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A Numerical Model for Elastoplastic Rough Contact

P. Sainsot,1 C. Jacq,2 and D. Nélias1

Abstract: Pressure distributions calculated in the
simulation of rough contacts show high values and
induce high stresses just beneath the surface. These
stresses often exceed the yield strength of the material,
therefore, a purely elastic contact model is restrictive.
Plastic flow occurs and modifies the surface shape and
consequently modifies the surface pressure.

This paper presents a numerical model for 3D-
elastoplastic rough contact. It allows the determination
of real pressure and permanent surface displacement
(flattening of asperities) as well as residual stresses and
plastic strains useful in fatigue analysis. The material
is assumed to follow the Von-Mises yield criterion with
isotropic hardening.

The use of FFT in the numerical procedure allows
a large number of meshing points so real surfaces
obtained from a measurement can be considered.

keyword: Contact, plasticity, FFT, boundary integral

Nomenclature

h initial local distance between two bodies
p local pressure on the surface
s deviatoric stress tensor
se elastic deviatoric stress tensor
sr residual deviatoric stress tensor
u displacement vector
ue elastic displacement vector
ur residual displacement vector
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Ckli j influence functions of plastic strains upon
stresses

D jki influence functions of plastic strains
upon displacements

E Young modulus
�M� elasticity matrix
Nc number of points on Γ c

Ni number of points of Γc inside the real
contact area

Ne number of points of Γc outside the real
contact area

Np number of points in Ωp

Ski j influence functions of pressure upon
stresses

U ji influence functions of pressure upon
displacements

δ local distance between two bodies
δi j Kronecker symbol
εp plastic strain tensor
ε strain tensor
εe elastic strain tensor
εr residual strain tensor
ν Poisson coefficient
σ stress tensor
σe elastic stress tensor
σr residual stress tensor
σy traction yield strength
Γc potential contact surface
Ωp plastic zone
µ Lamé coefficient
B, C, n Swift law parameters

1 Introduction

The rough contact problem has been studied for many
years because of its numerous implications in tribology:
friction, wear, fatigue and damage. Recent review arti-
cles on contact mechanics [Barber and Ciavarella (2000)]
and tribology [Tichy and Meyer (2000)] discuss many
important phenomena of tribological contact and em-
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phasize the importance of understanding the effects of
roughness and plasticity. Modeling these effects has
taken two main paths.

The statistical approach to rough contact problems, in-
vestigated by Greenwood and Williamson (1966) and
later by Archard, Hunt, and Onions (1975), yields im-
portant results concerning the behavior at the contact
scale (contact area, normal approach). Simple plasticity
ideas have recently been incorporated into this approach
[Zhao, Maietta, and Chang (2000)]. However, statistical
models cannot predict the distribution of contact spots,
and local pressure or stress values, which play a major
role in material fatigue and damage.

With the increase in computer performance, numerical
models have been developed for the study of complex
contact problems [Kalker (1990)]. Some of them deal
with rough contact [Webster and Sayles (1986), Seabra
and Berthe (1987), Bailey and Sayles (1991)]. When
modeling rough contacts it is necessary to take into ac-
count the multi-scale nature of surface topography. The
surface grid has to be as large as possible to account for
the large wavelength of the roughness components but
also as fine as possible to include the short wavelength of
the roughness. Such grids lead to large numbers of nodes
and equations to solve. This aspect is one of the most
difficult points in the 3D contact modeling. Recently,
fast methods have appeared for solving 3D rough con-
tact problems, some of them are based on the multilevel
technique [Lubrecht and Ioannides (1991)], other on Fast
Fourier Transforms [Nogi and Kato (1997)].

Although these models assumed elastic material behav-
ior, their results show that this assumption was often im-
proper. The current FFT methods, which can address the
contact of elastically coated surfaces [Polonsky and Keer
(2000a)] or thermal distorsion, may also introduce plas-
ticity as an asperity pressure limit, without considering
plastic flow [see for example Liu, Wang, and Liu (2001)].
On the other hand, the use of the finite element method,
which readily treats elastoplastic behavior, leads to costly
calculations when both surface roughness and bulk be-
havior have to be taken into account [Komvopoulos and
Choi (1992)].

In order to overcome these difficulties, a numerical
method based on a boundary integral formulation for
an elastoplastic half space is presented in this paper.
This method is applied to 3D elastoplastic contact prob-
lems with Von-Mises yielding and isotropic hardening.

This new numerical method, which is an extension of
the method presented by Mayeur, Sainsot, and Flamand
(1995), is presented in detail elsewhere [Jacq, Nélias,
Lormand, and Girodin (2002)]. The main assumptions
of the proposed analysis are that of small strains and
rotations, and half infinite bodies. As only parts of the
half plane (i.e. contact surface and plastic zone) have to
be discretized, the numerical system is dramatically re-
duced. Also, the numerical system is well suited for an
FFT-based scheme that is presented here to increase the
speed of computation.

2 Contact Model

The contact problem consists of finding a pressure dis-
tribution p(x) between two surfaces. Denoting h(x) the
initial gap between the surfaces before loading, the local
gap between the deformed surfaces δ(x) after loading can
be written as:

δ�x� � u�x��h�x� (1)

where u is the normal displacement difference. The
main feature of the contact problem consists of the mixed
boundary conditions that arise on the contact surface.
Furthermore, these boundary conditions are explained
with inequalities, and the contact surface is unknown.
So, we have to define a potential contact surface, Γc, that
contains the real contact surface. Γc is subjected to the
boundary conditions:

δ� 0
p � 0

�
on Γc (2)

The first condition is a non penetration condition, and the
second implies that surface pressure are only positive (x 3

axis is defined entering in the body, see figure 1).
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Figure 1 : Contact problem description.
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Each body has to satisfy stress equilibrium (bulk equa-
tion) and is submitted to additional classical boundary
conditions, i.e. displacements and/or forces prescribed
on some parts of its surface. When the contact area is
small compared to the dimensions of the body, and when
surface slopes are small, the solids in contact can be con-
sidered as two half spaces.

For elastic bodies the Boussinesq relations between load
and displacement at the surface can then be used [John-
son (1985)]. In addition, this assumption enables the
substitution of the classical boundary conditions (dis-
placements or forces prescribed) by a load or rigid body
movement condition. The use of the Boussinesq load-
displacement relation leads to:

u�x� �
�

Γc

U�x�ξξξ�p�ξξξ�dΓ�ξξξ� (3)

where x and ξξξ are two points on the surface, and U�x�ξξξ�
is the displacement at point x due to an unit load at point
ξξξ. This relation verifies stress equilibrium, elastic behav-
ior and small strains assumption. As Γ c is unknown, the
procedure is iterative.

3 Elastoplastic Behavior

Elastoplastic material behavior is characterized by the
appearance of strains, which are instantaneous, irrecov-
erable and are submitted to a threshold condition. The
first characteristic means that plasticity is time indepen-
dent, but the two others imply that it is a path dependent
(dissipative) phenomenon.

Many different behaviors have been observed above the
elastic limit, concerning materials and loading condi-
tions. Thus many constitutive laws have been pro-
posed to describe plasticity. Here we consider a material
that obeys to the Von-Mises yield function and presents
an isotropic hardening.

The yield condition is defined by:

f �σi j�ε
p
i j� �

�
3
2

skl : skl�B

�
C�

�
3
2

εp
kl : εp

kl

�n

� 0 (4)

with skl � σkl �
1
3

σiiδkl

skl is the deviatoric stress tensor, ε p
i j the plastic strain ten-

sor components, B, C and n are the parameters of the
Swift law σ � B�C� εp�n and δkl the Kronecker symbol.

In a nine dimensional space (the deviatoric stress space),
the elastic domain is represented by a sphere.

Plastic flow is governed by:

ε̇p
i j �

3
2

1
nB

�
� B�

3
2skl : skl

�
�

1� 1
n

3skl : ṡkl
3
2skl : skl

si j (5)

if f �σi j�ε
p
i j� � 0 and d f � 0

where the dot denotes the rate of the variables.

4 Boundary Integral Formulation

When the contact area is small compared to the dimen-
sions of bodies, the extent of the plastic zone is small.
As discussed before, finite element methods, which need
a discretization of the entire bodies to represent bulk be-
havior, lead to costly calculations for modeling a rough
contact. Keeping the half space assumption, often used
in contact mechanics, a boundary integral formulation is
used, which allows us to discretize only the zone where
plasticity occurs (in addition to contact surface).

When a half space is subjected to a load distribution at
its surface Γ, together with an inelastic strain distribution
in its volume Ω, displacements at each point ξ can be
expressed as follow:

ui �ξ� �
�

Γ

u�i j �ξ�x� p j �x� dΓ �x�

�
�

Ω

	
σ�jki �ξ�x��ν σ�lli �ξ�x�



εp

jk �x� dΩ�x� (6)

where u�i j �ξ�x� and σ�jki �ξ�x� correspond respectively to
components (j) and (jk) of displacement and strain at
point x due to a unit force applied in direction (i) at point
ξ in a half plane.

This expression has been proposed by Telles and Brebbia
(1981), and is derived from the application of the recip-
rocal theorem with initial strains, using the fundamental
solution of a half space domain with a free boundary;
using this formulation, a distinct class of boundary ele-
ment methods has been successfully used in soil mechan-
ics problems [Telles and Brebbia (1981), Brebbia, Telles,
and Wrobel (1984)].

The application of a boundary integral formulation im-
plicitly accounts for the elastic (linear) part of the ma-
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terial behavior in bulk. The use of the half space fun-
damental solution implicitly accounts for the geometry.
Thus, only the discretization of the loading surface Γ c

and the plastic zone Ωp is necessary.

As discussed before, the elastoplastic stress tensor σ is
divided into an elastic part σe and a residual part σr:

σ � σe �σr

The corresponding strains are:

ε � εe �εr (7)

They are related to the stresses by:

ε � �M�σ (8)

εe � �M�σe (9)

εr � �M�σr �εp (10)

where �M� is the compliance matrix.

Following the same procedure, displacements can be ex-
pressed as:

u � ue �ur (11)

where ue and ur are defined by:

ue
i �ξ� �

�

Γ

u�i j �ξ�x� p j �x� dΓ �x� (12)

ur
i �ξ� �

�

Ω

	
σ�jki �ξ�x��νσ�lli �ξ�x�



εp

jk �x� dΩ�x� (13)

Each of these two parts has a physical meaning: u e cor-
responds to the solution for a purely elastic material, and
ur corresponds to the stabilized state when the half space
is unloaded, since no plasticity occurs during unloading
because of the chosen plasticity model.

From a mathematical point of view, ue is the solution of
the associated homogeneous problem of elasticity with
initial strains which satisfy the boundary conditions, and
ur is a specific solution of the total problem which does
not modify the boundary conditions.

5 Resolution/Numerical Procedure

5.1 Discretization

Following Seabra and Berthe (1987), the potential con-
tact surface Γc is discretized into Nc elements of the same

size where the pressure is assumed to be constant. N i

and Ne are the numbers of elements of Γc inside and out-
side the real contact area (Ni + Ne = Nc�. Furthermore,
the plasticized volume is discretized into N p rectangu-
lar cells where plastic strains are assumed to be constant.
Equation (6) can be rewritten as:

ui �ξ��
Ni

∑
n�1

��
Γn

u�i jdΓ
�

p j �n��
Np

∑
m�1

��
Ωm

	
σ�jki�νσ�lli



dΩ
�

εp
jk�m�

(14)

where Γn and Ωm are the local domains associated to el-
ements n and m.

Integrals over each element are calculated analytically,
as allowed by the simple interpolation (constant). There-
fore, equation (14) results in:

ui �ξ� �
Ni

∑
n�1

Uji�n�ξ� p j �n� �
Np

∑
m�1

D jki�m�ξ� εp
jk �m� (15)

Ui j and Di jk are analytical functions for the point ξ. They
can be derived and combined to give the stress compo-
nents in the form:

σi j �ξ� �
Ni

∑
n�1

Ski j�n�ξ� pk �n� �
Np

∑
m�1

Ckli j�m�ξ� εp
jk �m�

(16)

Expressions of Ui j and Si jk correspond to displacements
and stresses due to a rectangular distribution of pressure
on the half plane surface and can be found in Johnson
(1985). Expressions of D i jk and Ci jkl are the displace-
ments and stresses due to an uniform distribution of plas-
tic strains in a parallelepiped cell surrounded by an elas-
tic half space. Displacement functions are given else-
where [Jacq, Nélias, Lormand, and Girodin (2002)] and
stress functions can be found from Chiu (1977, 1978).
The use of a constant discretization step leads to a re-
duced number of stored coefficients.

Relations (1), (2) and (6) are then discretized, and the
following two systems of equations are given:

Elastic system
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ue
i �n��

Ni

∑
m�1

Uji�m�n�p j�m� n � 1�Nc �17�

ue�n��ur�n��h�n� � 0 n � 1�Ni �18�
p�n�� 0 n � 1�Ni �19�
ue�n��ur�n��h�n�� 0 n � Ni�1�Ni�Ne�Nc

�20�
p�n� � 0 n � Ni�1�Ni�Ne�Nc

�21�

When the pressure distribution on Γ c is known, elastic
stresses in bulk can be obtained using:

σe
i j �ξ� �

Ni

∑
n�1

Ski j�n�ξ� pk �n� (22)

Residual system

σr
i j�n� �

Np

∑
m�1

Ckli j�m�n� εp
kl�m� n � 1�Np (23)

ε̇p
i j �

3
2Cσ2

y

�
si j�Cεp

i j

�
ṡi j

�
si j�Cεp

i j

�
(24)

if f �n� � 0 and d f �n� � 0 n � 1�N p

Once the εP values are known, displacements on the sur-
face can be obtained using:

ur
i �n� �

Np

∑
m�1

Dkli�m�n� εp
kl�m� n � 1�Nc (25)

Only normal displacements will be computed. Tangential
displacements are neglected.

5.2 Resolution

Elastic problem

For a given distribution of u r, the elastic problem cor-
responds to an elastic contact problem with an apparent
distance ur + h instead of h. It has been solved using the
multigrid method proposed by Lubrecht and Ioannides
(1991). Elastic stresses are then computed using equa-
tion (22).

Residual problem

The residual problem required a step by step loading, to
take the loading path into account. For a given load, a
load increment is applied. From this load increment, a
stress field increment σ̇ecan be calculated. Plastic strain
increment is obtained using (24). Residual stress incre-
ment can then be determined from equation (23) and
implemented in the plastic strain increment calculation.
This process is repeated until convergence. Under re-
laxation must be used to reduce the number of iterations.
Convergence difficulties can arise when hardening is low,
i.e. when moderate or high plastic deformations are lo-
cally found (typically for the Swift law used when ε p ex-
ceeds 5%), which however is beyond the domain of va-
lidity of the model (small strain assumption).

Once the solution is obtained for ε p and σr, the displace-
ments ur are calculated using (25).

5.3 Coupling of the two parts

The two parts ue and ur are dependent. Each is the so-
lution of a problem where the other is assumed to be
known. Since the assumption of small strains and ro-
tations is made, the elastic and the plastic solutions can
be superposed. Thus another iterative process is used.
Initially, we suppose that no plasticity occurs and elastic
contact is solved with the conditions:�

h�ue � 0
σe �n� 0

The resulting stresses σe are used to determine the corre-
sponding εp, σr, and ur. Then uris used to solve another
contact problem and this procedure is repeated until con-
vergence. Under relaxation of ur is used to improve con-
vergence.

5.4 Validation

The methodology presented above has been computed in
Fortran 90 under a Windows NT environment. More de-
tails on the theory and on the numerical procedure can be
found in a previous paper mostly focused on the formu-
lation of the elasto-plastic contact problem [Jacq, Nélias,
Lormand, and Girodin (2002)]. An example of validation
given previously is recalled here to attest the validity of
the model.

A comparison with the commercial finite element code
ABAQUS has been made. The validation test consist of
the nano-indentation of a steel half space whose elastic
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characteristics are E=210 Gpa and ν=0.3 for the Young
modulus and Poisson coefficient. Its plastic behavior
is described by the Swift’s law whose parameter are
B=1240 MPa , C=30 and n=0.085. The punch is a rigid
sphere of 105µm radius. The evolution of the load with
the rigid body displacement is plotted in figure 2. The
results supplied by the FE code and by the SAC are iden-
tical. The formed print has a depth of about 80 nm. Be-
cause of the hardening model that has been chosen, no
plasticity occurs during unloading. Therefore, the com-
parison of the unloading of the elastic indentation and the
unloading of the elastic plastic indentation shows the in-
fluence of the geometry change. If the geometry would
not change, the pressure would be the same in both cases,
and the two unloading curves should be only shifted.
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0 100 200 300 400

FE (elastic)
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FE e lastic-plastic
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Figure 2 : Validation of the computer code from [Jacq,
Nélias, Lormand, and Girodin (2002)]: Load vs rigid
body displacement. Rigid punch and elastic-plastic half
space.

6 Discrete Convolution Product Acceleration
Method

The elastoplastic contact resolution is time consuming.
This is primarily due to the calculation of convolution
product of equations (22), (23) and (25). In order to
improve the computational speed of the contact code,
FFT are used to accelerate the calculation of convolution
product.

Fourier transform has the property to change a convo-
lution product in the spatial domain into term product

in the frequency domain. However, when using dis-
crete Fourier transform, the problem becomes periodic.
Special care must then be taken to cancel this effect.
Simply enlarging the computational domain for the pe-
riodic problem causes too great of a computational bur-
den [Polonsky and Keer (2000b)]. Misunderstanding the
difference between discrete convolution and continuous
convolution also causes problems [Liu, Wang, and Liu
(2000)].

Consider a pressure distribution given on N points. To
calculate stresses in the bulk under the pressure distri-
bution, 2N influence coefficients are required. If FFT is
used to perform the convolution product, the period of
the functions must be chosen following the relationship
given by Brigham (1974) 2N+N-1, so that no overlap
occurs. The convolution will be correct over the 3N-1
points and stresses over the N points. However, the zone
where accurate stress is required is often narrow. It is
then possible to reduce the period of the functions, de-
pending upon the area of interest.

Consider a pressure distribution given on P points num-
bered from 0 to P-1. Accurate stresses are needed on
points from ni to ne. The number of influence coeffi-
cients required for this calculation is given in equation
(26).

Q � max�ne�1�P�ni� (26)

Consider a period of 2Q. The pressure is padded with
zeros between P-1 and 2Q-1 points.

The convolution product can be written as

σe
i j�n� �

2Q�1

∑
i�0

pk�3�i�Si jk�3�n� i� (27)

Since the pressure is padded with zeros, equation (27)
can be simplified

σe
i j�n� �

P�1

∑
i�0

pk�3�i�Si jk�3�n� i� (28)

The non overlapping condition is given by equation (29)

�Q�1 � n� i � Q�1 (29)

From equation (28), one can write that
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n�P�1� n� i� n (30)

The interest area extend from ni to ne. Therefore equa-
tion (30) becomes

ni�P�1 � n� i � ne (31)

The definition of Q leads to

P�ni� Q;ne�1 � Q; So 1�Q � n� i � Q�1 (32)

Equation (32) being equivalent to equation (29) the non
overlapping condition is respected for the points located
between ni and ne. The number of points required to
prevent overlapping due to the use of FFT can then be
reduced by considering the area where accurate stresses
are required. Consider the following example described
in figure 3. The pressure distribution is given on P=10
points. The stress field is required between point 2 and
point 5. The number of influence coefficients required
for calculation is 8=max(5+1,10-2). Therefore, pressure
profile must be extended with zeros to point 15 before
transforming.

0

0,2

0,4

0,6

0,8

1

-7 -2 3 8 13

pressure paded with zeros

periodic influence coefficient

points

Figure 3 : Use of FFT and zero padding.

This method has been extended to two dimensional prob-
lems with no major difficulties, by making the same con-
siderations on both directions independently. This pro-
cess has also been applied to residual stress calculation

and to residual displacement calculation. When calculat-
ing residual stresses or residual displacement, each depth
has to be taken separately, since there is no convolution
product along the vertical axis.

In order to still reduce the computational cost, several
variables are joined before transforming. Consider the
convolution product of equation (25). To compute this,
it is necessary to transform plastic strain and influence
coefficient, to make the term to term product in the fre-
quency domain and then to make the inverse transform
of the result, needing the computation of two FFT, one
IFFT and a product for each of the six different strain
components. Twelve FFT and six IFFT are then required
to calculate residual displacement induced by each depth.
Consider the complex influence coefficient and the com-
plex plastic strain, constructed as shown in equation (33).

Dikl � Dikl � iDik�1l

εp
kl � εp

kl � iεp
k�1l

(33)

Fourier transform of these complex strain and influence
coefficient can be expressed as a function of the origi-
nal Fourier transform of strain and influence coefficients
(34).

D̃ikl � D̃ikl � iD̃ik�1l

ε̃p
kl � ε̃p

kl � iε̃p
k�1l

(34)

The term to term product can be made in the frequency
domain (35). If the inverse Fourier transform is applied
to this expression (36), the real part is the sum of two
convolution products, and represents the contribution of
εp

kl andεp
k�1l to residual displacement. Hence, using this

method, only six FFT and three IFFT are required to cal-
culate residual displacement, dividing by two the compu-
tational cost.

D̃iklε̃p
kl � D̃iklε̃p

kl � D̃ik�1l ε̃p
k�1l � i�D̃ik�1l ε̃p

kl� ε̃p
k�1l D̃ikl�

(35)

Dikl �εp
kl � Dikl �εp

kl �Dik�1l �εp
k�1l

� i�Dik�1l�εp
kl �εp

k�1l �Dikl� (36)
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This method is also applied to the stress field calculation
from contact pressure σe. Complex influence coefficient
is constructed as indicated in equation (37). Two terms
of the stress tensor can then be calculated simultaneously,
one given by the real part of the result, and the other one
is given in the complex part.

Si jk � Si jk � iSi�1 jk

pk � pk

Si jk� pk � Si jk� pk � iSi�1 jk� pk

(37)

Residual stress field is calculated in the same way, by re-
placing pk with εkl, Si jk with Ci jkl and Si�1 jk with Ci�1 jkl.

7 Results and Discussion

The aim of this section is to illustrate the ability of the
model to deal with elastoplastic rough contact. Results
presented in this paper correspond to the indentation of a
rough elastoplastic half space by a smooth elastic sphere.
Both have the same elastic properties:

E = 210000 MPa

ν � 0�3

Roughness is modeled by a sinusoidal surface profile in
the x direction, of wavelength 0.2 mm and amplitude 2
µm. Sixty points have been used along each surface axis
(1.02 mm). The depth is meshed as deep as necessary.
The contact half width is 0.51 mm and the corresponding
Hertz pressure for two smooth surfaces is 2500 MPa.

The Swift law parameter is used to describe the plastic
behavior of the material. Plastic strains are expressed in
micro-deformation. The parameters describing the mate-
rial are:

B = 1150 MPa

C = 4.0

n = 0.095

The load is applied from zero to the final load in 10 load-
ing steps.

Figure 4 shows the area where plastic deformation oc-
curs, in the (Oxz) plane, O being the center of the con-
tact, and figure 5 shows this area in the plane z/a=0.066,
just below the surface. One can see on these two figures
that the plastically deformed area is as large as the con-
tact zone, and that it is 0.3a deep, a being the semi width
of the contact.

Figure 4 : Plastic zone in the plane y/a = 0.

Figure 5 : Plastic zone in the plane z/a = 0.066.

Figure 6 shows the residual displacement induced by
plastic strain. This is the displacement remaining after
unloading (no plasticity occurs during unloading because
of isotropic hardening). The profile shows that as summit
of asperities are flattened, valleys move up thus reducing
the amplitude of the roughness. However, the displace-
ment remains very weak compared with the amplitude of
roughness, as shown in figure 7. The pressure reduction
is about the same magnitude.

Von Mises stress has been plotted along the z axis at the
center of the contact (figure 8). The effect of the surface
permanent deformation can be seen by comparing the
elastic solution before (elastic contact curve) and after
(pressure stress curve) plastic deformation. The pressure
stress plot represents the Von Mises stress profile result-
ing from contact pressure, but does not integrate residual
stresses. This effect can be compared with the effect of
residual stress which can be more important, as seen in
figure 8.

Last, the initial yield stress of the material is 0.311Ph, Ph



A numerical model for elastoplastic rough contact 505

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

-1,5 -1 -0,5 0 0,5 1 1,5

x/a

re
s
id

u
a
l 
d
is

p
la

c
e
m

e
n
t 

in
 n

m

Figure 6 : Surface residual displacement due to plastic
strain.
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Figure 7 : Initial and plastically deformed roughness.

being the maximum hertzian pressure. Hence, one can
see in figure 8 that the maximum hardened yield stress is
1.6 time higher than the initial one.

In this case, the main causes of elastic shakedown are the
material behavior (hardening and residual stress) rather
that the conformity of surfaces.

8 Conclusion

A full three dimensional numerical model of elastoplastic
rough contact problem is presented. Based on a semi-
analytical approach (half space assumption and boundary
integral formulation), it allows one to discretize only the
contact surface and the plastically deformed zone.

Furthermore, FFT are used to calculate all convolution
products encountered in this problem. Special care has
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Figure 8 : Von Mises stress along the z axis at the center
of the contact (normalized by the hertzian pressure Ph).
Influence of surface conformity and of residual stresses.

been brought to minimize the number of points required
to cancel the periodic effect due to the use of discrete
Fourier transform. Last, complex influence coefficients
and complex field values are used to minimize the num-
ber of FFT and IFFT required to perform convolution
products. The use of FFT drastically reduces the com-
putational cost enabling then the study of rough contact
where a large number of points is required.

The resulting values supplied by the elastoplastic contact
code of residual stresses, accurate stresses due to contact
pressure, and hardening of the material are essential to
the rolling fatigue contact analysis.

In this study, the whole problem is divided into an elas-
tic part, which corresponds to a classical elastic contact
problem, and a residual part, which accounts for plas-
tic flow in bulk. The originality of this work lies in the
treatment of the residual problem. The elastic part is con-
sidered as a normal, dry, frictionless contact.

Therefore, the residual part can be coupled with a more
complex elastic problem as, for example, elastohydrody-
namic or dry frictional contacts.
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Jacq, C.; Nélias, D.; Lormand, G.; Girodin, D. (2002):
Development of a Three-Dimensional Semi-Analytical
Elastic-Plastic Contact Code, ASME Journal of Tribol-
ogy (in press).

Johnson, K.L. (1985): Contact Mechanics, Cambridge
University Press, Cambridge, 417 p.

Kalker, J.J. (1990): Three-Dimensional Elastic Bodies
in Rolling Contact, Kluwer Academic Publishers, Dor-
drecht, 314 p.

Komvopoulos, K.; Choi, D.H. (1992): Elastic Finite El-
ement Analysis of Multi-Asperity Contacts, ASME Jour-
nal of Tribology, Vol. 114, pp. 823-831.

Liu, G.; Wang, Q.; Liu, S. (2001): A Three-
Dimensional Thermal-Mechanical Asperity Contact
Model for Two Nominally Flat Surfaces in Contact,
ASME Journal of Tribology, Vol. 123, pp. 595-602.

Liu, G.; Wang, Q.; Liu, S. (2000): A Versatile Method
of Discrete Convolution and FFT (DC-FFT) for Contact
Analyses, Wear, Vol. 243, pp. 101-111.

Lubrecht, A.A.; Ioannides, S. (1991): A Fast Solu-
tion of the Dry Contact Problem and the Associated
Sub-Surface Stress Field, Using Multilevel Techniques,
ASME Journal of Tribology, Vol. 113, pp. 128-133.

Mayeur, C.; Sainsot, P.; Flamand, L. (1995), A Nu-

merical Elastoplastic Model for Rough Contact, ASME
Journal of Tribology, Vol. 117, pp. 422-429.

Nogi, T.; Kato, T. (1997): Influence of a Hard Surface
Layer on the Limit of Elastic Contact - Part I: Analysis
Using a Real Surface Model, ASME Journal of Tribol-
ogy, Vol. 119, pp. 493-500.

Polonsky, I.A.; Keer, L.M. (2000a): A Fast and Accu-
rate Method for Numerical Analysis of Elastic Layered
Contacts, ASME Journal of Tribology, Vol. 122, pp. 30-
35.

Polonsky, I.A.; Keer, L.M. (2000b): Fast Methods for
Solving Rough Contact Problems: A Comparative Study,
ASME Journal of Tribology, Vol. 122, pp. 36-41.

Seabra, J.; Berthe, D. (1987): Influence of Surface
Waviness and Roughness on the Normal Pressure Dis-
tribution in the Hertzian Contact, ASME Journal of Tri-
bology, Vol. 109, pp. 462-470.

Telles, J.F.C.; Brebbia, C.A. (1981): New Devel-
opments in Elastoplastic Analysis, Boundary Element
Methods, Springer-Verlag, pp. 350-370.

Tichy, J.A.; Meyer, D.M. (2000): Review of Solid Me-
chanics in Tribology, Int. J. Solids Struct., Vol. 37, pp.
391-400.

Webster, M.N.; Sayles, R.S. (1986): A Numerical
Model for the Elastic Frictionless Contact of Real Rough
Surfaces, ASME Journal of Tribology, Vol. 108, pp. 314-
320.

Zhao, Y.W.; Maietta, D.M.; Chang, L. (2000): An As-
perity Microcontact Model Incorporating the Transition
from Elastic Deformation to Fully Plastic Flow, ASME
Journal of Tribology, Vol. 122, pp. 86-93.


