. An-
other noteworthy contribution is the work of Wada and
Hayashi (1971a,b) who formulated a polynomial con-
stitutive equation for a commercial base oil and several
derivatives of it containing controlled amount of polymer
additions.

This paper is devoted to the study of journal bearings lu-
bricated with multigrade oils. For this purpose, a com-
prehensive thermohydrodynamic analysis (THD) is de-
veloped and the results of extensive amount of simula-
tions are presented in the form of design charts.

2 Governing Equations

2.1 Constitutive Equation

Experimental data for shear stress τ versus shear rate γ̇ of
shear thinning fluids or shear thickening fluids, presented
in a log-log coordinate system, shows that a straight line
is very often observed in over two or three logarithmic
decades of shear rate γ̇. Therefore, the simplest fluid
model to express the shear thinning fluids is the power

law model of Ostwald-de Waele. That is:

τ � mγ̇n (1)

where m and n are the rheological parameters of the
model, and the constitutive relation becomes η � m γ̇n�1.
For n=1 equation (1) describes the Newtonian fluids. For
n¡1 it describes the shear thinning fluids. For n¿1 it de-
scribes the shear thickening fluids.

For shear thinning fluids, the power law model predicts
η� ∞ for γ̇� 0 and η � 0 for γ̇� ∞. In reality, in both
cases of shear rate approaching zero and approaching in-
finity, the value of viscosity η approaches a constant fi-
nite value. These values are the zero-shear-rate viscosity
µ0 and the infinite-shear-rate viscosity µ∞, respectively.
In the case of n¡1, one has µ0 � µ∞. Therefore, a non-
Newtonian shear thinning fluid has three distinct regions
(cf. Ferguson and Kemblowski, 1991):

� The Newtonian region at low shear rates γ̇ which
is referred to as the lower Newtonian region. The
flow is characterized by a constant zero-shear-rate
viscosity µ0.

� Non-Newtonian region of intermediate shear rate.
The flow is characterized by a shear dependent vis-
cosity η.

� The Newtonian region at high shear rates γ̇ which is
referred to as the upper Newtonian region. The flow
is characterized by a constant infinite-shear-rate vis-
cosity µ∞.

Gecim (1990) proposed a new model for shear thinning
fluids expressed as:

η j � µ0
σ�µ∞

��γ̇j
��

σ�µ0
��γ̇j

�� � j � x�z (2)

where γ̇x �
∂u
∂y and γ̇z �

∂w
∂y . Parameter σ is a curve fit-

ting variable representing the shear stability of the lubri-
cant. From Figure 1, high value of σ indicates greater
shear stability. At low shear rates, σ is much greater than
other terms. Hence, the viscosity approaches the zero-
shear-rate viscosity µ0. At high shear rates, σ is much
smaller than other terms, and the viscosity approaches
the infinite-shear-rate viscosity µ∞. The curve fitting pa-
rameter σ determines the range of shear rate where di-
version between zero-shear-rate viscosity µ0 and infinite-



Thermohydrodynamics analysis of journal bearings lubricated with multigrade oils 457

Figure 1 : Variation of non-Newtonian viscosity

shear-rate viscosity µ∞ takes place. Therefore, the con-
stitutive equation proposed by Gecim describes three re-
gions of shear thinning fluids described above. It is im-
portant to note that this constitutive equation (2) treats
the viscosity as a vector and is dependent upon the coor-
dinate system. Paranjpe (1992) has modified the consti-
tutive equation proposed by Gecim in the following form:

η � µ0
σ�µ∞γ̇
σ�µ0γ̇

(3)

This model describes shear thinning fluids, such as multi-
grade engine oils, particularly well. We shall make use
of this constitutive equation in treating multigrade oils.

Using µ0 �
µ0
µ0i

, µ∞ �
µ∞
µ0i

and σ � Cσ
µ0iU

, the dimensionless
non-Newtonian viscosity becomes:

η � µ0
hσ�µ∞γ̇
hσ�µ0γ̇

(4)

2.2 Generalized Reynolds Equation

A cross-section of a journal bearing showing the
nomenclature of the problem is presented in Figure 2.
By replacing the non-Newtonian viscosity η instead
of Newtonian viscosity µ the governing equations for
Newtonian fluids are equally valid for a simple non-
Newtonian fluids. Therefore, the dimensionless form of
the generalized Reynolds equation for the shear thinning
fluids becomes:

Figure 2 : Cross-section of the journal bearing
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The boundary conditions are:

P � Ps at x � xinlet � 0�

P � Pa � 0 at z ��
1
2
�

∂P
∂x

� 0 and P � Pa � 0 at x � xcav (7)

The first boundary condition pertains to an axial groove
located at the top of the journal bearing. The third bound-
ary condition represents the Swift-Stieber boundary con-
dition.
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2.3 Energy Equation

It has been shown that a two-dimensional energy equa-
tion, assuming that temperature remains uniform in the
axial direction, can be used for a successful thermohy-
drodynamic model of journal bearings. This simplifying
assumption results in a realistic prediction of the bearing
performance with a considerable amount of savings in
computational time (Khonsari and Beaman, 1986). Thus,
the energy equation in dimensionless form for the incom-
pressible, laminar flow can be written as:
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ρocoUR

ko
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�
R
C
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R
C

�2 µ0iβU2

ko
. The parameter β is the zero-shear-rate vis-

cosity vs. temperature coefficient.

The boundary conditions for THD solution at the oil-
shaft interface and the oil-bush interface are (Khonsari
and Beaman, 1986):

� 2π

0

∂T
∂y

����
y�1

dx � 0 and T
��
y�1 � T shaft
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����
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��h
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(9)

If an adiabatic condition is imposed at the inner surface
of the bush, boundary conditions simplify to:

� 2π

0

∂T
∂y

����
y�1

dx � 0 and T
��
y�1 � T shaft

∂T
∂y

����
y�0

� 0 (10)

Boundary conditions given in equation (??) are referred
as ISOADI (the isothermal condition at the oil-shaft in-
terface and the adiabatic condition at the oil-bush inter-

face). Even though the ISOADI solutions result in some-
what higher temperatures than those measured experi-
mentally, they are realistic and provide conservative esti-
mates of Tmax, pressure profile and bearing performance.

The temperature of the recirculating fluid is normally
higher than the temperature of the incoming supply lubri-
cant Ts. Thus, the recirculating flow transfers a portion of
its thermal energy to the supply oil at the inlet. An energy
balance at the inlet gives (Khonsari et al., 1996):

T mix �
T recQrec

Qrec�Qs
(11)

where Qs is the supplied flow rate which is the same
amount as the leakage rate. Due to cavitation in the di-
vergent section of the bearing, the film is incomplete and
the bearing is only partially covered with lubricant over
the length (Khonsari & Booser, 2001). Thus, it is nec-
essary to account for the thermal characteristics of the
lubricant in the cavitation zone. The thermal character-
istics are corrected in the cavitation zone by using the
effective length of fluid film. This correction is thought
to be realistic for assessment of cavitation effects in a
steadily loaded journal bearing. On the other hand, for a
dynamically loaded journal bearing, it may be necessary
to implement a mass conservative boundary condition.
The interested reader is referred to the work of Paranjpe
(1992) on this subject.

Physically, the fluid heat conduction term in the circum-
ferential direction is very small when compared with
other terms (Dowson et. al., 1966). Neglecting small
terms with 1�λ1 multiplier, the dimensionless energy
equation becomes:
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where two key parameters appear in the dimensionless
energy equation. They are defined as follows:
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The first temperature-rise parameter, κ1, is associated
with the viscous dissipation. It incorporates all of the
oil properties, shaft velocity and bearing geometry. The
second temperature-rise parameter, κ2, incorporates the
oil properties and the linear velocity. These temperature-
rise parameters describe the temperature field in the fluid
film.

The zero-shear-rate viscosity decreases exponentially
with increasing temperature according to:

µ0 � e�T (14)

In addition to the temperature-rise parameters κ 1 and κ2,
two additional independent parameters σ and µ∞ appear
in the non-Newtonian viscosity associated with the di-
mensionless energy equation for the multigrade engine
oil. These four parameters directly influence the tem-
perature field of the multigrade oil. Generally the curve
fitting variable, σ, increases with increasing temperature
as prescribed by the following relationship:

σ � σie
βσT (15)

where dimensionless curve fitting variable vs. temper-
ature coefficient βσ � βσ�β. In present analysis βσ is
assumed to be unity, which implies βσ � β. On the other
hand, the infinite-shear-rate viscosity, µ∞, tends to de-
crease with increasing temperature and defined accord-
ing to:

µ∞ � µ∞ie
�β∞T (16)

where β∞ � β∞�β. The ratio of infinite-shear-rate vis-
cosity to zero-shear-rate viscosity, µ∞�µ0, is always a
constant independent of the temperature variation (cf.
Wright et al., 1983). This implies that β∞ � β (β∞ � 1�.

2.4 Heat Conduction Equation

The heat conduction equation in the bushing is coupled
with the energy equation by these boundary conditions.
The dimensionless heat conduction equation is:

∂2T b

∂r2
b

�
1
rb

∂T b

∂rb
�

1

r2
b

∂2T b

∂θ2
b

� 0 (17)

On the outer surface of the bushing, heat loss takes place
by convection to the ambient, i.e.,

∂T b

∂rb

����
rb�Rbo

��
hconv

kb
Rbi



T b

��
rb�Rbo

�T a

�
(18)

3 Results

The governing equations and the boundary conditions
presented in section 2 were solved using the finite differ-
ence method. The details of solution schemes are given
by Khonsari et al. (1996).

3.1 Validation

Figure 3 : Comparison of load capacity with the experi-
ments by Wada and Hayashi (Λ � 1;N � 308 rpm)

Published experimental results with multigrade oils are
rare. However, a limited set of experimental results due
to Wada and Hayashi (1971b) is available. Figure 3
presents the variation of dimensionless load capacity as
a function of the eccentricity ratio based on the THD,
ISOADI and isoviscous analyses. The lubricant is a spin-
dle oil to which 0.3% polyisobutylene is added. The re-
sults of the present theories are compared to the experi-
mental measurements by Wada and Hayashi. The present
results are in good agreement with the experimental mea-
surements. The solutions of THD, ISOADI, and isovis-
cous analyses are very close since the rotational speed
N=308 rpm is very small leading to the insignificant tem-
perature rise. Figure 4 shows the pressure distribution
based on THD, ISOADI, and isoviscous analyses. The
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present pressure distributions are in good agreement with
the experimental pressure measurements.

Figure 4 : Comparison of presure distribution with the
experiments by Wada and Hayashi (Λ � 1;N � 308 rpm)

3.2 Parametric Study

Figure 5 shows the typical case of the isoviscous, THD
and ISOADI pressure distribution of a finite journal bear-
ing at ε=0.5. The temperature rise parameters κ1=0.15
and κ2=1.5 are used for the THD and ISOADI analyses.
The maximum pressure occurs around 210Æ. The maxi-
mum pressure increases with increasing µ∞ since the non-
Newtonian viscosity η becomes greater. The isoviscous
maximum pressure is much higher than the THD and
ISOADI maximum pressure since the viscosity evaluated
at the supply temperature is used for the isoviscous anal-
ysis. At a relatively low µ∞, the ISOADI maximum pres-
sure is higher than the THD maximum pressure since σ is
a dominant parameter. Also, the ISOADI non-Newtonian
viscosity is more stable due to the higher temperature. At
µ∞=0.8, the THD maximum pressure is somewhat higher
than the ISOADI maximum pressure since the effect of
σ is reduced and the behavior of the fluid becomes much
like a linear viscous (Newtonian) fluid. Figure 6 and
7 shows the THD and ISOADI isotherm contours of the
lubricant, respectively. Similar to Newtonian fluids, the

Figure 5 : Isoviscous, THD and ISOADI pressure dis-
tributions of a journal bearing (ε � 0�5; Λ � 1; κ 1 �
0�15; κ2 � 1�5)

maximum temperature predicted for multigrade oil oc-
curs near the minimum film thickness. At a relatively
high µ∞, the maximum and shaft temperatures are higher
than those at a lower µ∞ since η becomes greater and
more frictional heat generated. ISOADI temperature dis-
tribution is relatively higher than THD temperature dis-
tribution as expected.

Figure 8 shows how T max and T shaft vary with dimen-
sionless infinite-shear-rate viscosity, µ∞, according to
the ISOADI predictions. These simulations correspond
to the temperature-rise parameters κ1=0.15 and κ2=1.5.
Both T max and T shaft tend to increase with increasing µ∞
and σ. At a relatively low µ∞, both T max and T shaft in-
crease rapidly since the variation of the non-Newtonian
viscosity is sensitive. For µ∞=1 the fluid behaves as a
Newtonian and, therefore, T max and T shaft become inde-
pendent of σ.
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Figure 6 : THD isotherm contour in the lubricant at
overlineµ∞ � 0�2 and overlineµ∞ � 0�8 (Ts � 40ÆC; ε �
0�5; Λ � 1; κ1 � 0�15; κ2 � 1�5)

Figure 7 : ISOADI isotherm contour in the lubricant at
overlineµ∞ � 0�2 and overlineµ∞ � 0�8 (Ts � 40ÆC; ε �
0�5; Λ � 1; κ1 � 0�15; κ2 � 1�5)
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Figure 8 : Effect of infinite-shear-rate viscosity on the
maximum temperature and shaft temperature of a journal
bearing (ε� 0�5; Λ � 1; κ1 � 0�15; κ2 � 1�5)

Figure 9 : Effect of curve fitting variable on the max-
imum temperature and shaft temperature of a journal
bearing (ε� 0�5; Λ � 1; κ1 � 0�15; κ2 � 1�5)

Figure 9 shows how T max and T shaft vary with σ. At a
relatively low σ, both T max and T shaft increase rapidly
since the non-Newtonian viscosity is not stable. At a rel-
atively large σ, the variation of T max and T shaft tends to
become very small since the non-Newtonian viscosity is
more stable. The effect of non-Newtonian reduces as µ∞
increases and, therefore, the variation of T max and T shaft

tends to become small.

Figure 10 : Effect of eccentricity ratio on the maximum
temperature and shaft temperature of a journal bearing.
(µ∞ � 0�5; Λ � 1; κ1 � 0�15; κ2 � 1�5)

Figure 10 shows how T max and T shaft vary with eccentric-
ity ratio according to the ISOADI prediction. They are
also computed at µ∞=0.5 and with the temperature rise
parameters of κ1=0.15 and κ2=1.5. Figure 10 shows that
at a fixed eccentricity ratio both T max and T shaft increase
with increasing σ since the non-Newtonian viscosity re-
mains stably high due to the high σ. Similarly to Newto-
nian fluids, for the eccentricity ratio in the range ε �0.3
or ε �0.7 the maximum temperature T max and the shaft
temperature T shaft tend to be large. At a low eccentric-
ity ratio the leakage flow rate is very small and thus the
bearing runs hot while the viscosity dissipation is small.
At a high eccentricity ratio the leakage flow rate tends to
cool the bearing but the viscous dissipation dominates.
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Figure 11 : Effect of aspect ratio on the maximum
temperature and shaft temperature of a journal bearing.
(µ∞ � 0�5; ε� 0�5; κ1 � 0�15; κ2 � 1�5)

Figure 11 shows how T max and T shaft vary with the as-
pect ratio Λ� L�D according to the ISOADI predictions.
Both T max and T shaft tend to increase roughly linearly
with increasing aspect ratio. Also, T max and T shaft in-
crease with increasing σ.

4 Concluding Remarks

This paper is devoted to the analysis of thermal effect
journal bearings lubricated with multigrade oils, which
are known to exhibit shear-thinning behavior. The analy-
sis incorporates two dimensionless temperature rise pa-
rameters κ1 and κ2in conjunction with dimensionless
curve fitting variable σ and the dimensionless infinite-
shear-rate viscosity µ∞to characterize the influence the
temperature field for multigrade engine oils. Results of
extensive amount of simulations attest to the importance
of thermal effects in bearings. A series of charts are pre-
sented that can assist the designer to readily predict the
maximum bearing temperature and the shaft temperature.
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