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Steady-State TemperatureRisein Coated Halfspacesand Halfplanes

Michael J. Rodgerst, Leon M. Keer, and Herbert S. Cheng

Abstract:  The steady-state temperature rise due tiibological scale relevant to tribological elements with
frictional heating on the surface of coated halfspaces ahih protective coatings because developments in coating
halfplanes is described by closed form expressionstechnology hold much promise for increased tribological
the Fourier transformed frequency domain. These figerformance.

quency response functions (FRFs) include the effects\ahny models of tribological coatings and frictional heat-

the coating and the speed of the moving heat source Rl have used finite element analysis [e.g. Kennedy,
apply for all Peclet number regimes. Analytical inveicolin, Floquet and Glovsky (1984): Liu and Wang

sion of these expressions for several special cases shpw®9)]. These studies are proving to be useful in vir-
the Green’s functions as infinite series of images, whigha| tribology, especially if they can be used as a pre-
may be costly and slowly convergent. Also, the influenggocessing step and if the fast Fourier transform (FFT)
coefficients integrated from these Green's functions aign pe used in the main analysis [(Liu, Wang and Liu
not available in closed form. Applying fast Fourier trang2001)]. Other studies include the boundary element
form (FFT) methods to invert the frequency domain ex\ethod (BEM) study by Vick, Golan and Furey (1994),

pressions does not rely on the infinite summations, ajaghich shows that the BEM also holds promise as an ap-

the influence coefficients can be computed quickly apghpriate method for contact analysis.

accurat.ely. The accuracy fors_everal FFT methods are E‘lrr'fg (1973) used Fourier analysis for temperature rise
alyzed in comparison with available homogeneous cases

: d thermoelasticity. The work of Ju and Farris (1997)

(halfspace: low Peclet and high Peclet number approx : .
imations- halfolane- all Peclet number well I§NowedthatFFT could be applied to problems with mov-
s, hafiplane. afl Feclet nNUMDers, as Well as 1q g heat sources. This study follows those works and

. . . . A
and high Peclet number approximations). Finally, a br'é1}e work of Tian and Kennedy (1993, 1994), which de-

parameter_study apout the effect .Of the coatln_g 'S IO%re'loped approximate formulas, over the whole range of
formed, using the discrete convolution fast Fourier tranF-

. - eclet number, for temperature rise in moving bodies —
form .(DC'FFT) algorithm for a_ccurate and efficient ca ormulas that proved to be good when tested against finite
culations of the temperature rise from the frequency "Slement simulations. The formulas of Tian and Kennedy
sponse functions.

(1993) were also used in a flash temperature analysis of
journal bearings [Wang and Cheng (1995)]. Other im-
1 Introduction portant papers that use FFT in regard to tribological coat-

o _ ings include Floquet (1985) and Leroy, Floquet and Vil-
Frictional heating can lead to hot spots that cause qgzpaise (1989, 1990).

creased performance and failure in machine parts. T hs

important field has been studied for many decades, g41e notion of flash temperature refers to the hot spots of

ginning with the pioneering work of Blok (1937, 1963)m0 bodies in contact, and therefore, heat partitioning be-

Jaeger (1942) and Archard (1958). The claginduc- een the two bodies is the essential consideration. Re-

tion of Heat in Solids (Carslaw and Jaeger, 1959) formgent studies of heat partitioning and flash temperature in-

the basis of practically every study in this field, includ(-:IUde Bos and Moes (1995), Quiand Cheng (1998) and

ing this work. Here, frictional heating is studied on $ao, Lee, .Ai and Nixon (2000.)' The latter Paper uses
%FT techniques to study transient heat conduction and

1Center for Surface Engineering and Tribology to calculate the temperature fields and the heat partition
Northwestern University function for rough surfaces in contact. The FFT, then,
Evanston, IL 60208, USA has been shown to be quite useful in studying both rough
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contact and coated contact. Here, this usefulness is x= h. Nondimensionalization in Egs. (1) and (2) was
panded by demonstrating the potential for fast heat padichieved by
tion solvers to study coated bodies in rough contactand _

by using the discrete-convolution fast Fourier transform) = L7 j =1, 2,no summation, (3a)
(DC-FFT) method, firstintroduced for contact solvers by '_-qo
Liu, Wang and Liu (2000). Xy = XT'“ m=1,2, 3, (3b)
h=h/L, q=7d/q, (3c)
uL .
1_2—Kj7 1=12, (3d)

whereqp is the maximum heat flux, is a half-length of
the heat sourcd) is the speedy; is the diffusivity and
K; is the conductivity, all assumed constant.

Equations (1) — (2) are solved by Fourier transform tech-
niques, and the transformed nondimensional temperature
changed (o1, w2, X3) are found to be

Figure 1 : Model and Geometery. The surface heazi} (@1, w2,%3) = §j (@1, p,%3) G(01,2) , j=1,2,
sourceq(xi, X2) acts in the contact regiof. of length (4)
2L, which s fixed to a coordinate system moving at speed

U in the negativex; direction. The coating, of thicknessvhere the frequency response functions (FRF) are
h, and substrate have conductivitlesk, and diffusivi-

tiesky, i, respectively. g = - [exp(—M1X3)

(kina — kanz) exp(—n1h)
2 Analysis kimzysinh(n1h) +konz coshinih

) coshmixz) | ,(5a)

As shown in Fig. 1, the coordinate system is fixed to the
center of the moving heat source. The nondimensional- kzexp[-nz (X3 — h)]
ized differential equations 92 = kinisinh(nih) +kynz coshinih)’

(Sb)

, _ . wheren; = .\/mi—kmg—zn.ﬂ-ml, j=1,2. InEgs. (4) -
VT =2Pjo1T;,  j=1,2,  nosummation, (1) (5), each~ implies a Fourier transform andi, o, are
T, the angular frequencies corresponding to the nondimen-
whereV® = d1+d5 493, dk = /0% (k=1,2,3),andP;  gjgna1y, x, (See Appendix). Similar expressions to Eq.
is the Peclet number, govern the nondimensional steaghyy have been derived in the literature [c.f. Juand Liu
state temperature chang®s(xq, Xz,Xs) in the coating (19gg): | eroy, Floquet and Villechaise (1989, 1990)].

(=1, 0<x3<h) and substratdj =2, h< x3) re- : : .
spectively, wherd is the coating thickness. The nonoli_Equa'uon (5a) shows that the FRF for the coating contains

mensional heat sourag(x., x,) is generated in the Con_the sum of the halfspace FRF and a correction FiRF=

EHS | AC i ' i
tact regionQc and is assumed to vanish outside of thidt +6p. The correctlon FRF vanishes when the solid
IS homogeneous, i.e. when bdth= k, andx; = x; or

region: . ,

eglo whenh — . The Green’s functiong and the influence
q(x1, %), (X1,%) € Qc coefficientG for several cases for the homogeneous body

—03Tily—0 = { 0, (X1, %) & Qc (2) are presented next, because these will be used to describe

the accuracy of the FFT based methods and because the
The coating is perfectly bonded to the substrate so tledfect of the coating is considered as a correction effect
both the heat flux and the temperature are continuoudrain the halfspace solutions.
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2.1 Homogeneous Case

) 1 .
Egrr] a|i(r)e|nt contact, the halfspace FRF and Green’s furb%zrp (%1, %) :/ QTS(Xl—F;l,O—&g,x?,) o,

1
== P Ko (P d), 9
GHS:M o S(x1, X2, X3) = exp[—Pu(p —x1)] Wexp(l vl Ko (i) (9a)
1 N1 ) 1 1 X2, 2mp (6; GHP(xl,O):n—P [f‘(_Plx—)H(_X—)_f—<_plx+)H<_X+>
1
+fH(Puxt)H (xT) — fFH(PxT)H (x7) ] (9b)

wherep® = x§ +x5 + x5 [Carslaw and Jaeger (1959); Lingf* (1) = /u exp(£u) Ko (u) du
(1973)]. Analytical expressions for the influence coeffi- 0

cients have not been found analytically in the literature = Uexp(£u) [Ko (u) £ Ky (U)] ¥ 1, (9¢)
for arbitrary Peclet numbers. For low Peclet numbers
(P ~ 0), the influence coefficients are whered?® = x2 +x3, Ky (u) is the modified Bessel func-

tion of the second kind of ordex andx ™, x~ are given by
GHS(x1, %2, 0)=f (xt,y) + (x7,y ) —F (xhy ) —F (x7,yT) Eq. (7_c) [Carslaw and Jaeger (1959)]. Also, sepgrate ex-
(7a) Pressions for the low and high Peclet number regimes are
found in the literature. For low Peclet numbéRs ~ 0),

foa, %) =xaIn (3o +1) +%eIn (3 +r) (7D) 3 bulk logarithmic infinity in Eq. (9) [c.f. Carslaw and
XT=x14A1/2, X =x1—-A1/2, Jaeger (1959), Ling (1973)] can be ignored by the con-
Y =X4+A2/2, Y =X —Ay/2, (7c) sideration of an appropriate reference point [c.f. Johnson

(1985)]. Then, the Green’s functignand the influence
where r? = x2 +x3 and whereA;, A, define the coefficientG are
nodal spacing in th&;, x; directions [Johnson (1985)].
For high Peclet numbefB; > 1), the heat source 1
moves faster than the heat is conducted, so that gi'" (x1,x3) = = Ind, (10a)

\/ 03 — 2iPiw; . Equations (6) — (7) apply, but with

GHP(x,0) = f (xT) — f (x7), (10b)
HS _H) R (6 +x3) 8
g1~ (X1, X2, X3) = o P | (8a)
1
f(x) = EX1(|”|X1| -1, (10c)
f(x1,%2) =H (x1) [1 /—Xl erf (xzw/ﬂ) wherext,x~ are given by Eq. (7c). For high Peclet
2nPy 2x numbers$P; > 1), the heat source moves faster than the
« 2P heat is conducted, so thai = «/—2iP,w;. The Green’s
—éEi (—2271)] , (8b) functiong for this case is [Tichy (1991)]:
1

whereH (u) is the Heaviside unit step function, arfis  g!P (xy,x3) = exp(—3—) . x>0 (11)
the error function and Ei( is the exponential integral vV 2nPixy 2%

function [Tichy (1991)] The influence coefficier® for this half-plane case is

For line contactw, = 0, N1 = 1/®? — 2iPy@;, and the
Green’s functiorg and the influence coefficiefd for the
halfplane are GMP (x1,x3) = f (X", %3) — (X", Xa3), (12a)
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found by the same process as those for the matching dif-

fusivity case. Since influence coefficients are not avail-

_ Py able for the general halfspace (or halfplane) case when
Fa.x) = H () [X?’ erf (x3\/2:)(1) x3 # 0, influence coefficients cannot be found for ei-
ther of these two (matching diffusivity and heated slab)

T s (_@)] (12b) examples. A third example, though, does have closed
nPy 2 )| form influence coefficients. For the fast-moving line con-

tact case(P,P, >> 1), the parameter rati® is given
_ k/vKi—ke/vie
ke /KL /i

Green'’s function is given by

wherext,x~ are given by Eq. (7c). For the surfagg= by R
0, Eq. (12) was found by Tichy (1991).

The coating’s correction

2.2 Coated Case

For analytical inversion of the coating’s correction FRE%(XLx3):gTP(xLx@iR’“[ex(ﬂ)—l—exp(ﬁ)]
and the substrate’s FRF from Eq. (5), the series expan- m=1 2 2x1
sion technique gives (14)

wherezE = 4hm(hm=x3) and g (x¢,xs) is given by

~ 2S Eqg. (11). The substrate’s Green'’s function is given b
85 = = coshmixs) (13a) a- (11) g y
N1
2k2/1/K2
02 (X1,X3) = :
5 2ky ki/v/x1+ka//x2
=< (1+9Sexp[-n2x3—h(n1—
%= +k2n2( ) exp[—n2xs —h(N1—n2)] o .
(13b) P -2 P
g5 (X1,X3) |exp % +n§1 R™exp e (15)
S= ) R"exp(—2n:hm), 13c
,Z‘l P(=2nahm) (13c) wherezy, = hPy, (WP + 2x3v/P2), P = (1+2m) /Py —
ki — komo VP2, andgh'® (x4, x3) is given by Eq. (11), with the sub-
R= K+ Koo (13d) stitution of P, for P,. Equation (14) reduces to the re-

sult by Ling (1973) for the surfacks = 0) temperature
The termsSandR are defined as the correction sum anike. Influence coefficients can be found in closed form
the parameter ratio, respectively. Clearly, the paramBrough term by term integration of the form given by
ter ratio ranges betweenl < R< 1, and for a homoge-Eq. (12). The expressions are lengthy and are not re-
neous bodyR = S= 0. Similar expressions to Eq. (13)ported here.

which represents a series of images in the frequency 49z mmary, the frequency response functions (FRFs) are
main, have been derived in the literature [Ling (1973known for all cases of Peclet number for both the coated

Tian (1992); Tian and Kennedy (1993)]. halfspace and the coated halfplane. Influence coefficients
When the parameter ratio is independent of the frequeme known for many, but not all cases. For the cases
cies (1, mp), it may be possible to invert Eq. (13) anwith known influence coefficients, calculations using the

alytically through term by term integration [e.g. CarrieFRFs in FFT based methods are compared to calculations
and Pearson (1988)]. For example, the matching diffwith these influence coefficients. Methods that use these
sivity case hasc; =k, andR = ki—ko The Green’s €xpressions and FFT to perform these calculations are

. ) . ki +ko” described in the next section.
functions for point and line contact can be found term by

term using Egs. (A4) — (A5). Another example is thg EET M
ethod
heated slab case, which hless= 0 andR= 1. While ©
the Green'’s functiong, are meaningless whda = 0, For an arbitrary applied heat flux, solution of Eq. (4) can
the Green’s functiong; for the coating (slab) can bebe calculated quickly by using the FFT and by assuming
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that the heat flux is constant over elements that subdivideT
the contact region. These elements must be in a rectan- o
gular grid, with a power of 2 number of elements in each
direction. Refinement of the grid can occur only by in- |
creasing the number of grids to a higher power of 2 in
each direction, and thus, the grid must be refined in en- 04,
tirety, and not in specific locations of interest. Despite
these restrictions, FFT methods hold much promise for
tribological contact problems because of the small num- ;
ber of required operations, as compared with direct mul- R
tiplication methods. Also, enhanced FFT methods that ‘ ‘ ‘ ‘ ‘
calculate transforms from real data by exploiting com- 3 2 . 0 ! 2 3
plex conjugate symmetries are readily available [Press,
Teukolsky, Vetterling and Flannery (1992)]. HoweveFigure 2 : Periodicity correction by frequency refine-
the FFT, which is a clever algorithm for exactly calcument. The triangles show the IFFT results for the line
lating the discrete Fourier transform [Stein (1997)], irsource case witR = 1, plotted for different values d¥l,
volves periodicity concerns which must be addressed.th# frequency domain refinement factor. The analytical
this light, three FFT-based approaches used here are s@ution is the solid line.

cussed next.

S M=1,2,4,8,16

0.2

Since the frequency response functions (FRFs) are avail-
able, they can be used directly in an FFT-based approach

to obtain the temperature rise, by transforming the & -Sm((_”l) /0)1-| Inf F'gr']. 2, the slurfa;]ce(g ? 0 t;zmper_a—d_
plied heat flux into the frequency domain, multiplyin ure rise results for this example show that the periodic-

with the FRF point by point, and inverting the result int y effects are significantly diminished as the frequency

the spatial (target) domain. If the analytical transform ffeflnement factoM > 8. The dashed curves show the

the applied heat flux is available, it can be used in Eqg. ( ;FT rers1ult W'tIhM als inldi(_:atedf, while ths solid curv_eh
otherwise the heat flux can be transformed by FFT in ows the analytical solution of Egs. (3b) - (3c), wit

the frequency domain first. Note that the infinite term i :h)l(llzli_TL X E X1 1 Nﬁte”t:h:f; the blljlk |shset folr
the frequency response functiddsw = ®, = 0) — ] eac curve by setting the equalto the analyt-
@ at the reference point = —3. The case witt =1

must be discarded, and that this causes the loss of b Do
ows complete periodicity, as the curve can be seen to

information [Liu, Wang and Liu (2000)]. Numerical orls he f _ 3and : _ 4
analytical integration around this singular point may b ave the rame aq=3an f[o return in step ag = —3. ,
e cases witltM > 8 show improved accuracy that di-

used to retrieve this lost information, but researchers ¢

often consider a reference point and/or a physical ardn'-mShes slightly towards the right of the frame.
ment to set the bulk. The frequency refinement corresponds to expansion in

The above inverse FFT (IFFT) method, which uses tmee spatial domain, and, clearly, this frequency refine-

: , . t is not necessary in periodic problems [Polonsky
continuous convolution theorem, should be applied dpen o : . )
rectly to Eq. (4) with a frequency refinement factdr and Keer (2000); Liu, Wang and Liu (2000); Colin and

of at least 8 to diminish the aliasing (periodicity) erroFUbreCht (2001)]. In a nonperiodic contact problem, the

[Polonsky and Keer (2000); Liu, Wang and Liu (2000)f0maCt solver algorithm [e.g. Polonsky and Keer (1999)]

This refinement factor gives the frequency step size ig:g;hehheat partltlt_)n algorithm [e-0. dBr?s a?_d '\STS
be Aw; = 2t/NMA1, whereN is the number of eIe-( ) have many iteration steps, and the refined fre-

ments in the target domain (bathandM must be pow- guency (or expanded spatial) domain required to reduce

ers of 2). For example, consider the homogeneous Img aliasing error in the IFFT method would slow down

contact case, with a length patch of constant heat fl'@? corr:u_outatl_on speedhdrzmatlcally andluhnecre])ssarlly.
q=1over—1< x; < 1, and wheré, = 1 andN = 128. t each iteration step, the discrete convolution theorem

This heat flux has an analytical Fourier transfogra: - should be used with the influence coefficieB{dbecause
the computational domain required to completely avoid
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aliasing error is only twice as large as the target domain Results
[Press, Teukolsky, Vetterling and Flannery (1992); Liu, . _
Wang and Liu (2000)]. To use the discrete convoluticJH this sectlon_, the results from the FFT methods are pre-

FFT algorithm, special attention must be placed both fgcnted and discussed. For the halfspace cases, the sur-

the wrap-around order for the influence coefficients a € of the halfspace is discretized into a grid, with 128

on the zero padding for the applied heat flux. Wra[S'-OOIeSin each glirection_that éireosop:IGCSG;i fmfg Xhl §F3R’F
around order refers to the standard FFT process of plét,s- < Xz < 3, gVing Ay = AZ__ ) 5. or the
ethod, the frequency refinement factdr is chosen

ing all the negative values of the array after the positive
g g y P §Je 8, in each direction, while for the IFFT method

values; zero padding refers to the standard FFT procé%_ 16. The IFET hod : p b
of zeroing all nodes outside the target domain [Preé\é,— - 1he metho requires more re inement be-
Teukolsky, Vetterling and Flannery (1992)]. cause the FRF method has heat input over only one ele-

) o . ment. The halfplane cases use the same values, but the
The influence coefficients are needed for the d'scr%ligcretization is in they, direction only

convolution at every iteration step, and therefore, the

should be found in a preprocessing algorithm, either iole h il b foctlv d
inverse FFT from the frequency response functions (Fﬁ%‘!se even simple heat sources will not be periectly de-
cribed by square patches of constant heat flux. The

method) or by integration of the Green’s function ovesr_ff FET hod lied ol ;
constant patches of applied heat flux (IC method). If tﬁé erent methods were applied to simple cases for

influence coefficients are available in closed form, thgﬁe heat flux, for both the point contact and line contact

the closed form expressions should be used. Closed forres: and the results are presented next.

expressions for several cases were presented in the previ- .
oulcsJ sections. The FRF method for dpetermining the irﬁ‘lg'-l Homogeneous Case: Circular Patch
ence coefficients for the line contact problem is describgfle FFT methods are applied to the halfspace case Eq.
next. (6) to find the surfaceiz = 0 temperature rise due to a
Numerical influence coefficients are found in the FR¥oNstant heat input over a circular patch of nondimen-
method by inverting the line contact frequency responsi@nal radiusa. To set the bulk temperature rise, which
functions, which are given by Eq. (5), with, = 0. The is lostin the FFT methods, an analytical result presented
patch has length equal to the node spadingand it is Next. For observation points, ) inside a circular patch
centered at the origin. Thus, the transform domain inflaf radiusa, the integration becomes

ence coefficient is

te that the discretization alone produces errors be-

+n s
TS (x4, %2, 0) :/_ /o exp[—P1s(14 cosy)] dsdy
G (1) = gsin(w141/2) / (01/2) (16) (17)

_ where
The three FFT-based methods can be summarized as fol-

lows. The IFFT method, which utilizes the continuous 2 2
. . .. S= (Xl — &1) + (Xz — &2)
convolution theorem, applies for periodic problems, wi ’

no expanded domain, and for nonperiodic problems, VAt~ X1 = scosy, &z — X = ssiny (18a)
an expanded domain (or frequency refinement) by at least
8 times. The FRF method and the IC method utilize the= —r cos(y — 8) + \/a2 —r2sir? (y - 0) (18b)
discrete convolution theorem and, therefore, rely on the
influence coefficients, which are found by IFFT in the— , /52 2 x; = rcosd, x,=rsin® (18c)

FRF method or by analytical (or other numerical) means

in the IC method. Using the FFT with the discrete corFhis polar coordinate transformation is used in Johnson
volution theorem produces no additional periodicity e(1985) for pressure on a halfspace. Here, the integration
ror. In this light, the three methods are applied to specif& not axisymmetric because of the motion of the heat
problems in the next section. source in thex; direction. For observation at the center



Steady-state temperature rise in coated halfspaces and halfplanes 489

(r = 0) of the circular patch, analytical integration gives

[Abramowitz and Stegun (1972)]: ) X
HS _ e (3 & a
THS (0,0 = = [E(r) (1 rZ)K(r)], r>a

T5(0,0) = 2naexp(—P1a) [lo(P1a) + 11 (Pa)]  (19) (22Db)

wherel, (u) is the modified Bessel function of the ﬁrsyvherel_< (w) andE(u) are the complete elliptic integral
kind of ordem. Typical values for Eq. (19), faa= 1, are of the first and second kind [Johnson (1985)]
THS=1,0.9524, 0.6737, 0.3475 and 0.2491,Rer= 0,
0.1, 1, 5 and 10, respectively. For all other observation, 0_;7
points (inside or outside the circular patch) closed form ;|
expressions are not available. 07

The IFFT and FRF methods are used for the general ...
case of arbitrary Peclet number. For the IFFT method, . #-o
note that the heat flux has an analytical transform for o:1 '
this case, found by direct integration, using a polar co- **] 7 R R
ordinate system that takes advantage of the relation be- 0';’ ‘ ‘ ‘ ‘
tween Fourier transforms and Hankel transforms [Sned- = 2 A 0 ! 2 3

don (1951)], givin -
( )1 ghving Figure 3 : Homogeneous Pint Contact: Circle Source.

The surface temperature rise is plottedxsfor various
Peclet numbers. The solid lines are the FRF method re-
sults, while the dashed lines are the IC method results for
high Peclet number.

wherew? = @? + 03 andJ, (u) is the Bessel function of
the first kind of orden. Also, the methods are compareg, Fig. 3, several values d® = P; are used to show

to an IC method, which uses numerical and analytiGal FET results for the surface = 0 temperature rise
inte_:gra_ltion applied Fo the follpwing form of Eq. (17);7 — T, Vs. X1, With x, = 0. Since the IFFT, FRF and IC
which isolates the singular point: results are nearly identical (indistinguishable on a graph
like Fig. 3) for each case of Peclet number, only the re-
sults from the FRF method are shown for the arbitrary
H [ exp{—=Pi[(s—(x1—-&))]} -1 Peclet number case. The high Peclet number solution of
G S(xl,xz,O)_// S 0810, Eq. (8), which is used in the discrete convolution the-
1 orem algorithm (IC method), is shown in Fig. 3 to be
—|—// —d&1d&, (21) appropriate foP > 5 orP > 10. Since the bulk informa-
S tion is lost, all curves (both those from the FRF method

and those from the IC method) are set relative to the an-

The second integral on the right hand side is analyticaliyytical result from Eq. (19), i.. relative to the reference
integrated by Eq. (7), and the first integral will have reggpint at the origin.

sonable accuracy by _Slmpson S methqd [Rodgers, 200I:I'Il'e average absolute errors between pairs of results are
The area of integration of Eq. (21) is the rectangul

patch of Eq. (7), and so the result is used in the discr%‘rgen as follows: Fol =0, this error between the IC
' ' . . ethod (using Eg. (21), which is completely analytical
convolution theorem algorithm (IC method). Finally, all (using Eq. (21) pletely y

. Eq. (7) — forP; = 0) and the analytical solution of Eq.
three FFT methods are compared to the analytical resu&sz) is 6.9 (10°%). TEwis error is the discretization error
which apply forP; = 0:

of approximating a circle by a rectangular grid. Also, for
2a_ /1 P = 0, this error between the FRF method and the ana-

TS (x1,%,0) = s (5) , r<a (22a) |ytical solution of Eq. (22) is approximately 7.4 (16).

. 4——— P =1, High Peclet

P =5, High Peclet
P = 10, High Peclet

a
(o1, 02) = Zn/o Jo (rw) rdr = ZTCTaJl (aw) (20)
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Thus the error of the FRF method is only slightly morfast-moving solution of Eq. (12) is graphed once for all
than the discretization error, f&r= 0. For all other val- Peclet numbers [Johnson (1985); Tichy (1991); Williams
ues ofP, this error between the FRF method and the I@994)]. Note that Fig. 4b appears to indicate that as the
method is less than 1.7 (16), and this error between thespeed increases, the temperature also increases, which is
FRF method and the IFFT method is less than 7.5¢10 anti-physical and an artifact from the choice of ordinate.

In conclusion, the error of the FRF method is comparBeth Fig. 3 and Fig. 4a, which do not have this ordinate,
ble to that of the IC method, and both methods requigése the correct impression. Finally, it is worth mention-
the same computational cost, provided that the influeriog that some researchers have chdBBras the ordinate
coefficients are calculated in preprocessing. [Jaeger (1942); Carslaw and Jaeger (1959)].

4.2 Homogeneous Case: Length Patch 4
T

The IFFT and FRF methods are applied to the halfplane
case to find the surface; = 0 temperature rise due to 3
a constant heat input over a lendthk= 1. For the IFFT 251
method, note that the analytical transform of the heat flux
is G(m1) = 2sin(w1) /1.

Ju and Farris (1997) used IFFT for this problem, with an
expanded computational domain of 409.@ere, 4L

= 96L), a total number of elements of 8192 (heh 1
= 2048) and a discretization step of 0.05 (hetg, = o
0.046875). Thus, the step size of Ju and Farris (1997) is
approximately the same as this study, while their compu-
tational domain and the total number of elements are both 12
about 4 times as large. Thus, this study could change taJ/p N
M = 64 instead oM = 16, but, as shown in Fig. 2, the
diminishing of periodicity effects are negligible for this 08 1
change oM.

The FFT based methods are compared to the analytical
influence coefficients of Eq. (9) and to the low and high
Peclet number expressions of Egs. (10) and (12), respec- o2 -
tively. The surfacexs = 0 temperature risé = T; from :
the FRF method is shown in Fig. 4 for the arbitrary Peclet 5 5 B . 1 ) ;
number case because the IFFT, FRF and analytical results

are all nearly identical (indistinguishable on a graph like (b)
Fig. 4), for each case of Peclet number. In Fig. 4a, thigure 4: Homogeneous Line Contact: Length Source.
curves for several values of Peclet numBet P; show (@) The surface temperature rise is plottedxsfor var-

that the low Peclet number expressions from Eq. (1@Hs Peclet numbers. The solid lines are the FRF method
are appropriate faP < 0.1 and that the high Peclet numZesults, while the dashed lines are the analytical results
ber expressions from Eq. (12) are appropriatefor 5. for low and hight Peclet number. (b) The curves from (a)
Note that the low Peclet number expression of Eq. (18§ multiplied byy/P, and the fast-moving case is plotted
and the FFT results must have reference points. The b@fkce for all Peclet numbers &-— co.

is set for the FFT results by the analytical result from Eq.

(9) forx= —3, while the bulk is set for thE = 0 case by Again, the average absolute errors between pairs of re-
adding 3 to each point’s calculated result (to match tiselts are given as follows: For all values®fthis error

P =0.01 value ai = 0). In Fig. 4b, the same calculatedbetween the FRF method and the analytical solution of
results are presented, but with a new ordinate. The orBig. (9) is less than 1.6 (18), between the IFFT method
nateT+/P is chosen to make the plot more concise; tand Eq. (9) is less than 2.1 (18) and between the FRF
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method and the IFFT method is less than 6.0730 rameter study involves changikgwhile keeping; = 1,
These errors are slightly higher than those for the cthe ordinate isT;/k; = T1/qoL. For comparison with
cular patch case, but the temperature rise is also higtiex influence coefficients, which can be found from Egs.
because the width of the heat source is infinite. Also, tHi4) and (12), the substrate Peclet number was chosen to
heat has only two directions in which to dissipate, whiche quite highP, = 20. Thus even whef; /P, = 0.5,
likely leads to an increased need to expand the spatial @-= 10, and the fast moving case should still be ap-
main to diminish the periodicity effects. In this light, angropriate. The average absolute errors between the FRF
since the error of the FRF method is comparable to thaethod and the analytical are less than 7.8~ (0and

of the IFFT method, the FRF method shows promise 5 (1073) for all cases shown in (a) and (b), respectively.

use in contact and heat partition problems. The FRF method results for the surface temperature vs.
X1, with xo = 0, caused by the line source and the cir-
cle source, are shown in Figs. 6 and 7, respectively, with

P, =k, = 1. Againthe thicknesses are {&r 0.1 and (b)
h= 1.0 and the ordinate i§; /ky = T1/qoL. In Figs. (5)

klk =05 ,
03 P/P,=05

12

I
oL

<

kilk=2.0
P\/P,=20

0.8

[

0.7

[~
S
™~

0.6

(b)

Figure5: Coated Line Contact: Fast Moving Case for  *

the Length Source. The FRF method results for the tem-

perature are plotted vsx; in a parameter study with ? ' ' X

P, = 20 andk, = 1. The thicker solid line in the mid- (b)

dle is the homogeneous result. fex 0.1 (b)h=1.0. Figure 6 : Coated Line Contact: Length Source. The
FRF method results for the temperature are plottedys.
in a parameter study witR, = ko = 1. The thicker solid

4.3 Parameter Study line in the middle is the homogeneous result.i{& 0.1

=1.0.

b)h
The FRF method results for the surface temperatlgrg
caused by a fast moving line source are shown in Fig. 5
for thickness of (ajh = 0.1 and (b)h = 1.0. Since the pa- — (7), the thicker solid line shows the homogeneous case
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has over surface temperature.

5 Conclusions

Steady-state halfspace and halfplane temperature rise due
to frictional heating was studied with fast Fourier trans-
form methods. The Green’s functions and influence coef-
ficients found in the literature for special cases were com-
piled. These cases were used to show the range of appli-
cability of the frequency response functions, which are
the Fourier transformed Green’s functions and which are
found in closed form from Fourier analysis of the govern-
ing equations and boundary conditions. The coated half-
plane case for the fast-moving heat source was used to
perform a brief parameter study of the conductivity and
diffusivity ratios. Higher coating conductivity and lower
coating diffusivity leads to a decrease in surface temper-
ature. This effect is magnified as the coating thickness
increases. In all cases, the results from the FFT based
numerical methods and from available analytical expres-
sions showed excellent agreement.
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Nomenclature

results. In each of those six figures, two curves are abo\g
the homogeneous curve and two curves are below thg
homogeneous curve. Thus, the parameter study sho\@gs
that higher surface temperature is associated with loweéry
coating conductivity and lower coating Peclet numberh
Because the Peclet number is inversely proportional tpj (x)
the diffusivity, higher surface temperature is associated
with higher coating diffusivity. Note that the conductiv- |
ity forces the coated curves to be above or below the ha;
mogeneous curve, and therefore the coating conductivity
is more important than the coating diffusivity. The ef- M
fect of the thickness can be seen by comparing parts (@)
h=0.1and (b)h= 1.0 of Figs. (5) — (7). The thicker P,
coating cases (b) show temperatures much more spregd
out from the homogeneous than the thinner coating caseg
(a) . Thus, the thicker the coating, the more influence ig

Frequency response function.

Green'’s function.

Influence coefficient.

Thickness of the coating, m.
Nondimensional thickness of the coating.
Heaviside unit step function.

V-1

Subscript for coating = 1), substratdj = 2).
Conductivity, J/m ° ks or w/m° k.
Half-length of the heat source, m.
Frequency refinement factor.

Number of nodes ix; direction

Peclet number.

Heat flux, W/nfor N/ms.

Maximum heat flux, W/rfor N/ms.
Nondimensional heat flux.
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R Parameter ratio. tion, Ax= Lyx/N, Ao = 21t/Ly, and

S Correction sum.

T Temperature rise, ° k. X =kax,  k=0,...,N-1 (A3a)

T Nondimensional temperature rise. N n—o. N

u Speed of the heat flux in thex, direction, m/s¢, — Ag. ’ N T2 (A3b)

w Radius in the frequency domain? = @? + w3. (n—N), n= 5>+1.N-1

Xm Coordinate irm= 1,2, 3 direction, m.

Xm Nondimensional coordinate in Following Press, Teukolsky, Vetterling and Flannery

m= 1,2, 3 direction, m.
A1,A;  Nodal spacing in 12 direction.

Kj Thermal diffusivity, nf/s.
nj Frequency domain parameter.
p Nondimensional distance.

w1, Frequency domain counterpartxaf, xo

Appendix: Fourier Analysis

(1992) and Liu, Wang and Liu (2000), in Eq. (A2b), the
sum in the right equation is a cyclic convolution where
k—n=k—n+N if k< n, and the transfornG (o) in

the left equation is the discrete transform of a wrapped-
aroundG(xk) (i.e. choosex as in Eq. (A3b)). In
this paper, using Egs. (Al) — (A2 is the Green'’s
function andG is the influence coefficient, such that

X/
o= [ atx-5)dg

The continuous forward and inverse Fourier transformportam transform pairs for this paper are given by

and convolution theorem are:

F (o) = /+mF (x) exp(+iwx) dx,

—oo

F(x) = %/erlf () exp(—iox) do

—oo

the following [Campbell and Foster (1931); Rodgers
(2001)], withxz > 0:

exp(—x3, [ @f 4+ 03+ P2)
(Ala) §(wq,m2,X3) = )
oF + w3 + P2

_ exp(=Pp)
F(0) =§(0) §(o), 9 (X1, %2, X3) = 2p (Ada)
oo
F(x) = / g(x—y)a(y) dy (Alb) exp(—xg,/w§+ pZ)
- §(01,%) = - :
whereo is the angular frequency andrepresents a con- of + P?
tinuous Fourier transformed function [Press, Teukolsky, 1
Vetterling and Flannery (1992)]. 9(x1,%3) = Ko (P\/ X%"‘X%) (A4b)
The discrete forward and inverse Fourier transform and exp(—xs |o1])
convolution theorem are [Stein (1997)]: §(o1,%5) = ,
||
1
A N-1 g(X1,X3) = —=Iny /X2 +x3 (A4c)
F (o0n) = AX Y F (%) exp(+ionx), b =5 L ,
k=0 §(x0, @p) = H (x1) exp(—xlwz)
NS Y /2nPx 2P )’
F (X) = Ao Y F (@n) exp(—ionx) (A2a) ! 5
2 i g 30) = oY exp( D% (ndd)
' 27'CX1 2X1
- A () — exp(—x3v/—2iPo;)
F (O)n) = G((Dn) (’j((})n) , 9(0)17 3) - \/TP(J)]_
N—1
F (%) = Y, G(X—Xn) q(Xn) (A2Db) g(X1,X3) = altsy exp(—P—X%) (Ade)
n=0 7 \/27'[',PX1 2X1

where” represents a discrete Fourier transformed furtherep = {/x2 +x3 +x2. Note that an appropriate spa-
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tial reference point must be used in Eq. (A4c) to iglu, F. D.; Liu, J. C. (1988): Parameters affecting
nore the infinite bulk effect. The transform pairs used thermo-mechanical cracking in coated media due to
the text follow from applying combinations of Eq. (A4)high-speed friction load] Tribol, vol. 110, pp. 222-227.

with the frequency shift formula [Campbell and Fosteyy, v.; Farris, T. N. (1997): FFT thermoelastic solutions
(1931)]: for moving heat sourced. Tribol, vol 119, pp. 156-162.

E - PO _ Kennedy, F. E.; Calin, F., Floguet, A.; Glovsky, R.
h(e2) =glor=1P), hia)=gla)exp(Pr) — (A3) (1984): Improved techniques for finite element analy-
sis of sliding surface temperatures. In: D. Dowson, et
al. (eds)Developments in Numerical and Experimen-
Abramowitz, M.; Stegun, I. A. (1972): Handbook of  tal Methods Applied to Tribology, Butterworths, London,
Mathematical Functions, Dover Publications, Inc., New pp. 138-150.

References

York. Leroy, J. M.; Floquet, A.; Villechaise, B. (1989): Ther-
Archard, J. F. (1958): The temperature of rubbing surmomechanical behavior of multilayered media: Theory.
faces.Wear, vol. 2, pp. 438-455. J Tribol, vol. 111, pp. 538-544.

Blok, H. (1937): Theoretical study of temperature rise ateroy, J. M.; Floquet, A.; Villechaise, B. (1990): Ther-
surfaces of actual contact under oiliness conditions. kmomechanical behavior of multilayered media: Results.
Proc Ins Mech Eng Gen Disc Lubr, vol. 2, Institution of J Triboal, vol. 111, pp. 317-323.

Mechanical Engineers, London, pp. 222-235. Ling, F. F. (1973): Surface Mechanics, John Wiley and
Blok, H. (1963): The flash temperature conceyar, Sons, New York.

vol. 6, pp. 483-493. Liu, G.; Wang, Q. (1999): A thermoelastic asperity con-
Bos, J.; Moes, H. (1995): Frictional heating of tribolog-tact model considering steady-state heat trangiehol

ical contactsJ Tribol, vol. 117, pp. 171-177. Trans, vol. 42, pp. 763-770.

Campbell, G. A.; Foster, R. M. (1931): Fourier Inte- Liu, G.; Wang, Q.; Liu, S. B. (2001): A three-
gralsfor Practical Applications, Bell Telephone Labora- dimensional thermal-mechanical asperity contact model
tories, New York. for two nominally flat surfaces in contacl. Tribol, vol.
Carrier, G. F.; Pearson, C. E. (1988): Partial Differen- 123, pp. 595-602.

tial Equations: Theory and Technique, 2™ Edition, Aca- Liu, S. B.: Wang, Q.; Liu, G. (2000): A versatile

demic Press, San Diego, CA. method of discrete convolution and FFT (DC-FFT) for
Carslaw, H. S;; Jaeger, J. C. (1959): Conduction of contact analysed\ear, vol. 243, pp. 101-111.
Heat in Solids, Oxford University Press, London. Polonsky, I. A.; Keer, L. M. (2000): Fast methods for

Colin, F.; Lubrecht, A. A. (2001): Comparison of FFT-solving rough contact problems: A comparative stutly.
MLMI for elastic deformation calculations. Tribol, vol.  Tribol, vol. 122, pp.36-41.

123, pp. 884-887. Polonsky, I. A.; Keer, L. M. (1999): A new numeri-
Floquet, A. (1985): Les temperatures eclairs en millieg@l method for solving rough contact problems based on
multicouches.Proc Eurotrib ‘85 Lyon, France, vol. 1, the multi-level multi-summation and conjugate gradient
paper 4.2.1, pp. 1-6. techniqueWear, vol. 231, pp. 206-219.

Gao, J.; Lee, S.C.; Ai, X.; Nixon, H. (2000): An Press,W.H.; Teukolsky, S. A.; Vetterling, W. T.; Flan-
FFT-based transient flash temperature model for gendely, B. P. (1992): Numerical Recipes in Fortran, 2™
three-dimensional rough surface contadsTribol, vol. Edition, Cambridge University Press, Cambridge.

122, pp. 519-523. Qui, L.; Cheng, H. S. (1998): Temperature rise simula-
Jaeger, J. C. (1942): Moving sources of heat and th&on of three-dimensional rough surfaces in mixed lubri-
temperature at sliding contact®roc Roy Soc N SW, cation contactJ Tribol, vol. 120, pp. 310-318.

vol. 76, pp. 203-224. Rodgers, M. J. (2001): Computational methods for solv-

Johnson, K. L. (1985): Contact Mechanics, Cambridge ing boundary integral equations in fracture mechanics
University Press, Cambridge. and contact mechanic®h.D. Dissertation, Northwest-



Steady-state temperature rise in coated halfspaces and halfplanes

ern University, Evanston, IL.

Sneddon, 1. N. (1951): Fourier Transforms, Dover Pub-
lications, Inc., New York.

Stein, S. (1997): Introduction to Seismology, Earth-
quakes and Earth Structure, Northwestern University,
Evanston, IL.

Tian, X. (1992): Surface temperature at the contact inter-
face of sliding systemsPh.D. Dissertation, Dartmouth
College, Hanover, NH.

Tian, X.; Kennedy, F. E. (1993): Temperature rise at the
sliding contact interface for a coated semi-infinite body.
J Tribal, vol . 115, pp. 1-9.

Tian, X.; Kennedy, F. E. (1994): Maximum and average
flash temperatures in sliding contacisIribol, vol. 116,
pp. 167-174.

Tichy, J. (1991): Closed-form expression for tempera-
ture in a semi-infinite solid due to a fast moving surface
heat sourcel Tribol, vol. 113, pp. 828-831.

Vick, B.; Golan, L. P.; Furey, M. J. (1994): Thermal
effects due to surface films in sliding contadt.Tribol,
vol. 116, pp. 238-246.

Wang, Q.; Cheng, H. S. (1995): A mixed lubrication
model for journal bearings with a thin soft coating — Part
II: Flash temperature analysis and its application to TiN
coated Al-Si bearingdribol Trans, vol. 38, pp.517-524.
Williams, J. A. (1994): Engineering Tribology, Oxford
University Press, Oxford.

495






