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Temperature Distributions and Thermoelastic Displacements In Moving Bodies

Shuangbiao Liu, Michael J. Rodgers, Qian Wang, Leon M. Keer, and Herbert S. Cheng1

Abstract: Computing the temperature rise and ther-
moelastic displacement of a material subjected to fric-
tional heating is essential for the realistic modeling of
the performance of mechanical components. This paper
presents a novel set of frequency-domain expressions for
the surface temperature rise and the surface normal ther-
moelastic displacement of a moving three-dimensional
elastic halfspace subjected to arbitrary transient frictional
heating, where the velocity of the body and its direction
can be an arbitrary function of time. Frequency response
functions are derived by using the Carslaw-Jaeger theory,
the Seo-Mura result, and the Fourier transform. General
formulas are expressed in the form of time integrals, and
important expressions for constant body motion veloci-
ties are given for the transient-instantaneous, transient-
continuous, and steady-state cases. The thermoelastic
responses, in terms of temperature rise and thermoelas-
tic displacement, of the halfspace surface in configura-
tions similar to pin-on-disk contacts are simulated and
discussed.
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K conductivity, J/m ˚ ks or w/m ˚ k
l characteristic length, m
Pe j Péclet number, V jl�κ
q heat source, W/m2 or N/ms
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q non-dimensional heat source, qα t l�K
T temperature rise, ˚ k
T non-dimensional temperature rise, T � α tT
t time, s
t non-dimensional time, κ t�l 2

uj thermoelastic displacement, m
u j non-dimensional thermoelastic displacement

field, u j��l�1�ν��
V j velocity in the x j direction, m/s

w frequency domain radius,
�

ω2
1 �ω2

2

w� effective frequency domain radius,�
w2 � i�ω1d1�ω2d2�

x j coordinate, m
x j non-dimensional coordinate in j direction, x j�l
αt linear thermal expansion coefficient, m/m ˚ k
δi j Kronecker delta
∆t t� t �

κ thermal diffusivity, m2/s
ν Poisson’s ratio
ω1�ω2 frequency domain counterparts of

x1�x2, respectively
ωt counterpart of time in the frequency domain
� �� j partial derivative with respect to x j coordinate
˜ each Fourier Transform

1 Introduction

Frictional heating has been an engineering research topic
with a long history. Controlling the effects arising from
frictional heating has been a vital part of mechanical
engineering design. With the development and con-
stant improvement of computer modeling capabilities,
researchers have been able to perform detailed modeling
and simulation of frictional heating and contact. Tribo-
logical simulations of frictional heating effects include
studies on flash temperature [Tian and Kennedy 1994,
Qiu and Cheng 1998, and Gao et al. 2000], thermoelastic
displacement [Ling and Mow 1965, Barber 1972, Barber
1984, Barber 1987, and Liu et al. 2001], thermoelastic
fields [Ju and Chen 1984, Huang and Ju 1985, Bryant
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1988, Leroy et al. 1989, Leroy et al. 1990, Ju and Farris
1997, Mow and Cheng 1967, and Ting and Winer 1989],
thermoelastic contact [Azarkhin and Barber 1987, Yev-
tushenko and Kulchytsky-Zhyhailo 1995a, Yevtushenko
and Kulchytsky-Zhyhailo 199b, Wang and Liu 1999, Liu
and Wang 2000, and Liu and Wang 2001], and thermoe-
lastic instability [Barber 1969, Dow and Burton 1972, Yi
et al 1999]. Most of this research is based on the knowl-
edge of heat conduction that is thoroughly and system-
atically presented by Carslaw and Jaeger’s [Carslaw and
Jaeger 1959] (see also [Ling 1973 and Johnson 1996]).

A new approach for calculating the thermoelastic dis-
placement on the surface of an elastic halfspace has
been recently developed [Liu et al. 2001], which treats
the temperature field as an inclusion. Halfspace prob-
lems, which are particularly important to Tribology, are
solved by using Seo-Mura inclusion theory. Expres-
sions were developed for the thermoelastic displacement
in transient-instantaneous, transient-continuous (time-
invariant heat source), and steady-state cases. Fre-
quency response functions (FRFs) for the surface nor-
mal thermoelastic displacement were solved [Liu et al.
2001] by substituting the temperature field [Carslaw and
Jaeger 1959] into the inclusion formula [Seo and Mura
1979], changing the order of integration and applying
the Fourier transform and convolution theorem [Press et
al. 1992 and Morrison 1997]. These frequency response
functions are useful in simulations with arbitrary input
because of the recently developed algorithm that uses
the fast Fourier transform (FFT) to convert frequency re-
sponse functions into influence coefficients and uses dis-
crete convolution and fast Fourier transform (DC-FFT)
method to determine the material response [Liu et al.
2000 and Liu and Wang 2002].

In this paper, the new analytical approach [Liu et al.
2001] is extended to obtain a novel set of frequency
response functions for the surface temperature rise and
the surface thermoelastic displacement in moving three-
dimensional (3D) elastic halfspace (the coordinate sys-
tem is fixed to the heat source) subjected to arbitrary
transient frictional heating, where the velocity and its
direction of the body can be an arbitrary function of
time. General formulas are expressed in the form of
a time integral, and important expressions are given
for the transient-instantaneous, transient-continuous, and
steady-state cases. The new formulas allow the fast
Fourier transform to be conveniently used to calculate the

thermoelastic responses directly from the applied heat
source. As examples, the new formulas are applied to
simulate the thermoelastic response of a halfspace with
similar configurations as in pin-on-disk experiments.

2 Problem Description
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Figure 1 : Description of the physcial domain and coor-
dinates

A halfspace (Fig. 1) of a uniform initial temperature dis-
tribution is subject to a heat source on the surface. A non-
dimensional coordinate system x j � x j�l with character-
istic length l is fixed to the heat source, and the halfspace
is moving relative to the heat source and the coordinate
system along the x j coordinate with speeds (V 1 , V2, and
V 3 � 0), which can be functions of time but not space.
The material properties of the halfspace are the diffusiv-
ity (κ�, the linear thermal expansion coefficient (α t�, the
Poisson’s ratio (ν�, and the conductivity (K�. The heat
source causes a non-dimensional temperature rise T �
αtT in the halfspace, resulting in a non-dimensional ther-
moelastic displacement, u j � ��x� t� � u j��x� t���l�1� v���
in the x j coordinate direction. The uncoupled govern-
ing partial differential equations for transient heat con-
duction and quasistatic thermoelastic deformation are as
follows:

T�ii�
∂T
∂t

�Pe1 T�1�Pe2 T�2 (1)

ui� j j �u j� j i��1�2ν� � 2T�i��1�2ν� (2)

where t is the non-dimensional time, t � κ t�l 2; Pe j is the
Péclet number in the x j direction, Pe j � V jl�κ; Roman
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indices range over 1, 2, 3; the summation convention is
assumed; and � �� j �

∂� �
∂x j

. The temperature and thermoe-
lastic boundary conditions for the surface are

Thermal BC:

�T�3� q (3)

Traction free BC:

�1�2ν��u3� j �u j�3��2νδ3 juk�k � 2δ3 jT (4)

where the non-dimensional heat source is defined as
q�x1�x2� t� � qαt l�K for t � 0, and q�x1�x2� t� � 0 for
t � 0. The traction-free boundary condition allows the
thermoelastic analysis in this paper to be directly super-
posed with an isothermal elastic contact analysis [Liu and
Wang 2001].

As the heat source may vary with respect to time, the
thermoelastic problem may be discussed in three cases
accordingly [Barber 1972]: the transient-instantaneous
case with a position and time dependent heat source,
q�x1�x2� t� and arbitrary time, the transient-continuous
case with position dependent heat source, q�x 1�x2� and
arbitrary time, and the steady-state case with position de-
pendent heat source, q�x1�x2� and t � ∞. Solutions to
these heat-source conditions in a moving body offer a
general formulation set for the frictional-heating prob-
lems.

3 Distribution of Temperature Rise

The solution of Eqs. (1) and (3) for the temperature rise
caused by the surface heat source, q�x�1�x

�
2� t

��, can be
expressed as follows [Carslaw and Jaeger 1959]:

T �ξ1�ξ2�ξ3� t� �

1

4π3�2

� t
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� �∞
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� �∞

�∞
q�x�1�x

�
2� t

��
e�

ρ�2
�ξ2

3
4∆t

∆t3�2
dx�1dx�2dt � (5a)

where ∆t � t � t �, the effective velocities are
d j �

� t
t� Pe j�τ�dτ�∆t, and ρ�2 � �ξ1 � x�1 � d1∆t�2 �

�ξ2�x�2�d2∆t�2 (Fig. 1). Equation (5a) can also be
written in a convolution form,

T �ξ1�ξ2�ξ3� t� �
� t

0
q�ξ1�ξ2� t

����G�ξ1�ξ2� t� t
��dt �

(5b)

with the Green’s function,

G�ξ1�ξ2�ξ3� t� t �� � 1
4 �∆tπ�3�2 exp�� �ξ1�d1∆t�2��ξ2�d2∆t�2�ξ2

3
4∆t �.

The symbol ‘**’ stands for a two-dimensional (2D) con-
volution. Applying the 2D Fourier transform (FT) with
respect to the ξ1 and ξ2 directions, Eqs. (A3) and (A5),
and the convolution theorem (Appendix A), a general
form of the temperature rise in a hybrid domain (fre-
quency, depth and time) is expressed as time dependent
integral,

˜̃T �ω1�ω2�ξ3� t� �
1�
π

� t

0
˜̃q�ω1�ω2� t

��
1�
∆t

exp�� ξ2
3

4∆t �∆tw�2�dt � (6)

Variables ω1 and ω2 are the angular frequencies in the
frequency domain; and a double tilde ( ˜̃� implies a 2D
Fourier transform. The frequency domain radius is w ��

ω2
1 �ω2

2, and the effective frequency domain radius is

w� �
�

w2 � i�ω1d1�ω2d2�. If the Péclet numbers (or
velocities, V 1 and V 2� vary with time, numerical integra-
tion must be used for the effective velocities d j and for
Eq. (6) to evaluate the time integrals. In the following,
important formulas with time-invariant Péclet numbers,
i.e., dj � Pe j= constant, are discussed.

Transient-Instantaneous Case. Since the heat
source ˜̃q�ω1�ω2� t� and the function ˜̃g�ω1�ω2�ξ3� t� �

exp�� ξ2
3

4t � tw�2�
��

πt are zero when t � 0, Eq. (6) is a

convolution related to the Fourier transform with respect
to t, and can be expressed as (see Eq. (A8))

˜̃̃T �ω1�ω2�ξ3�ωt�
˜̃̃q�ω1�ω2�ωt�

�
exp��ξ3

�
w�2 � iωt��

w�2 � iωt

(7)

where ωt is the frequency domain counterpart of time,
and a triple tilde �˜̃̃� implies a 3D Fourier transform. The
right-hand side of Eq. (7) is the corresponding frequency
response function (FRF) for transient-instantaneous tem-
perature rise, which gives the temperature rise caused by
an instantaneous point heat source.

Transient-Continuous Case� If the heat source is not a
function of time, Eq. (6) can be written as

˜̃T�ω1�ω2�ξ3� t��
˜̃q�ω1�ω2��

π

� �
t

0
2exp�� ξ2

3
4τ2 � τ2w�2�dτ (8)
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with τ �
�

∆t. Therefore,

˜̃T�ω1�ω2�ξ3� t�
˜̃q�ω1�ω2�

� (9)
������
�����
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e�ξ3w�
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�
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The right-hand side of Eq. (9) is the frequency response
function for transient-continuous temperature rise, which
gives the temperature rise caused by a continuous point
heat source. If the velocities are not zero, Eq. (9) in-
cludes a complementary error function erfc�x� with com-
plex arguments and can be evaluated by using a special
function, ϖ�z� [Abramowitz and Stegun 1964, Appendix
B]. The solution in Ting and Winer’s paper [1989] is a
stationary case of Eq. (9).

Steady-State Case� The frequency response function for
steady-state temperature rise is found from Eq. (7) by
letting ωt � 0, or from Eq. (9) by letting t � ∞,

˜̃T �ω1�ω2�ξ3�
˜̃q�ω1�ω2�

�
e�ξ3w�

w� (10)

Again, note that Eqs. (7), (9 and (10) are only valid for
constant Péclet numbers (velocities).

4 Normal Surface Thermoelastic Displacement

The solution of Eqs. (2) and (4) for the quasi-static
thermoelastic displacement is found from the Green’s
function for a point force in the interior of a halfspace
[Mindlin 1953], using the approach of Seo and Mura
[1979]. The normal surface thermoelastic displacement
is given by [Liu et al. 2001]

u3�x1�x2�0� t� �
�1
π

(11)
� �∞

0

� �∞

�∞

� �∞

�∞
T �ξ1�ξ2�ξ3� t�

ξ3

�ρ2�ξ2
3�

3�2
dξ1dξ2dξ3

where ρ2 � �x1�ξ1�
2 ��x2�ξ2�

2. Similar to Equations
(5), the convolution theorem and Eq. (A6) are used to
take the 2D Fourier transform of Eq. (11), giving

˜̃u3�ω1�ω2�0� t���2
� �∞

0

˜̃T �ω1�ω2�ξ3� t�exp��ξ3w�dξ3 (12)

Substituting Eq. (6) into Eq. (12) gives

˜̃u3�ω1�ω2�0� t� �
�2�

π� �∞

0
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0
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1�
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exp
	
�ξ2

3
4∆t�∆tw�2�ξ3w



dt �dξ3 (13)

Interchanging the order of integration allows the depth
integral to be performed analytically, resulting in the fol-
lowing compact form

˜̃u3�ω1�ω2�0� t� ��2 (14)� t

0
˜̃q�ω1�ω2� t

��exp��i∆t�ω1d1 �ω2d2��erfc�w
�

∆t�dt �

which is the general form of the normal surface thermoe-
lastic displacement expressed in a hybrid domain (fre-
quency and time). If the Péclet numbers vary with time,
numerical integration must be used to evaluate the time
integrals for the effective velocities d j and for Eq. (14).
However, important formulas with constant Péclet num-
bers are further discussed below.

Transient-Instantaneous Case. For the transient-
instantaneous case with constant Péclet numbers, Eq.
(14) is treated as a convolution related to the Fourier
transform with respect to t. Applying the convolu-
tion theorem, the frequency-shift property of the Fourier
transform, and Eq. (A7) gives

˜̃̃u3�ω1�ω2�0�ωt�
˜̃̃q�ω1�ω2�ωt�

�
�2�

iωt �w�2 �
�

iωt �w�2 �w�
(15)

Therefore, the corresponding frequency response func-
tion, which gives the displacement caused by an instan-
taneous heat source, is given by the right-hand-side of
Eq. (15) with a singularity when both w = 0 and ω t= 0
(note that w� = 0 when w = 0).

Transient-Continuous Case. If the Péclet numbers are
constant and the heat source is not a function of time, Eq.
(14) is written as
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˜̃u3�ω1�ω2�0� t� ��2 ˜̃q�ω1�ω2�� t

0
exp��i�ω1d1�ω2d2�τ�erfc

�
w
�

τ
�

dτ (16)

Equation (16) is integrated, and the frequency response
function for the transient-continuous case is given by the
right-hand-side of

˜̃u3�ω1�ω2�0� t�
˜̃q�ω1�ω2�

�

2i�1�exp���ω1d1�ω2d2�it�erfc�w
�

t�

�werf�w��t��w��
�
�ω1d1 �ω2d2� (17)

The frequency response function gives the displacement
caused by a continuous heat source. When the veloci-
ties are zero, Eq. (17) does not apply; instead, Eq. (16)
should be integrated for that case (the result is given in
[Liu et al. 2001]). At w = 0, the frequency response
function is ‘–2t’, and therefore it has no singularity. The
frequency response function includes an error function
erf�x� with complex arguments, which again can be eval-
uated by using the special function ϖ�z�[Abramowitz and
Stegun 1964, Appendix B].

Steady-State case. When steady-state conditions pre-
vail, Eq. (16) is integrated analytically, and the frequency
response function for the steady-state case is given by the
right-hand-side of

˜̃u3�ω1�ω2�0�
˜̃q�ω1�ω2�

�
�2

w� �w��w�
(18)

which is a special case of the transient frequency re-
sponse function from Eq. (15) with ω t � 0, and has a
singularity at w = 0. One of the striking properties of fre-
quency response functions is that the frequency response
functions in a plane-strain problem are simply those in a
three-dimensional problem with ω2 = 0 [Liu and Wang
2002]. Equation (18) with ω2 � 0 agrees with the 2D re-
sult obtained by Bryant [1988] or Ju and Farris [1997].
Note that Eqs. (15 – 18) again are valid only for constant
Péclet numbers. If the speeds are zero, the expressions in

Eqs. (14 - 18) reduce to the results given by [Liu et al.
2001]. It should be pointed out that the entire thermoelas-
tic displacements at any interior location of the halfspace
could be obtained following the same derivation process.

5 Numerical Methods

For problems with an irregular heat source, the discrete
convolution and fast Fourier transform algorithm [Liu
and Wang 2002] may be used to obtain efficient and accu-
rate results. The influence coefficients [Johnson 1996] of
the responses (temperature rise and normal surface ther-
moelastic displacement) are essential in this algorithm.
If the heat source has a known Fourier transform, the re-
sponses can be obtained from Eqs. (6), (7), (9) or (10)
and Eqs. (14), (15), (17) or (18) by inverse Fourier trans-
form, which could be numerically calculated in several
ways. In this paper, the conversion process [Liu and
Wang 2002] with inverse fast Fourier transform (FFT)
algorithm is used, which is an essential part to obtain
the influence coefficients in the discrete convolution and
fast Fourier transform algorithm. Given the intervals (∆1

and ∆2for x1 and x2 directions) in the space domain, fre-
quency response functions are truncated between nega-
tive and positive Nyquist frequencies (	π/∆ 1 and 	π/∆2

for ω1 and ω2 directions). If the space and frequency do-
mains have the same number of discrete points (N1 and
N2 for x1 and x2 directions, and for ω1 and ω2 directions),
the aliasing error in the results obtained by the conver-
sion process may become significant. In order to reduce
the aliasing error, the number of discrete points in the fre-
quency domain should be large enough. In this paper, the
number of discrete points in the frequency domain are
8N1 and 8N2 in the ω1 and ω2 directions, respectively,
and this choice has the effect of refining the interval in
the frequency domain for sufficiently accurate results.

Since the complementary error function and error func-
tion require a significant amount of computation, the
following approximations are used to save computation
time, erfc�x � 3� � 0� erf�x � 3� � 1. Standard Gaus-
sian quadrature is used to carry out the numerical inte-
gration in Eqs. (6) and (14), when numerical integration
is necessary.

6 Numerical Simulations

The formulations developed in Sections 2-4 enable nu-
merical simulation of the thermoelastic response of a
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Figure 2 : Three translation motions of a halfspace (a)
A rectangular heat source on a a pure translating half-
space. (b) An elliptical heat source on a reciprocating
halfspace. (c1) An ellipitical heat source on a circularly
translating halfspace. (c2) A circularly translating ellip-
tical heat source on a fixed halfspace, which is equivalent
to (c1).

halfspace by computing the transient three-dimensional
temperature rise fields and normal surface thermoelas-
tic displacement. Three example cases are numerically
solved to illustrate the use of the formulations, where
three different motions of the halfspace are specified to
show the novelty of the formulations: pure translation
(Fig. 2(a��, reciprocating translation (Fig. 2(b��, and
circular translation (Fig. 2(c1)). It should be pointed
out that the three examples do not directly correspond
to the three cases of heat source, and frequency response
functions of Eqs. (7) and (15) for transient-instantaneous
cases with a constant Péclet number are not exempli-
fied in this paper. However, in pure translation, both
transient-continuous and steady-state case are studied;
in reciprocating translation, the transient-instantaneous
case, which uses the general equations (6) and (14), is
studied; in circular translation, the transient-continuous
case is studied. In the latter two examples, the steady
state results may not exist. In each simulation, a known
heat source is given with regard to the coordinate sys-
tem, which is fixed to the heat source. The values of ve-
locities, characteristic lengths and material properties are
chosen from a typical counterformal contact in tribolog-
ical applications [Liu and Wang 2001]. Other parame-

ters are chosen for the convenience. The temperature rise
and the normal thermoelastic displacement are obtained
on the surface discretzied with 128
128 rectangular el-
ements, which is sufficient to give smooth results in all
the cases studied. Note that the x2 coordinates in Figs.
2 are downward to be consistent with Fig. 1. However,
in all contour plots, x2 are upward for the observation
convenience. Also in all contours plots the interval be-
tween contours is fixed and the limits of axes are chosen
to show results in a better focus. Although results are
presented within only a single cycle for the latter two ex-
amples, it should be pointed out that the responses at any
cycle or time could be calculated from the initial uniform
state (nonuniform initial temperature condition is not ex-
plored in the current study) provided that the Gaussian
integration is sufficiently accurate.

6.1 Pure Translation

Figure 2(a� describes the configuration with a constant
heat source q � 1, over a region of x1 � ��1�4� 1�4�,
x2 � ��1�4� 1�4�. The constant Péclet numbers are Pe1 �
10� Pe2 � 0, which correspond to V 1=1 m/s and V 2 = 0
m/s at l = 1 mm and κ=10�4 m2/s. Results are computed
in the region of x1 � ��2� 2�, x2 � ��2� 2�. The Nyquist
critical angular frequencies in both directions are 32π.
The temperature rise and the displacement are calculated
with Eqs. (9 – 10) and with Eqs. (17 – 18), respectively.
The results are plotted in Figs. 3 – 4 to show the evolution
to steady state. Not surprisingly, the tails of both tem-
perature and displacement distributions resemble wakes
and spread outward perpendicular to the direction of mo-
tion and along the motion direction of the body. Because
the temperature rise is directly related to the heat source,
sharp temperature gradients appear around the border of
the heat-application area, corresponding to the discon-
tinuity of the heat source, as shown in Fig. 3. How-
ever, the temperature rise in the entire body causes the
surface to deform, and the contours for the displacement
distribution look smoother than those of the temperature
rise, as shown in Fig. 4. Figures 5 and 6 further com-
pare the responses along the line of x2 = 0 at different
times (t=0.01t�. The responses start from a nearly sym-
metric peak localized with respect to the region of the
heat source application. Increasing the time of heating
causes their peaks to rise due to the heat accumulation
in the solid even though new parts of the surface continu-
ously pass by the heat source. As a result of the halfspace
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Figure 3 : Contours of the distributions of the surface temperature rise, T �x 1�x2�0� t�, of the purely translating
halfspace (Fig. 2(a)). Here, (a) through (f) show the evolution as time increases, and (f) shows the stead-state case.
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Figure 4 : Contours of the thermoelastic displacements, - u 3�x1�x2�0� t�, of the pure translating halfspace (Fig. 2(a)).
Pe1 = 10, and Pe2 = 0. Here, (a) through (f) show the evolution as time increases, and (f) shows the steady- state
case.
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translating to the positive direction of x 1, the responses
in the positive side of x1 becomes larger than those in
the negative side of x1. Therefore, the maximum val-
ues are found at positions in the positive side of the ori-
gin. The 2D steady state result corresponding to a heat
source that has the same width of application as that of
the 3D heat source used in this case is also calculated and
shown in Fig. 5. The 2D steady-state temperature rise is
higher than the 3D steady-state result because the heat
source for the 2D solution is a line source (with the same
width but with infinite length), and therefore the quantity
of heat input is much higher for the 2D case.
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Figure 5 : Temperature rises on the surface of the halfs-
pace under a pure translation motion at different times.

6.2 Reciprocating Translation

Fig. 2(b� describes a reciprocating halfspace subjected to
a stationary heat source that corresponds to the Hertzian
pressure distribution p � c

�
1� �x1�c1�2� �x2�c2�2

with c1 � 0�25� c2 � 0�5, and c � K��αtκ�, whose
Fourier transform pairs is 2πcc1c2�sinΘ�ΘcosΘ�Θ�3

with Θ �
�

�ω1c1�2 ��ω2c2�2. The heat source has an
elliptical base with a center at the origin, and two differ-
ent elliptical radii are chosen to identify directions. The
halfspace is translating with a sinusoidal Péclet number,
Pe1�t� � 10sin�2πt�0�6� (Fig. 7).

The dimensional heat source is defined as, q �
µ f p�r�V1�t�, a function of both position and time, where
the constant frictional coefficient, µ f , is 0.1. Therefore,
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Figure 6 : Thermoelastic displacements of the surface of
the halfspace under a pure translation motion at different
times.
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Figure 7 : Variation of the x-direction Péclet number for
case B for the reciprocating halfspace.

q � sin�2πt�0�6�
�

1� �x1�c1�2� �x2�c2�2. Both sur-
face temperature rise and normal surface thermoelastic
displacement of the halfspace are calculated in the region
of x1 � ��4� 4� and x2 � ��3� 3� using Eqs. (6) and (14),
and the results are plotted in Figs. 8 and 9, respectively.
In these two figures, (a� through (h� correspond to the
positions a through h on the sinusoidal Péclet-number
curve shown in Fig. 7. The motion direction directly
influences the contour spreading direction and the loca-
tion of the maximum value, which is not at the origin
again. Figures 8(e� and 9(e�, which show the results af-
ter the motion direction is reversed, clearly indicating the
residual fields of the responses from the previous motion.
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The peak values in Figs. 8 - 9 oscillate because the heat
source oscillates following the sinusoidal Péclet-number.
The values are higher in the second half of the motion
than in the first half of the motion due to the residual ef-
fects.

6.3 Circular Translation

When the halfspace is powered by two parallel cranks,
it will perform a circular translation, as shown in Fig. 2
(c1). The velocities for all the points of the halfspace
are the same at any given time. The coordinate system
is fixed to the heat source, which is stationary. The tra-
jectory of any point of the heat source on the surface of
the halfspace should be a part of a circle whose radius
is the length of the crank, which is unity for the current
case. The initial velocities of the halfspace are Pe1(0) =
0 and Pe2(0) = 10. Due to the circular translation of the
halfspace, the Péclet numbers are functions of time,

Pe1�t� � Pe2�0�sin��Pe2�0� t� (19)

Pe2�t� � Pe2�0�cos�Pe2�0� t� (20)

This case could be interpreted equivalently by Fig. 2
(c2), as if the halfspace were stationary, and the heat
source and the coordinate system were translating cir-
cularly. A heat source that corresponds to an identical
Hertzian pressure distribution as in section 6.2 is ap-
plied. However, the dimensional heat source is time-
independent, q � µ f pV 2�0�, where µ f = 0.1 and
V 2�0� is the initial dimensional velocity (Pe 2�0�κ�l�.
Therefore, q�

�
1� �x1�c1�2� �x2�c2�2. The responses

corresponding to four different times (Fig. 10(e�� in a re-
gion of x1 � ��4� 4� and x2 � ��4� 4� are analyzed with
Eqs. (8) and (17) and are plotted in Figs. 10 - 11, re-
spectively. Note that the x2 axis is upward in Fig. 10.
The arrows in Figs. 10 (a – d� and Figs. 11 (a – d� indi-
cate the heated trajectory on the surface of the halfspace.
Both responses spread in favor of the motion direction,
and the tendency is more obvious in Fig. 10. At the given
velocity and with the chosen radius of motion, the maxi-
mum temperatures, as marked in Fig. 10, are more sensi-
tive to the alignment of the major axis of the heat-source
base and the motion direction of the halfspace. Higher
temperatures are found at t � π/10 and t � π/5, at which

times the heat source has traveled one half and a full cir-
cle, respectively, where the major axis of the ellipse is
along the motion direction of the heat source. Moreover,
Fig. 11 obviously shows that the heat influence region
for displacement is broader than that for temperature rise.
When the halfspace travels a complete cycle, the outer
contours look almost like circles, as shown in Fig. 11(d�.

7 Conclusion

A novel set of frequency-domain formulations for the
distribution of temperature rise and the normal sur-
face thermoelastic displacement in a moving frictionally-
heated elastic halfspace are derived by using the Carslaw
and Jaeger results, the Seo-Mura results, and the Fourier
transform. The velocity of the body can be an ar-
bitrary function of time. General formulas are ex-
pressed in the form of time integrals, and important ex-
pressions for constant body motion velocities are given
for the transient-instantaneous, transient-continuous, and
steady-state cases. This theoretical development will en-
able the thermomechanical contact analysis for moving
bodies by means of superposition of the results from this
analysis with those from an isothermal elastic analysis
of the same bodies under the excitation of non-zero trac-
tions.

The thermoelastic responses, in terms of temperature rise
and normal surface displacement, of the halfspace in
configurations analogous to pin-on-disk experiments un-
der pure translation, reciprocating translation, and circu-
lar translation are numerically simulated. Both the re-
sponses favor the direction of the body motion.
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Appendix A Fourier transforms

In the following equations, symbol ‘�’ indicates that the
left-hand side and the right-hand side are a Fourier trans-
form pair.

1. The Fourier and inverse Fourier transforms [Morrison
1994]

F�x� �
1

2π

� �∞

�∞
F̃�ω1�e

�iω1x dω1 �

F̃�ω1� �
� �∞

�∞
F�x�e�iω1x dx (A1)

where a single tilde �˜� implies a 1D Fourier transform.

2. The one-dimensional convolution theorem

F�x� �
� �∞

�∞
G�x��H�x�x��dx� � G�x��H�x� �

F̃�ω1� � G̃�ω1�H̃�ω1� (A2)

where ‘*’ implies a 1D convolution.

3. Shifting properties of the Fourier transform

Time-shift:

f �x�x0� � f̃ �ω1�exp��iω1x0� (A3)

Frequency-shift (modulation in time domain):

f �x�exp�iω0x� � f̃ �ω1�ω0� (A4)

4. Fourier transform pairs (t � 0,

R �
�

x2
1 �x2

2 �x2
3, x3 � 0�

GT ��x� t��e�R2��4t�
Æ
4�πt�3�2�

˜̃GT �ω1�ω2�x3� t���πt��1�2e�
x2
3

4t �tw2
(A5)

GTE
3 ��x� �

�x3

πR3 � ˜̃GTE
3 �ω1�ω2�x3� � �2e�x3w (A6)

f �t� � erfc�w
�

t�� f̃ �ωt� �
1�

w2 � iωt�
�

w2�iωt�w�
(A7)

exp��x2
3

4t
� tw�2�

Æ�
πt �

exp
	
�x3

�
w�2�iωt


Æ�
w�2�iωt (A8)

Appendix B Special function, ϖ�z� [Abramowitz and
Stegun, 1964]

The special function ϖ�z� is defined as ϖ�z� �
exp��z2�erfc��iz� � �i exp��z2� 2�

π
� ∞

z exp�t2�dt,

where variable z is complex. Thus, erfc�z� �
ϖ�iz�exp��z2� and erf�z� � 1 � ϖ�iz�exp��z2� ,
and z � x � iy (x and y are real variables). For large
x and y, function ϖ�z� can be calculated by following
expressions,

ϖ�z� � iz�0�4613135��z2�0�1901635�

�0�09999216��z2�1�7844927�

�0�002883894��z2�5�5253437���η1�z��

η1�z�� 2
10�6� x � 3�9 or y � 3 (B1)

ϖ�z� � iz�0�5124242��z2�0�2752551�

�0�05176536��z2�2�724745���η2�z��

η2�z�� 10�6� x � 6 or y � 6� (B2)
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