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Steady-State Temperature Rise in Coated Halfspaces and Halfplanes

Michael J. Rodgers1, Leon M. Keer, and Herbert S. Cheng

Abstract: The steady-state temperature rise due to
frictional heating on the surface of coated halfspaces and
halfplanes is described by closed form expressions in
the Fourier transformed frequency domain. These fre-
quency response functions (FRFs) include the effects of
the coating and the speed of the moving heat source and
apply for all Peclet number regimes. Analytical inver-
sion of these expressions for several special cases shows
the Green’s functions as infinite series of images, which
may be costly and slowly convergent. Also, the influence
coefficients integrated from these Green’s functions are
not available in closed form. Applying fast Fourier trans-
form (FFT) methods to invert the frequency domain ex-
pressions does not rely on the infinite summations, and
the influence coefficients can be computed quickly and
accurately. The accuracy for several FFT methods are an-
alyzed in comparison with available homogeneous cases
(halfspace: low Peclet and high Peclet number approx-
imations; halfplane: all Peclet numbers, as well as low
and high Peclet number approximations). Finally, a brief
parameter study about the effect of the coating is per-
formed, using the discrete convolution fast Fourier trans-
form (DC-FFT) algorithm for accurate and efficient cal-
culations of the temperature rise from the frequency re-
sponse functions.

1 Introduction

Frictional heating can lead to hot spots that cause de-
creased performance and failure in machine parts. This
important field has been studied for many decades, be-
ginning with the pioneering work of Blok (1937, 1963),
Jaeger (1942) and Archard (1958). The classicConduc-
tion of Heat in Solids (Carslaw and Jaeger, 1959) forms
the basis of practically every study in this field, includ-
ing this work. Here, frictional heating is studied on a
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tribological scale relevant to tribological elements with
thin protective coatings because developments in coating
technology hold much promise for increased tribological
performance.

Many models of tribological coatings and frictional heat-
ing have used finite element analysis [e.g. Kennedy,
Colin, Floquet and Glovsky (1984); Liu and Wang
(1999)]. These studies are proving to be useful in vir-
tual tribology, especially if they can be used as a pre-
processing step and if the fast Fourier transform (FFT)
can be used in the main analysis [(Liu, Wang and Liu
(2001)]. Other studies include the boundary element
method (BEM) study by Vick, Golan and Furey (1994),
which shows that the BEM also holds promise as an ap-
propriate method for contact analysis.

Ling (1973) used Fourier analysis for temperature rise
and thermoelasticity. The work of Ju and Farris (1997)
showed that FFT could be applied to problems with mov-
ing heat sources. This study follows those works and
the work of Tian and Kennedy (1993, 1994), which de-
veloped approximate formulas, over the whole range of
Peclet number, for temperature rise in moving bodies –
formulas that proved to be good when tested against finite
element simulations. The formulas of Tian and Kennedy
(1993) were also used in a flash temperature analysis of
journal bearings [Wang and Cheng (1995)]. Other im-
portant papers that use FFT in regard to tribological coat-
ings include Floquet (1985) and Leroy, Floquet and Vil-
lechaise (1989, 1990).

The notion of flash temperature refers to the hot spots of
two bodies in contact, and therefore, heat partitioning be-
tween the two bodies is the essential consideration. Re-
cent studies of heat partitioning and flash temperature in-
clude Bos and Moes (1995), Qui and Cheng (1998) and
Gao, Lee, Ai and Nixon (2000). The latter paper uses
FFT techniques to study transient heat conduction and
to calculate the temperature fields and the heat partition
function for rough surfaces in contact. The FFT, then,
has been shown to be quite useful in studying both rough
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contact and coated contact. Here, this usefulness is ex-
panded by demonstrating the potential for fast heat parti-
tion solvers to study coated bodies in rough contact and
by using the discrete-convolution fast Fourier transform
(DC-FFT) method, first introduced for contact solvers by
Liu, Wang and Liu (2000).
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Figure 1 : Model and Geometery. The surface heat
sourceq�x1�x2� acts in the contact regionΩc of length
2L, which is fixed to a coordinate system moving at speed
U in the negativex1 direction. The coating, of thickness
h, and substrate have conductivitiesk1�k2 and diffusivi-
tiesκ1�κ2 respectively.

2 Analysis

As shown in Fig. 1, the coordinate system is fixed to the
center of the moving heat source. The nondimensional-
ized differential equations

∇2Tj � 2Pj∂1Tj� j � 1�2� no summation, (1)

where∇2 � ∂2
1�∂2

2�∂2
3, ∂k � ∂�∂xk �k � 1�2�3�, andPj

is the Peclet number, govern the nondimensional steady-
state temperature changesTj �x1�x2�x3� in the coating
� j � 1� 0� x3 � h� and substrate� j � 2� h � x3� re-
spectively, whereh is the coating thickness. The nondi-
mensional heat sourceq�x1�x2� is generated in the con-
tact regionΩC and is assumed to vanish outside of this
region:

�∂3T1�x3�0 �

�
q�x1�x2� � �x1�x2� �ΩC

0� �x1�x2� ��ΩC
(2)

The coating is perfectly bonded to the substrate so that
both the heat flux and the temperature are continuous at

x3 � h. Nondimensionalization in Eqs. (1) and (2) was
achieved by

Tj �
T jk j

Lq0
� j � 1� 2�no summation, (3a)

xm �
xm

L
� m � 1� 2� 3� (3b)

h � h�L� q � q�q0� (3c)

Pj �
UL
2κ j

� j � 1�2� (3d)

whereq0 is the maximum heat flux,L is a half-length of
the heat source,U is the speed,κ j is the diffusivity and
k j is the conductivity, all assumed constant.

Equations (1) – (2) are solved by Fourier transform tech-
niques, and the transformed nondimensional temperature
changes̃̃Tj �ω1�ω2�x3� are found to be

˜̃Tj �ω1�ω2�x3� � ˜̃g j �ω1�ω2�x3� ˜̃q�ω1�ω2� � j � 1�2�

(4)

where the frequency response functions (FRF) are

˜̃g1 �
1

η1
�exp��η1x3�

�
�k1η1�k2η2�exp��η1h�

k1η1 sinh�η1h��k2η2 cosh�η1h�
cosh�η1x3�

�
�(5a)

˜̃g2 �
k2 exp��η2 �x3�h��

k1η1 sinh�η1h��k2η2 cosh�η1h�
� (5b)

whereη j �
�

ω2
1�ω2

2�2iPjω1 , j � 1�2. In Eqs. (4) –
(5), each� implies a Fourier transform andω1, ω2 are
the angular frequencies corresponding to the nondimen-
sionalx1, x2 (See Appendix). Similar expressions to Eq.
(5) have been derived in the literature [c.f. Ju and Liu
(1988); Leroy, Floquet and Villechaise (1989, 1990)].

Equation (5a) shows that the FRF for the coating contains
the sum of the halfspace FRF and a correction FRF:˜̃g1 �
˜̃gHS
1 � ˜̃gC

1. The correction FRF vanishes when the solid
is homogeneous, i.e. when bothk1 � k2 andκ1 � κ2 or
whenh� ∞. The Green’s functionsg and the influence
coefficientG for several cases for the homogeneous body
are presented next, because these will be used to describe
the accuracy of the FFT based methods and because the
effect of the coating is considered as a correction effect
from the halfspace solutions.
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2.1 Homogeneous Case

For point contact, the halfspace FRF and Green’s func-
tion are

˜̃gHS
1 �

exp��η1x3�

η1
� gHS

1 �x1�x2�x3��
exp��P1�ρ�x1��

2πρ
�

(6)

whereρ2 � x2
1�x2

2�x2
3 [Carslaw and Jaeger (1959); Ling

(1973)]. Analytical expressions for the influence coeffi-
cients have not been found analytically in the literature
for arbitrary Peclet numbers. For low Peclet numbers
�P1 � 0�, the influence coefficientsG are

GHS�x1�x2�0�� f �x��y��� f �x��y���f �x��y���f �x��y��
(7a)

f �x1�x2� � x1 ln�x2� r��x2 ln�x1� r� (7b)

x� � x1�∆1�2� x� � x1�∆1�2�

y� � x2�∆2�2� y� � x2�∆2�2� (7c)

where r2 � x2
1 � x2

2 and where ∆1, ∆2 define the
nodal spacing in thex1, x2 directions [Johnson (1985)].
For high Peclet numbers�P1 � 1�, the heat source
moves faster than the heat is conducted, so thatη1 ��

ω2
2�2iP1ω1. Equations (6) – (7) apply, but with

gHS
1 �x1�x2�x3� �

H �x1�

2πx1
exp

�
�P1

�
x2

2�x2
3

�
2x1

�
� (8a)

f �x1�x2� � H �x1�

��
x1

2πP1
erf

	
x2

�
P1

2x1




� x2

2π
Ei

	
�x2

2P1

2x1


�
� (8b)

whereH �u� is the Heaviside unit step function, erf(u� is
the error function and Ei(-u� is the exponential integral
function [Tichy (1991)].

For line contact,ω2 � 0, η1 �
�

ω2
1�2iP1ω1 , and the

Green’s functiong and the influence coefficientG for the
halfplane are

gHP
1 �x1�x3� �

�
�∞

�∞
gHS

1 �x1�ξ1�0�ξ2�x3� dξ2

�
1
π

exp�P1x1�K0 �P1d� � (9a)

GHP�x1�0��
1

πP1

�
f�
��P1x�

�
H
��x�

��f�
��P1x�

�
H
��x�

�
� f�

�
P1x�

�
H
�
x�
�� f�

�
P1x�

�
H
�
x�
��

(9b)

f� �u� �
� u

0
exp��u� K0 �u� du

� uexp��u��K0 �u��K1 �u���1� (9c)

whered2 � x2
1 � x2

3, Kn �u� is the modified Bessel func-
tion of the second kind of ordern, andx��x� are given by
Eq. (7c) [Carslaw and Jaeger (1959)]. Also, separate ex-
pressions for the low and high Peclet number regimes are
found in the literature. For low Peclet numbers�P1 � 0�,
a bulk logarithmic infinity in Eq. (9) [c.f. Carslaw and
Jaeger (1959), Ling (1973)] can be ignored by the con-
sideration of an appropriate reference point [c.f. Johnson
(1985)]. Then, the Green’s functiong and the influence
coefficientG are

gHP
1 �x1�x3� ��1

π
lnd� (10a)

GHP �x1�0� � f
�
x�
�� f

�
x�
�
� (10b)

f �x1� �
1
π

x1 �ln �x1��1� � (10c)

where x��x� are given by Eq. (7c). For high Peclet
numbers�P1 � 1�, the heat source moves faster than the
heat is conducted, so thatη1 �

��2iP1ω1 . The Green’s
functiong for this case is [Tichy (1991)]:

gHP
1 �x1�x3� �

1�
2πP1x1

exp

	
�x2

3P1

2x1



� x1 � 0 (11)

The influence coefficientG for this half-plane case is

GHP �x1�x3� � f
�
x��x3

�� f
�
x��x3

�
� (12a)
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f �x1�x3� � H �x1�

�
x3 erf

	
x3

�
P1

2x1




�

�
2x1

πP1
exp

	
�x2

3P1

2x1


�
� (12b)

wherex��x� are given by Eq. (7c). For the surfacex3 �
0, Eq. (12) was found by Tichy (1991).

2.2 Coated Case

For analytical inversion of the coating’s correction FRF
and the substrate’s FRF from Eq. (5), the series expan-
sion technique gives

˜̃gC
1 �

2S
η1

cosh�η1x3� (13a)

˜̃g2 �
2k2

k1η1�k2η2
�1�S�exp��η2x3�h�η1�η2��

(13b)

S �
∞

∑
m�1

Rm exp��2η1hm�� (13c)

R �
k1η1�k2η2

k1η1�k2η2
(13d)

The termsS andR are defined as the correction sum and
the parameter ratio, respectively. Clearly, the parame-
ter ratio ranges between�1� R	 1, and for a homoge-
neous bodyR � S � 0. Similar expressions to Eq. (13),
which represents a series of images in the frequency do-
main, have been derived in the literature [Ling (1973);
Tian (1992); Tian and Kennedy (1993)].

When the parameter ratio is independent of the frequen-
cies�ω1�ω2�, it may be possible to invert Eq. (13) an-
alytically through term by term integration [e.g. Carrier
and Pearson (1988)]. For example, the matching diffu-

sivity case hasκ1 � κ2 andR �
k1�k2

k1�k2
. The Green’s

functions for point and line contact can be found term by
term using Eqs. (A4) – (A5). Another example is the
heated slab case, which hask2 � 0 andR � 1. While
the Green’s functionsg2 are meaningless whenk2 � 0,
the Green’s functionsg1 for the coating (slab) can be

found by the same process as those for the matching dif-
fusivity case. Since influence coefficients are not avail-
able for the general halfspace (or halfplane) case when
x3 
� 0, influence coefficients cannot be found for ei-
ther of these two (matching diffusivity and heated slab)
examples. A third example, though, does have closed
form influence coefficients. For the fast-moving line con-
tact case�P1�P2 �� 1�, the parameter ratioR is given

by R �
k1�
�

κ1�k2�
�

κ2

k1�
�

κ1�k2�
�

κ2
. The coating’s correction

Green’s function is given by

gC
1�x1�x3��gHP

1 �x1�x3�
∞

∑
m�1

Rm

�
exp

	�P1z�m
2x1



�exp

	�P1z�m
2x1


�
(14)

wherez�m � 4hm�hm�x3� and gHP
1 �x1�x3� is given by

Eq. (11). The substrate’s Green’s function is given by

g2 �x1�x3� �
2k2�

�
κ2

k1�
�

κ1�k2�
�

κ2
�

gHP
2 �x1�x3�

�
exp

	�z0

2x1



�

∞

∑
m�1

Rm exp

	�zm

2x1


�
(15)

wherezm � hP�m
�
hP�m �2x3

�
P2
�
, P�m � �1�2m�

�
P1��

P2, andgHP
2 �x1�x3� is given by Eq. (11), with the sub-

stitution of P2 for P1. Equation (14) reduces to the re-
sult by Ling (1973) for the surface�x3 � 0� temperature
rise. Influence coefficients can be found in closed form
through term by term integration of the form given by
Eq. (12). The expressions are lengthy and are not re-
ported here.

In summary, the frequency response functions (FRFs) are
known for all cases of Peclet number for both the coated
halfspace and the coated halfplane. Influence coefficients
are known for many, but not all cases. For the cases
with known influence coefficients, calculations using the
FRFs in FFT based methods are compared to calculations
with these influence coefficients. Methods that use these
expressions and FFT to perform these calculations are
described in the next section.

3 FFT Method

For an arbitrary applied heat flux, solution of Eq. (4) can
be calculated quickly by using the FFT and by assuming
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that the heat flux is constant over elements that subdivide
the contact region. These elements must be in a rectan-
gular grid, with a power of 2 number of elements in each
direction. Refinement of the grid can occur only by in-
creasing the number of grids to a higher power of 2 in
each direction, and thus, the grid must be refined in en-
tirety, and not in specific locations of interest. Despite
these restrictions, FFT methods hold much promise for
tribological contact problems because of the small num-
ber of required operations, as compared with direct mul-
tiplication methods. Also, enhanced FFT methods that
calculate transforms from real data by exploiting com-
plex conjugate symmetries are readily available [Press,
Teukolsky, Vetterling and Flannery (1992)]. However,
the FFT, which is a clever algorithm for exactly calcu-
lating the discrete Fourier transform [Stein (1997)], in-
volves periodicity concerns which must be addressed. In
this light, three FFT-based approaches used here are dis-
cussed next.

Since the frequency response functions (FRFs) are avail-
able, they can be used directly in an FFT-based approach
to obtain the temperature rise, by transforming the ap-
plied heat flux into the frequency domain, multiplying
with the FRF point by point, and inverting the result into
the spatial (target) domain. If the analytical transform of
the applied heat flux is available, it can be used in Eq. (4);
otherwise the heat flux can be transformed by FFT into
the frequency domain first. Note that the infinite term in
the frequency response functions�g̃�ω1 � ω2 � 0�� ∞�
must be discarded, and that this causes the loss of bulk
information [Liu, Wang and Liu (2000)]. Numerical or
analytical integration around this singular point may be
used to retrieve this lost information, but researchers can
often consider a reference point and/or a physical argu-
ment to set the bulk.

The above inverse FFT (IFFT) method, which uses the
continuous convolution theorem, should be applied di-
rectly to Eq. (4) with a frequency refinement factorM
of at least 8 to diminish the aliasing (periodicity) error
[Polonsky and Keer (2000); Liu, Wang and Liu (2000)].
This refinement factor gives the frequency step size to
be ∆ω1 � 2π�NM∆1, where N is the number of ele-
ments in the target domain (bothN andM must be pow-
ers of 2). For example, consider the homogeneous line
contact case, with a length patch of constant heat flux
q � 1 over�1	 x1	 1, and whereP1 � 1 andN � 128.
This heat flux has an analytical Fourier transform ˜q �
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Figure 2 : Periodicity correction by frequency refine-
ment. The triangles show the IFFT results for the line
source case withP � 1, plotted for different values ofM,
the frequency domain refinement factor. The analytical
solution is the solid line.

2sin�ω1��ω1. In Fig. 2, the surfacex3 � 0 tempera-
ture rise results for this example show that the periodic-
ity effects are significantly diminished as the frequency
refinement factorM � 8. The dashed curves show the
IFFT result withM as indicated, while the solid curve
shows the analytical solution of Eqs. (9b) – (9c), with
x� � x1�1� x� � x1�1. Note that the bulk is set for
each IFFT curve by setting the IFFT equal to the analyt-
ical at the reference pointx1 ��3. The case withM � 1
shows complete periodicity, as the curve can be seen to
leave the frame atx1 � 3 and to return in step atx1 ��3.
The cases withM � 8 show improved accuracy that di-
minishes slightly towards the right of the frame.

The frequency refinement corresponds to expansion in
the spatial domain, and, clearly, this frequency refine-
ment is not necessary in periodic problems [Polonsky
and Keer (2000); Liu, Wang and Liu (2000); Colin and
Lubrecht (2001)]. In a nonperiodic contact problem, the
contact solver algorithm [e.g. Polonsky and Keer (1999)]
and the heat partition algorithm [e.g. Bos and Moes
(1995)] have many iteration steps, and the refined fre-
quency (or expanded spatial) domain required to reduce
the aliasing error in the IFFT method would slow down
the computation speed dramatically and unnecessarily.
At each iteration step, the discrete convolution theorem
should be used with the influence coefficientsG, because
the computational domain required to completely avoid
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aliasing error is only twice as large as the target domain
[Press, Teukolsky, Vetterling and Flannery (1992); Liu,
Wang and Liu (2000)]. To use the discrete convolution
FFT algorithm, special attention must be placed both on
the wrap-around order for the influence coefficients and
on the zero padding for the applied heat flux. Wrap-
around order refers to the standard FFT process of plac-
ing all the negative values of the array after the positive
values; zero padding refers to the standard FFT process
of zeroing all nodes outside the target domain [Press,
Teukolsky, Vetterling and Flannery (1992)].

The influence coefficients are needed for the discrete
convolution at every iteration step, and therefore, they
should be found in a preprocessing algorithm, either by
inverse FFT from the frequency response functions (FRF
method) or by integration of the Green’s function over
constant patches of applied heat flux (IC method). If the
influence coefficients are available in closed form, then
the closed form expressions should be used. Closed form
expressions for several cases were presented in the previ-
ous sections. The FRF method for determining the influ-
ence coefficients for the line contact problem is described
next.

Numerical influence coefficients are found in the FRF
method by inverting the line contact frequency response
functions, which are given by Eq. (5), withω2 � 0. The
patch has length equal to the node spacing∆ 1, and it is
centered at the origin. Thus, the transform domain influ-
ence coefficient is

G̃�ω1� � g̃sin�ω1 ∆1�2�� �ω1�2� (16)

The three FFT-based methods can be summarized as fol-
lows. The IFFT method, which utilizes the continuous
convolution theorem, applies for periodic problems, with
no expanded domain, and for nonperiodic problems, with
an expanded domain (or frequency refinement) by at least
8 times. The FRF method and the IC method utilize the
discrete convolution theorem and, therefore, rely on the
influence coefficients, which are found by IFFT in the
FRF method or by analytical (or other numerical) means
in the IC method. Using the FFT with the discrete con-
volution theorem produces no additional periodicity er-
ror. In this light, the three methods are applied to specific
problems in the next section.

4 Results

In this section, the results from the FFT methods are pre-
sented and discussed. For the halfspace cases, the sur-
face of the halfspace is discretized into a grid, with 128
nodes in each direction that are spaced from�3	 x1	 3,
�3	 x2 	 3, giving∆1 � ∆2 � 0�046875. For the FRF
method, the frequency refinement factorM is chosen
to be 8, in each direction, while for the IFFT method
M � 16. The IFFT method requires more refinement be-
cause the FRF method has heat input over only one ele-
ment. The halfplane cases use the same values, but the
discretization is in thex1 direction only.

Note that the discretization alone produces errors be-
cause even simple heat sources will not be perfectly de-
scribed by square patches of constant heat flux. The
different FFT methods were applied to simple cases for
the heat flux, for both the point contact and line contact
cases, and the results are presented next.

4.1 Homogeneous Case: Circular Patch

The FFT methods are applied to the halfspace case Eq.
(6) to find the surfacex3 � 0 temperature rise due to a
constant heat input over a circular patch of nondimen-
sional radiusa. To set the bulk temperature rise, which
is lost in the FFT methods, an analytical result presented
next. For observation points�r�θ� inside a circular patch
of radiusa, the integration becomes

T HS
1 �x1�x2�0� �

�
�π

�π

� s�

0
exp��P1s�1�cosψ�� dsdψ

(17)

where

s �
�

�x1�ξ1�
2��x2�ξ2�

2�

ξ1�x1 � scosψ� ξ2�x2 � ssinψ (18a)

s� ��r cos�ψ�θ��
�

a2� r2 sin2 �ψ�θ� (18b)

r �
�

x2
1�x2

2� x1 � r cosθ� x2 � r sinθ (18c)

This polar coordinate transformation is used in Johnson
(1985) for pressure on a halfspace. Here, the integration
is not axisymmetric because of the motion of the heat
source in thex1 direction. For observation at the center
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�r � 0� of the circular patch, analytical integration gives
[Abramowitz and Stegun (1972)]:

T HS
1 �0�0� � 2πaexp��P1a� �I0�P1a�� I1 �P1a�� (19)

whereIn �u� is the modified Bessel function of the first
kind of ordern. Typical values for Eq. (19), fora� 1, are
T HS

1 � 1, 0.9524, 0.6737, 0.3475 and 0.2491, forP1 � 0,
0.1, 1, 5 and 10, respectively. For all other observation
points (inside or outside the circular patch) closed form
expressions are not available.

The IFFT and FRF methods are used for the general
case of arbitrary Peclet number. For the IFFT method,
note that the heat flux has an analytical transform for
this case, found by direct integration, using a polar co-
ordinate system that takes advantage of the relation be-
tween Fourier transforms and Hankel transforms [Sned-
don (1951)], giving

˜̃q�ω1�ω2� � 2π
� a

0
J0 �rw� r dr �

2πa
w

J1 �aw� (20)

wherew2 � ω2
1�ω2

2 andJn �u� is the Bessel function of
the first kind of ordern. Also, the methods are compared
to an IC method, which uses numerical and analytical
integration applied to the following form of Eq. (17),
which isolates the singular point:

GHS
1 �x1�x2�0��

��
exp
�P1 ��s� �x1�ξ1�����1

s
dξ1 dξ2

�
��

1
s

dξ1 dξ2 (21)

The second integral on the right hand side is analytically
integrated by Eq. (7), and the first integral will have rea-
sonable accuracy by Simpson’s method [Rodgers, 2001].
The area of integration of Eq. (21) is the rectangular
patch of Eq. (7), and so the result is used in the discrete
convolution theorem algorithm (IC method). Finally, all
three FFT methods are compared to the analytical results,
which apply forP1 � 0:

T HS
1 �x1�x2�0� �

2a
π

E

 r

a

�
� r 	 a (22a)

T HS
1 �x1�x2�0� �

2r
π

�
E

a

r

�
�
	
1� a2

r2



K

a

r

��
� r � a

(22b)

whereK�u� andE�u� are the complete elliptic integral
of the first and second kind [Johnson (1985)].
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Figure 3 : Homogeneous Pint Contact: Circle Source.
The surface temperature rise is plotted vs.x1 for various
Peclet numbers. The solid lines are the FRF method re-
sults, while the dashed lines are the IC method results for
high Peclet number.

In Fig. 3, several values ofP � P1 are used to show
the FFT results for the surfacex3 � 0 temperature rise
T � T1 vs. x1, with x2 � 0. Since the IFFT, FRF and IC
results are nearly identical (indistinguishable on a graph
like Fig. 3) for each case of Peclet number, only the re-
sults from the FRF method are shown for the arbitrary
Peclet number case. The high Peclet number solution of
Eq. (8), which is used in the discrete convolution the-
orem algorithm (IC method), is shown in Fig. 3 to be
appropriate forP � 5 orP� 10. Since the bulk informa-
tion is lost, all curves (both those from the FRF method
and those from the IC method) are set relative to the an-
alytical result from Eq. (19), i.e. relative to the reference
point at the origin.

The average absolute errors between pairs of results are
given as follows: ForP � 0, this error between the IC
method (using Eq. (21), which is completely analytical
– Eq. (7) – forP1 � 0� and the analytical solution of Eq.
(22) is 6.9 (10�4�. This error is the discretization error
of approximating a circle by a rectangular grid. Also, for
P � 0, this error between the FRF method and the ana-
lytical solution of Eq. (22) is approximately 7.4 (10�4�.
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Thus the error of the FRF method is only slightly more
than the discretization error, forP � 0. For all other val-
ues ofP, this error between the FRF method and the IC
method is less than 1.7 (10�4�, and this error between the
FRF method and the IFFT method is less than 7.5 (10�4�.
In conclusion, the error of the FRF method is compara-
ble to that of the IC method, and both methods require
the same computational cost, provided that the influence
coefficients are calculated in preprocessing.

4.2 Homogeneous Case: Length Patch

The IFFT and FRF methods are applied to the halfplane
case to find the surfacex3 � 0 temperature rise due to
a constant heat input over a lengthL = 1. For the IFFT
method, note that the analytical transform of the heat flux
is q̃�ω1� � 2sin�ω1��ω1.

Ju and Farris (1997) used IFFT for this problem, with an
expanded computational domain of 409.6L (here, 6ML
= 96L�, a total number of elements of 8192 (here,NM
= 2048) and a discretization step of 0.05 (here,∆1 =
0.046875). Thus, the step size of Ju and Farris (1997) is
approximately the same as this study, while their compu-
tational domain and the total number of elements are both
about 4 times as large. Thus, this study could change to
M = 64 instead ofM = 16, but, as shown in Fig. 2, the
diminishing of periodicity effects are negligible for this
change ofM.

The FFT based methods are compared to the analytical
influence coefficients of Eq. (9) and to the low and high
Peclet number expressions of Eqs. (10) and (12), respec-
tively. The surfacex3 � 0 temperature riseT � T1 from
the FRF method is shown in Fig. 4 for the arbitrary Peclet
number case because the IFFT, FRF and analytical results
are all nearly identical (indistinguishable on a graph like
Fig. 4), for each case of Peclet number. In Fig. 4a, the
curves for several values of Peclet numberP � P1 show
that the low Peclet number expressions from Eq. (10)
are appropriate forP � 0�1 and that the high Peclet num-
ber expressions from Eq. (12) are appropriate forP � 5.
Note that the low Peclet number expression of Eq. (10)
and the FFT results must have reference points. The bulk
is set for the FFT results by the analytical result from Eq.
(9) for x ��3, while the bulk is set for theP � 0 case by
adding 3 to each point’s calculated result (to match the
P � 0�01 value atx � 0�. In Fig. 4b, the same calculated
results are presented, but with a new ordinate. The ordi-
nateT

�
P is chosen to make the plot more concise; the

fast-moving solution of Eq. (12) is graphed once for all
Peclet numbers [Johnson (1985); Tichy (1991); Williams
(1994)]. Note that Fig. 4b appears to indicate that as the
speed increases, the temperature also increases, which is
anti-physical and an artifact from the choice of ordinate.
Both Fig. 3 and Fig. 4a, which do not have this ordinate,
give the correct impression. Finally, it is worth mention-
ing that some researchers have chosenT P as the ordinate
[Jaeger (1942); Carslaw and Jaeger (1959)].
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Figure 4 : Homogeneous Line Contact: Length Source.
(a) The surface temperature rise is plotted vs.x1 for var-
ious Peclet numbers. The solid lines are the FRF method
results, while the dashed lines are the analytical results
for low and hight Peclet number. (b) The curves from (a)
are multiplied by

�
P, and the fast-moving case is plotted

once for all Peclet numbers asP� ∞.

Again, the average absolute errors between pairs of re-
sults are given as follows: For all values ofP, this error
between the FRF method and the analytical solution of
Eq. (9) is less than 1.6 (10�2�, between the IFFT method
and Eq. (9) is less than 2.1 (10�2� and between the FRF
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method and the IFFT method is less than 6.0 (10�3�.
These errors are slightly higher than those for the cir-
cular patch case, but the temperature rise is also higher
because the width of the heat source is infinite. Also, this
heat has only two directions in which to dissipate, which
likely leads to an increased need to expand the spatial do-
main to diminish the periodicity effects. In this light, and
since the error of the FRF method is comparable to that
of the IFFT method, the FRF method shows promise for
use in contact and heat partition problems.
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Figure 5 : Coated Line Contact: Fast Moving Case for
the Length Source. The FRF method results for the tem-
perature are plotted vs.x1 in a parameter study with
P2 � 20 andk2 � 1. The thicker solid line in the mid-
dle is the homogeneous result. (a)h � 0�1 (b) h � 1�0.

4.3 Parameter Study

The FRF method results for the surface temperature
caused by a fast moving line source are shown in Fig. 5
for thickness of (a)h � 0�1 and (b)h � 1�0. Since the pa-

rameter study involves changingk1 while keepingk2 � 1,
the ordinate isT1�k1 � T 1�q0L. For comparison with
the influence coefficients, which can be found from Eqs.
(14) and (12), the substrate Peclet number was chosen to
be quite highP2 � 20. Thus even whenP1�P2 � 0�5,
P1 � 10, and the fast moving case should still be ap-
propriate. The average absolute errors between the FRF
method and the analytical are less than 7.8 (10�4� and
1.5 (10�3� for all cases shown in (a) and (b), respectively.
The FRF method results for the surface temperature vs.
x1, with x2 � 0, caused by the line source and the cir-
cle source, are shown in Figs. 6 and 7, respectively, with
P2 � k2 � 1. Again the thicknesses are (a)h� 0�1 and (b)
h � 1�0 and the ordinate isT1�k1 � T 1�q0L. In Figs. (5)
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Figure 6 : Coated Line Contact: Length Source. The
FRF method results for the temperature are plotted vs.x1

in a parameter study withP2 � k2 � 1. The thicker solid
line in the middle is the homogeneous result. (a)h � 0�1
(b) h � 1�0.

– (7), the thicker solid line shows the homogeneous case
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Figure 7 : Coated Point Contact: Circle Source. The
FRF method results for the temperature are plotted vs.x1

in a parameter study withP2 � k2 � 1. The thicker solid
line in the middle is the homogeneous result. (a)h � 0�1
(b) h � 1�0.

results. In each of those six figures, two curves are above
the homogeneous curve and two curves are below the
homogeneous curve. Thus, the parameter study shows
that higher surface temperature is associated with lower
coating conductivity and lower coating Peclet number.
Because the Peclet number is inversely proportional to
the diffusivity, higher surface temperature is associated
with higher coating diffusivity. Note that the conductiv-
ity forces the coated curves to be above or below the ho-
mogeneous curve, and therefore the coating conductivity
is more important than the coating diffusivity. The ef-
fect of the thickness can be seen by comparing parts (a)
h � 0�1 and (b)h � 1�0 of Figs. (5) – (7). The thicker
coating cases (b) show temperatures much more spread
out from the homogeneous than the thinner coating cases
(a) . Thus, the thicker the coating, the more influence it

has over surface temperature.

5 Conclusions

Steady-state halfspace and halfplane temperature rise due
to frictional heating was studied with fast Fourier trans-
form methods. The Green’s functions and influence coef-
ficients found in the literature for special cases were com-
piled. These cases were used to show the range of appli-
cability of the frequency response functions, which are
the Fourier transformed Green’s functions and which are
found in closed form from Fourier analysis of the govern-
ing equations and boundary conditions. The coated half-
plane case for the fast-moving heat source was used to
perform a brief parameter study of the conductivity and
diffusivity ratios. Higher coating conductivity and lower
coating diffusivity leads to a decrease in surface temper-
ature. This effect is magnified as the coating thickness
increases. In all cases, the results from the FFT based
numerical methods and from available analytical expres-
sions showed excellent agreement.
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Nomenclature

g̃ j Frequency response function.
g j Green’s function.
G j Influence coefficient.
h Thickness of the coating, m.
h Nondimensional thickness of the coating.
H �x� Heaviside unit step function.
i

��1
j Subscript for coating�j � 1�, substrate�j � 2�.
k j Conductivity, J/m ˚ ks or w/m ˚ k.
L Half-length of the heat source, m.
M Frequency refinement factor.
N Number of nodes inx1 direction
Pj Peclet number.
q Heat flux, W/m2or N/ms.
q0 Maximum heat flux, W/m2or N/ms.
q Nondimensional heat flux.
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R Parameter ratio.
S Correction sum.
T j Temperature rise, ˚ k.
Tj Nondimensional temperature rise.
U Speed of the heat flux in the�x1 direction, m/s.
w Radius in the frequency domain,w2 � ω2

1�ω2
2.

xm Coordinate inm � 1�2�3 direction, m.
xm Nondimensional coordinate in

m � 1�2�3 direction, m.
∆1�∆2 Nodal spacing in 1�2 direction.
κ j Thermal diffusivity, m2/s.
η j Frequency domain parameter.
ρ Nondimensional distance.
ω1�ω2 Frequency domain counterpart ofx1�x2

Appendix: Fourier Analysis

The continuous forward and inverse Fourier transform
and convolution theorem are:

F̃ �ω� �
�
�∞

�∞
F �x�exp��iωx� dx�

F �x� �
1

2π

�
�∞

�∞
F̃ �ω� exp��iωx� dω (A1a)

F̃ �ω� � g̃�ω� q̃�ω� �

F �x� �
�
�∞

�∞
g�x�y� q�y� dy (A1b)

whereω is the angular frequency and� represents a con-
tinuous Fourier transformed function [Press, Teukolsky,
Vetterling and Flannery (1992)].

The discrete forward and inverse Fourier transform and
convolution theorem are [Stein (1997)]:

F̂ �ωn� � ∆x
N�1

∑
k�0

F �xk� exp��iωn xk��

F �xk� �
∆ω
2π

N�1

∑
n�0

F̂ �ωn� exp��iωn xk� (A2a)

F̂ �ωn� � Ĝ�ωn� q̂�ωn� �

F �xk� �
N�1

∑
n�0

G�xk�xn� q�xn� (A2b)

where� represents a discrete Fourier transformed func-

tion, ∆x � Lx�N, ∆ω � 2π�Lx, and

xk � k ∆x� k � 0� � � ��N�1 (A3a)

ωn � ∆ω �

���
��

n� n � 0� � � ��
N
2

�n�N� � n �
N
2
�1� � � � �N�1

(A3b)

Following Press, Teukolsky, Vetterling and Flannery
(1992) and Liu, Wang and Liu (2000), in Eq. (A2b), the
sum in the right equation is a cyclic convolution where
k� n � k� n�N if k � n, and the transformĜ�ωn� in
the left equation is the discrete transform of a wrapped-
aroundG�xk� (i.e. choosexk as in Eq. (A3b)). In
this paper, using Eqs. (A1) – (A2),g is the Green’s
function andG is the influence coefficient, such that

G�x� �
�
�∆x�2

�∆x�2
g�x�ξ� dξ.

Important transform pairs for this paper are given by
the following [Campbell and Foster (1931); Rodgers
(2001)], withx3 � 0:

˜̃g�ω1�ω2�x3� �

exp

	
�x3

�
ω2

1�ω2
2�P2



�

ω2
1�ω2

2�P2
�

g�x1�x2�x3� �
exp��Pρ�

2πρ
(A4a)

g̃�ω1�x3� �

exp

	
�x3

�
ω2

1�P2



�

ω2
1�P2

�

g�x1�x3� �
1
π

K0

	
P
�

x2
1�x2

3



(A4b)

g̃�ω1�x3� �
exp��x3 �ω1��

�ω1� �

g�x1�x3� � �1
π

ln
�

x2
1�x2

3 (A4c)

g̃�x1�ω2� �
H �x1��
2πPx1

exp

	
�x1ω2

2

2P



�

g�x1�x2� �
H �x1�

2πx1
exp

	
�Px2

2

2x1



(A4d)

g̃�ω1�x3� �
exp

��x3
��2iPω1

�
��2iPω1

�

g�x1�x3� �
H �x1��
2πPx1

exp

	
�Px2

3

2x1



(A4e)

whereρ �
�

x2
1�x2

2�x2
3. Note that an appropriate spa-
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tial reference point must be used in Eq. (A4c) to ig-
nore the infinite bulk effect. The transform pairs used in
the text follow from applying combinations of Eq. (A4)
with the frequency shift formula [Campbell and Foster
(1931)]:

˜̃h�ω1� � ˜̃g�ω1� iP� � h�x1� � g�x1�exp�Px1� (A5)
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