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An Implicit Finite Element Cavitation Algorithm

Fanghui Shi and Rohit Paranjpe1

Abstract: This paper describes an implicit finite el-
ement cavitation algorithm. The cavitation problem is
formulated using the complementarity form. By using
the complementarity formulation, the fluid pressure in
the non-cavitation region and the density of the air/fluid
mixture in the cavitation region are solved simultane-
ously. The stream-wise biasing approach is used to pro-
duce oscillation-free solution at the fluid film reformation
boundary. Implicit scheme is implemented to yield sta-
bility for time marching. The algorithm is compared with
the established finite volume methods, and the robustness
and the correctness of the algorithm is verified.

1 Introduction

Analytical tools to support modern bearing design are
getting sophisticated. The cavitation effect is a very im-
portant factor that should be taken into account in these
analytical tools. Depending on the oil supply situation,
the inclusion of the cavitation effect can significantly
change the prediction of fluid pressure and density dis-
tribution, and thereby some important design parameters,
such as minimum film thickness, oil flow and power dis-
sipations.

The investigation of the cavitation effect in lubrication
can be dated back to Jakobsson and Floberg (1957) and
Olsson (1965). The theory they developed is now known
as JFO theory and is based on the conservation of mass.
However, a successful numerical algorithm implement-
ing the JFO theory did not appear until the work of Elrod
and Adams (1974). In fact, although satisfying the JFO
condition, their work is alternative and more based on
the physics of the fluid. They artfully used fluid com-
pressibility and developed a universal differential equa-
tion governing the fluid behavior in the lubrication re-
gion and the fluid/gas mixture behavior in the cavita-
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tion region. This basic idea was extended in a later pa-
per by Elrod (1981), in which he introduced the concept
of cavitation index (the switching function between lu-
brication and cavitation regions), and refined the differ-
encing scheme. He used a central differencing scheme
for the Couette flow in the full film region and a back-
ward scheme for the flow in the cavitation region. How-
ever, the differencing scheme at the lubrication/cavitation
boundary did not have a theoretical backing and was de-
veloped ‘after considerable experimentation’. This sub-
ject was studied thoroughly by Vijayaraghavan and Keith
(1989, 1990a, b and c). They solved the cavitation prob-
lem more rigorously and systematically by using some
well-developed CFD techniques, such as higher order ar-
tificial viscosity, grid transformation and adaptive mesh-
ing etc. Woods and Brewe (1989) successfully used the
multigrid method to accelerate the Elrod algorithm (El-
rod, 1981). Similar to Elrod’s work, Payvar and Salant
(1992) introduced their version of this universal differen-
tial equation. They dropped the fluid compressibility and
made the equation cleaner. The idea is easy for computer
programming and yields satisfactory results. In the Elrod
scheme and its variants, the fluid pressure and the par-
tial film content is connected by the switching function
and the bulk compressibility modulus. Mathematically,
the universal differential equation is actually an elliptic
equation and a hyperbolic equation linked by the switch-
ing function. When the solution is in progress, the char-
acteristics of the equation may change due to the changes
in the switching functions. Consequently, the equation
becomes nonlinear, because of its solution-dependent co-
efficients. Shi and Salant (2000) introduced a scheme in
which the characteristic of the differential equation stays
elliptic during the solution process. The switching func-
tion is used not to change the characteristics of the equa-
tion but just as a correction pointer on the solution. This
method makes the differential equation linear, and thus
makes it possible to take advantage of the matrix factor-
ization technique during the iteration process.

All the above-mentioned cavitation algorithms were de-
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veloped using finite volume or finite difference meth-
ods, and thus these two numerical methods have be-
come the major choices to analyze lubrication problems
involving cavitation effects. Compared with finite vol-
ume/finite difference space discretization methods, the
finite element method has an inherent advantage in its
superior ability to handle complex geometry and bound-
ary conditions, such as stationary and moving holes and
grooves on the journals or the bearings for the lubrica-
tion problems. The first finite element cavitation algo-
rithm is introduced by Goenka (1984), however the al-
gorithm used Reynolds boundary condition and was not
mass-conserving. Due to its robustness and effectiveness
to locate the film rupture boundary, Goenka’s approach
has been used in many finite element lubrication anal-
yses. A finite element cavitation model that conserves
mass was later introduced by Kumar and Booker in 1991.
The model is capable of predicting the transient evolution
of cavitation in fluid film by using an explicit time march-
ing scheme. Apply the same complementarity approach
as in Goenka’s work, Bonneau et. al. (1995) introduced
a conservation flow method to predict cavitation bound-
aries using the JFO moving conditions. In their work,
explicit time marching scheme is also used to determine
the location of film reformation. It is well-known that
in explicit time marching schemes, relatively small time
steps needs to be used for stability and the steady state
problem has to be solved through a series of time march-
ing, which affects the computational efficiency.

In this work, an implicit finite element mass-conserving
cavitation algorithm is developed. In this algorithm, the
fluid pressure in the non-cavitation region and the re-
duced fluid density in the cavitation region are solved si-
multaneously using the complementarity relations. The
algorithm employs an implicit time marching scheme,
which is theoretically stable. It is capable of handling
both dynamic and quasi-steady state cavitation problems
with satisfactory computational efficiency and is easy for
the finite element implementation.

2 Formulations

As described in Shi and Salant (1999), the fluid behavior
for cavitation problem is governed by the Reynolds equa-
tion for compressible fluids and is constrained by a set of
physical conditions. The set of physical constraints are
that fluid endures pressure higher than cavitation pressure
in the non-cavitation region and the cavitation pressure in

the cavitation region, meanwhile, the fluid has negligible
compressibility in the non-cavitation region and signifi-
cant compressibility in the cavitation region. The mathe-
matical equation are simply written as,

∇ � �
h3

η
∇ p� � 6∇ � �uρh��12

∂ρh
∂t

(1)

with the constraints,

ρ� ρncav�x�y� �� Ωcav and ρ� ρncav�x�y��Ωcav (2)

p � pcav�x�y� �� Ωcav and p � pcav�x�y��Ωcav (3)

where ρncav, the density in the non-cavitation region, and
pcav, the pressure in the cavitation region, are known di-
mensionless constants,

ρncav � 1 (4)

pcav � 0 (5)

2.1 Couette Flow Approximation

Cavitation computations were shown by Vijayaraghavan
and Keith (1989, 1990) to have significant resemblance
with transonic flow computations. Thus, an ‘artificial
viscosity’ or ‘artificial dissipation’ term also needs to be
added to the cavitation computations. Such addition is
able to yield a central difference for the non-cavitation
region and a backward difference for the cavitation re-
gion. Using the mass flux biasing approach (Tannehill
et. al., 1997), the equivalent mass flux along the stream-
line can be written as,

uρ�h� uρh� �1�C�∆s
∂uρh
∂S

(6)

where S is the local stream-wise coordinate and ρ� is the
equivalent density to be solved. C is the local cavitation
index (1 for full film, 0 for cavitation).

2.2 Squeeze Flow Approximation

The squeeze term in equation (1) is approximated by us-
ing the fully implicit scheme, superscript i for the current
time step is dropped for brevity,

∂ρh
∂t

�
ρh�ρi�1hi�1

∆t
(7)
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2.3 Finite Element Formulation

Substituting equation (6) and (7) into equation (1) and
applying Galerkin finite element method (assuming both
p and ρ as unknowns), we have,

∑
e
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e
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�
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∇ p
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dA

� 6∑
e

�

e
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�
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�
dA (8)

where NT is the shape function vector which depends on
the element type chosen. Equation (8) can then be further
written in the following form,�
∑
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Where the element matrices and the vector are of the size
of 3�3 and 3�1 respectively, if three node tri-angular
element is used,

Ke
p � �∇ NT � ∇ N

�

e
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The newly developed cavitation matrix D is the contribu-
tion of the ‘artificial dissipation’ term, defined as,

D� 6∇ NT �

�
cos2 θ cosθsinθ

sinθcosθ sin2 θ

�
∇ N � (11)

�
� �1�Ci�uihi 0 0

0 �1�Cj�u jh j 0
0 0 �1�Ck�ukhk

�
� leAe

where θ is the angle between Couette flow direction and
positive x direction, on which the finite element mesh is
based, and the characteristic element length l e is defined

as:

le �
1
3

�	
�le

xux�2��le
yuy�2



u2

x �u2
y

(12)

By using equation (10) and (11), we are able to handle the
situations where the Couette flow direction is different
from the grid line direction, which are always required to
be the same in the existing finite volume cavitation algo-
rithms. The cavitation matrix D is similar to the ‘balanc-
ing dissipation’ term proposed by Kelly et. al. (1980) in
order to solve convective diffusion problems using finite
element methods.

2.4 Complementarity Relations

The fluid constraint equations (2), (3), (4), (5) pose a
complementarity relations on the governing equation (1).
In terms of computation, the relations indicate there is
one and only one unknown to be solved in any row of
the system of equation (9). Depending on the cavita-
tion situation, this unknown could either, on the L.H.S,
be the fluid pressure in the non-cavitation region, or on
the R.H.S., be the reduced density in the cavitation re-
gion. Introducing an universal variable with dual inter-
pretations: pressure in the non-cavitation region (C=1),
or the reduced density in the cavitation region (C=0),

Φ�Cp��1�C�ρ �Cpncav��1�C�ρcav (13)

The system of equation (9) can be rearranged, with the
assistance of grouping unknown p ncav and ρcav together
into one universal variable Φ, into the following matrix
form,

AΦ� BC�E (14)

where
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�
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�

N

(15)

and the diagonal matrix C is defined to have the cavita-
tion indices on its diagonal entries.
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3 Algorithms

1. At any time transient, results from previous time
transient are assumed known. The vector E in equa-
tion (15) can be obtained by assembling the element
vector be in equation (10).

2. During iterations for a given time transient, the cav-
itation index matrix C is known, (assumed full film
everywhere for the 1st iteration, except for the lo-
cations where density boundary conditions are ap-
plied). The global matrices Kp and Kρ can be ob-
tained by assembling the element matrices Ke

p and
Ke

ρ provided in equation (10), and the cavitation ma-
trix D given in equation (11).

3. Evaluate matrices A in equation (15). Computation-
ally, the jth column of A is occupied by the j th col-
umn of Kp (if C j=1) or the jth column of -Kρ (if
C j=0).

4. Solve for universal vector Φ by using equation (14).

5. Check fluid constraints for all nodes. a. If C j=1 and
Φ j � Pcavthen C j=0; b. If C j=0 and Φ j � ρncavthen
C j=1.

6. Iterate from step 2 until the cavitation index matrix
C converges (no jump of C between 0 and 1 is de-
tected)

7. Calculate Pncav and ρcav from the converged univer-
sal variable Φ and cavitation index by using equa-
tion (13).

It should be pointed out that the order of accuracy of the
proposed FEM algorithm depends on the order of the el-
ement chosen to discretize the problem. For instance,
linear element can provide 2nd order accuracy for hydro-
dynamic pressure in the full film region and 1st order ac-
curacy for the reduced density in the cavitation region.
Higher orders of accuracy for hydrodynamic pressure
can be achieved by using non-linear elements. However,
the improvement of the accuracy for the reduced density
in the cavitation region by using non-linear element is
very limited since linear element is already sufficient to
approximate the constant Couette flow. Such FEM al-
gorithm has been embedded into the Newton-Raphson
scheme and has been implemented in the General Motors
internal code FLARE (Goenka, et. al., 1992). The simul-
taneous solution of the unknown hydrodynamic pressure,

the reduced density, the elastic deformation, and the sec-
ondary motions in the bearing is found very robust and
efficient. Detailed description of such scheme goes be-
yond this paper and will be given in a future paper.

4 Results

A series of computations are performed based on a do-
main that has the size of 1� 0�25(length by width or
x� y� and a sample film thickness distribution, h�x�y� �
1�1�cos�2πx�. The viscosity η of the fluid is assumed to
be 1 and the sliding speed u is assumed to be 83�33i along
the x direction. Cyclic boundary conditions are imposed
in the x direction and fixed pressure boundary conditions
(p=1) are imposed in the y direction. The finite element
mesh used in the computations is of size 65� 65 with
equal spacing.

Figure 1 : History of hydrodynamic pressure along cen-
terline (y=0.5)

Figure 2 : Dynamic evolution of cavitation at centerline
(y=0.5)

The fluid is initially complete and cavitation is allowed
to develop. The history of the hydrodynamic pressure
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at the centerline (y=0.5) is plotted for each time tran-
sient in Figure 1. Note that logrithmatic time scale,

T � log2�time�106�
20 , is used here to reveal the detailed his-

tory. The peak hydrodynamic pressure is found dropped,
due to the development of the cavitation region, from
458.956 at T=0.05 to 446.614 at T=1.0 (the drop may
not be detectable from the graph). The dynamic evo-
lution of cavitation region is shown in Figure 2. The
graph clearly shows the development of cavitation region
and the steady state is found to have been reached when
T � 0�9. Other noticed aspect is that density disconti-
nuity at the fluid film reformation boundary becomes se-
vere only when approaching the steady state. The steady
state cavitation is also obtained by marching with a large
time step. The results are the same as the one ob-
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Figure 3 : Accuracy comparision against some estab-
lished FVM algorithms

Figure 4 : Pressure distribution obtained using current
FEM

tained previously by marching with a series of small time

Figure 5 : Pressure distribution obtained using Elrod’s
FVM

Figure 6 : Density distribution obtained using current
FEM

steps. The reduced density and the hydrodynamic pres-
sure along the centerline using the current FEM are com-
pared against the one obtained using some established
FVM (Finite Volume Method). These methods include
the Elrod method (Elrod, 1981), the second order upwind
method (Vijayaraghavan and Keith, 1990) and the shifted
upwind method (Payvar and Salant, 1992). The results
of comparison, as shown in Figure 3, are satisfactory.
The 2D pressure and density distributions calculated us-
ing current FEM and using Elrod’s FVM are shown in
Figure 4-Figure 7. It is shown in Figure 4 and Figure 5
that the pressure distributions are almost identical. How-
ever, some differences at the film reformation boundaries
can be found in density distribution plots Figure 6 and
Figure 7. The reason is that while the artificial dissipa-
tion term, described earlier in equation (11), removes the
oscillation in the direction of Couette flow, the existence
of the FEM stencil in the cross direction causes the den-
sity variations. Thus, it is observed that the density vari-
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Figure 7 : Density distribution obtained using Elrod’s
FVM

ations are relatively noticeable at the nodes whose cross
directional neighboring node is on the film reformation
boundary where the density discontinuity takes place, as
shown in Figure 6. Nevertheless, it should be pointed out
that such variations are very local and do not violate the
conservation of mass. FVMs use a 1D stencil (if the Cou-
ette flow direction and the grid line direction is the same)
to approximate the Couette flow and does not have this
problem, therefore a smooth density distribution can be
obtained, as shown in Figure 7.

Although the 2D FEM stencil used to approximate Cou-
ette flow causes density variations in the cross direction,
it is capable of handling arbitrary meshes, and does not
require the Couette flow direction the same as the grid
line direction. To verify this judgement, a new test case
is used with width (y) direction component of sliding
speed u added. The sliding speed for the new case is
assumed to be 83.33i+41.67j with all the remaining con-
ditions the same. The pressure and density distributions
are shown in Figure 8 and Figure 9. The cavitation re-
gion is found reduced because of the additional Couette
flow in the width direction.

A lubrication analysis is performed for a typical
connecting-rod bearing, shown in Figure 10. The bear-
ing configuration is symmetric about the axial direction
and carries a 75�6 mesh with equal spacing in the cir-
cumferential and axial direction respectively. The config-
urations and operating conditions of the engine bearing
are given as follows: bearing radius 24.529mm, bearing
length 20.196mm, bearing clearance 0.0254mm, bear-
ing eccentricity 0.025mm, size of the hole on the journal
6mm, circumferential location of the hole 60deg, oil feed

Figure 8 : Presure distribution with both x and y velocity
components

Figure 9 : Density distribution with both x and y velocity
components

      

Clearance

Eccentricity

Bearing Radius

Y

Figure 10 : Typical connecting-rod bearing in automo-
tive engine
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pressure 3�105pa, oil viscosity 0.00852pa.s, and engine
speed 2031rev/s. The bearing loads (Fx, Fy) as functions
of crank angle are given in Figure 11, assuming x is the
direction along the connecting rod from the bearing to
the pin.
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Figure 11 : Bearing loads used in the calculations

One important effect of the mass conserving cavitation is
shown in the Figure 12, which displays the journal orbits
predicted with and without mass conserving cavitation.
It can be detected that the ignorance of the cavitation ef-
fect can lead to a prediction of smaller journal orbit. To
further validate the FEM algorithm, the results are com-
pared, in the following, with the one obtained by using
the combination of Elrod’s FVM and Newton-Raphson
(NR) scheme, as described in (Paranjpe and Goenka,
1990). For brevity, these two methods (current FEM+NR
and Elrod’s FVM+NR) are referred to as FEM and FVM
respectively. The simulation takes about 7 minutes on
a HP5000 workstation to achieve convergence (periodic-
ity). The minimum bearing oil film thickness (MBOFT)
for each crank angle, as shown in Figure 13, agrees well
between the two methods. The minimums of MBOFT,
both occurred at around 40 degree, however, are noticed
to have 10% difference (0.720 µm for FEM vs. 0.827
µm for FVM). The maximum hydrodynamic pressures
(MHP) are shown in Figure 14. The comparison is sat-
isfactory with a maximum error of 3% (258.9 Mpa for
FEM vs. 266.9 Mpa for FVM), occurred at the loca-
tion where the maximum of MHP takes place. Figure
15 shows the power loss curves with an average of 0.535
kw for FEM and 0.557 kw for FVM, equaling to 4% dif-
ference. The bearing flows (in flow and out flow) are

+, non mass conserving
x, mass conserving

Figure 12 : Journal orbits predicted with and without
Mass Conserving Cavitation, eccentricity Ey is squeezed
by a factor of 1.6 to account for the eccentric bearing
effect.
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Figure 13 : Calculations of minimum film thickness us-
ing Elrod’s FVM and current FEM.
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Figure 14 : Calculations of the maximum pressure using
Elrod’s FVM and current FEM.

found balanced in a period an engine cycle using both
methods. Out flow results (average of 1.777�10�6 m3/s
for FEM and 1.798�10�6 m3/s for FVM) are plotted in
Figure 16 and are found almost identical. In addition to
the differences between FEM and FVM in discretizing
the Reynolds’ equation, different time marching schemes
for the secondary motion (implicit in current work and
explicit in Paranjpe and Goenka, 1990) are believed to
cause the results to be slightly different.
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Figure 15 : Calculations of the power loss using Elrod’s
FVM and Current FEM.

Figure 16 : Computations of the bearing flow using El-
rod’s FVM and current FEM.

5 Conclusions

A FEM-based implicit cavitation algorithm is developed.
The hydrodynamic pressure in the non-cavitation re-
gion and the reduced density in the cavitation region
are solved simultaneously. The stream-wise biasing ap-
proach is used to produce oscillation-free solution at the
fluid film reformation boundary. Implicit scheme is im-
plemented to yield stability for time marching. The algo-
rithm is tested against the established finite volume meth-
ods, the robustness and the correctness of the algorithm
is verified.
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