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JavaGenes: Evolving Molecular Force Field Parameters with Genetic Algorithm
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Abstract: A genetic algorithm procedure has been de-
veloped for fitting parameters for many-body interatomic
force field functions. Given a physics or chemistry based
analytic form for the force field function, parameters are
typically chosen to fit a range of structural and phys-
ical properties given either by experiments and/or by
higher accuracy tight-binding or ab-initio simulations.
The method involves using both near equilibrium and
far from equilibrium configurations in the fitting proce-
dure, and is unlikely to be trapped in local minima in the
complex many-dimensional parameter space. As a proof
of concept, we demonstrate the procedure for Stillinger-
Weber (S-W) potential by (a) reproducing the published
parameters for Si by using S-W energetics in the fitness
function, and (b) evolving a “new” set of parameters,
with a fitness function based on a non-orthogonal tight-
binding method, which are better suited for Si cluster
energetics as compared to the published S-W potential.
Evolution is driven by a fitness function based on the en-
ergies and forces calculated for Sin clusters (n < 7), and
is able to predict accurate energies for minimum energy
and deformed configurations of Sin (n = 7, 8, 33) clusters,
which were not used in the fitness function.

1 Introduction

Accurate molecular dynamics (MD) or atomistic simula-
tion of reactive systems containing many atomic species
is important for the conceptualization, design and testing
of novel nanoscale materials, devices, systems and ap-
plications, and a broad range of physical and chemical
phenomenon in other areas as well. Some well-studied
processes, through MD simulations, include crack prop-
agation in bulk materials [Yu, Kalia, Vashishta (1997)],
thin-film deposition and etching [Srivastava, Garrison,
Brenner (1991)], ion and cluster bombardment of solid-
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surfaces [Garrison (1992)], surface diffusion and reac-
tions [Garrison, Kodai, Srivastava (1996)], and hetero-
layer epitaxy, superlattices and quantum dots [Tsuruta,
Omeltchenko, Kalia, Vashishta (1996)]. In the nanotech-
nology arena: physical and chemical characterization of
carbon nanotubes and fullerenes, design and operation of
molecular gears [Han, Globus, Jaffe, Deardorff (1997)],
hinges, three-way junctions, and bearings have also uti-
lized MD simulations using reactive dynamics of two and
three species systems [Globus, et al. (1998); Srivastava,
Menon, Cho (2001)]. However, as the system and device
sizes continue to shrink and composition becomes more
multi-species, there is a need for developing good quality
reactive atomic force field functions that are not currently
available.

For example, in the last twenty years more than 30 re-
active atomic force field functions for Silicon (Si) have
been developed by various groups. Only a few have sur-
vived the rigors of being used in MD simulation and
comparison with the available experimental data [Still-
inger, Weber (1985); Tersoff (1989); Bazant, Kaxiras
(1997); Garrison, Srivastava (1995)]. The Stillinger-
Weber (S-W) and Tersoff potentials were expanded
to include multi-component systems such as Silicon-
Germanium-Carbon by Tersoff, Si-H and Si-F exten-
sions of S-W, and the very extensively used Tersoff-
Brenner potential for hydro-carbon systems [Brenner
(1990)]. The development of such functions has not
extended towards other multi-component systems such
as Carbon-Boron-Nitrogen for nanotechnology applica-
tions, Carbon-Halogen systems for etching processes,
and biological systems containing nitrogen, phosphorus,
sulfur, oxygen and hydrogen atoms. The realization has
been that developing reactive multi-atomic force field
functions is difficult and tedious and, thus, is rarely at-
tempted.

There are two parts to developing atomic force field func-
tions. First, finding an analytic functional form that re-
flects the physical and chemical nature of the atomic
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species under consideration, and second, fitting param-
eters in a multi-dimensional space based on the data
available from experiments or more accurate quantum
mechanical calculations. Choice of a functional form
is complex and has been investigated in detail [Bazant,
Kaxiras (1997)]. Much of the tedium, however, lies in the
process of parameterization and comparison with the ob-
servables available from other sources. In an ideal case,
the cycle of choosing a functional form and parameter-
ization of the force field function should be iterated un-
til a reasonable convergence is achieved with the widest
variety of experimental and computational data avail-
able for the atomic species under consideration. Doing
this for multi-component systems would be extremely te-
dious because the parameter space that needs to be in-
vestigated is large and could be correlated in a complex
way. For biological systems, a variety of atomic force
field functions with parameters have been developed and
are available in commercial packages. All of these are
non-reactive in nature and not suitable for studying the
nanotechnology-based materials, systems and applica-
tions described above.

While automatic development of a physics-based func-
tional form for atomic systems is beyond the current ca-
pabilities of computer science, fitting parameters in a
complex multi-dimensional space to a given data set is
not. As typical computing resources continue to increase
many-fold every year, we hypothesize that parameteri-
zation of complex inter-atomic potential functions can
be automated by large genetic algorithm computations
on cycle-scavenged desktop computers. This should al-
low atomic force-field developers to concentrate mainly
on the functional form and gathering experimental and
higher accuracy simulation data to drive the evolution
and validate the results. The resulting process may en-
able the routine exploration of the individual functional
forms for multi-atomic species systems as well as the it-
eration of the procedure until a good convergence with a
wide set of available data is achieved.

Using genetic algorithms (GA) in the proposed scheme
has two advantages. First, GA is geared towards sam-
pling both the near-equilibrium (minimum energy) and
far-from-equilibrium (energetically excited) configura-
tions in the data-set, and second, thousands of indepen-
dent JavaGenes GA trajectories can be run in an em-
barrassingly parallel manner in a non-homogeneous dis-
tributed computing resource based environment. The

term JavaGenes refers to a general purpose GA code
written in Java programming language that can be run
on a variety of computing platforms [Globus, Lawton,
Wipke (1999), Globus, Langhirt, Livny, et. al (2000)]. In
this work, we demonstrate the above described concept
by fitting parameters of the well established Stillinger-
Weber (S-W) Si potential by (a) first reproducing the
published S-W parameters with a fitness function based
on energies and forces calculated using the published
S-W potential, and by (b) evolving a “new” set of S-
W parameters with a fitness function based on the en-
ergies and forces calculated by a non-orthogonal tight-
binding method for a better description of Si cluster en-
ergetics and dynamics which were not possible earlier
with the published S-W potential. As a test, the evolu-
tion was driven by the fitness function involving ener-
gies and forces calculated for Sin (n < 7) clusters, and is
able to predict accurate energies for minimum energy and
deformed configurations for Sin (n = 7, 8, 33) clusters,
which were not used in the fitness function. In Section 2
details of the method are described, whereas in Sections
3 and 4 we discuss the GA fitting of the S-W functional
form for Si clusters.

2 Method

In this section we describe implementation of the Jav-
aGenes GA for massively parallel search of multi-
parameter space for fitting reactive many-body atomic
force field functions. The scheme exploits the CPU cycle
scavenging technology useful for these kinds of simula-
tions, and the emphasis is on a possible future automation
of the entire procedure for the parameterization of com-
plex functional forms for solid-state systems containing
multi-atomic species. The basics and details of the Jav-
aGenes GA, a massively parallel implementation using
CPU cycles scavenged by the Condor [16] system are
described first, and S-W force field function that is used
as an example for testing and validation of the approach
is discussed later.

2.1 Genetic Algorithm Approach for Fitting Molecu-
lar Potentials

There have been a few recent examples of using
GA to find atomic interaction potential parameters for
“non-reactive” approaches such as molecular mechanics
(MM2) [Mohamadi, Richards, Guida, et. al. (1990)] for
metal-organic complexes and Amber parameters for or-
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ganic molecules. Parameters for force field functions for
tripod metal compounds using GAs [Hunger, Beyreuther,
Huttner (1996); Hunger, Beyreuther, Huttner, et. al.
(1998); Hunger, Huttner (1999)] have been developed
where the fitness function was based on crystal struc-
ture conformations. Cundari used a similar technique
to develop force field parameters for Technetium (Tc)
complexes [Cundari, Fu (2000)]. Instead of using dif-
ferences in predicted atomic locations, they used the dif-
ference of energies predicted by quantum effective core
potential calculations and MM2 calculated energies for
evolving the parameters, and have found that GA evolved
parameters could improve the predictive power of MM2
over parameters derived from quantum chemistry calcu-
lations by other techniques. Wang and Kollman have op-
timized Amber force field parameters for several organic
molecules using GA and compared the results to a sys-
tematic search [Wang, Kollman (2001)]. The GA was
found to be more efficient as long as at least three pa-
rameters were being optimized, and in some cases the
GA also found better parameters. To date there has been
no attempt to use GA for finding atomic force field pa-
rameters for reactive systems interacting with many-body
force field functions where the parameter space is com-
plex and multiply connected.

The GA seeks to mimic natural evolution’s ability to pro-
duce highly functional objects. Natural evolution pro-
duces organisms, whereas the GA can produce sets of pa-
rameters, programs, molecular designs, and many other
structures. Our GA, JavaGenes, employs the following
algorithm (words in quotes are typical GA terminology):

1. Represent potential parameters with a set of floating
point numbers; each set is called an ”individual”

2. Generate a ”population” of individuals with random
parameters

3. Calculate the ”fitness” of each individual

4. Repeat

• Randomly select ”parents” with a bias towards
better fitness

• Produce ”children” from the parents with ei-
ther a

– ”crossover” that combines parts of two
parents into a child

– or ”mutation” that modifies a single par-
ent

• Calculate the fitness of the child

• Randomly replace individuals of less fitness in
the population with the thus produced children

5. Until satisfied according to some minimal conver-
gence criteria

The vast majority of CPU time is usually spent calculat-
ing the fitness function. The above is easy to implement
but hard to use, and in general GAs are not guaranteed
to find a unique or even a satisfactory solution, but often
work well in practice. There are a wide variety of GA
techniques, and the implementations use many “GA pa-
rameters” that can affect performance of the search pro-
cedure. Examples of GA parameters include population
size and the mix of mutation vs. crossover operators.
Thus, choosing a proper GA technique and parameters is
a non-trivial problem. We solve this by randomizing the
choice of GA parameters in appropriate ranges in many
GA runs. The main features of JavaGenes used for fitting
molecular force field functions is described next.

JavaGenes is a steady state tournament selection genetic
algorithm. The tournament size is usually two. In tour-
nament selection each parent is chosen by randomly se-
lecting two individuals from the population and choosing
the fittest to be the parent. After crossover or mutation
produces a child, individuals to replace are chosen by an
anti-tournament of size two. In an anti-tournament the
least fit individual is chosen for replacement by a newly
created child. Steady state means that there is only one
population, parents are chosen from this population and
children replace individuals in the same population. Dur-
ing GA-parameter randomization the tournament size is
probabilistically two or one. A tournament size of one
means that a random individual is chosen as the par-
ent. Size one ’tournaments’ help avoid premature con-
vergence.

Mapping the problem of finding parameters for molecu-
lar force field functions on to a GA scaffolding is done
by representing the force field parameters as a ragged
two-dimensional array of double precision floating point
numbers. The first dimension represents the two- or
three-body terms of the potential function, and the ragged
second dimension represents the parameters. A ragged
second dimension means that arrays of differing length
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are in the second dimension. For example, one second
dimension array may hold the two-body parameters for
Si, this would be of length five for S-W case, and another
second dimension array of length three might hold the Si
three-body parameters. Each parameter is assigned a set
of limits within which it is allowed to evolve. The limit-
ing values of the parameters are chosen from the physical
interpretation of the contribution of the parameter to the
force field function.

During evolution, JavaGenes uses two transmission oper-
ators to generate children from parents. These operators
are: mutation and interval-crossover. Mutation requires
only one parent, a copy of the parent is made and some
of the potential parameters are randomly modified. The
JavaGenes mutation operator takes two GA-parameters:
the probability any single parameter will be mutated, and
the width of the Gaussian distribution, around the mean
parental value, from which the required change is chosen.
Interval crossover requires two parents. The parental-
values of a parameter determine the extremes of the range
within which the child-value of the parameter is ran-
domly selected. This range can be increased or decreased
by a factor (based on a GA-parameter), and the child’s
value can be with-in or out-of-range (based on another
GA-parameter).

The evolution of a GA population is guided by a fit-
ness function. The GA fitness function must provide a
fitness for any possible individual, no matter how bad,
and distinguish between any two individuals, no matter
how close they are. The fitness function for determining
parameters for molecular force field functions compares
energies and forces computed for a given set of atomic
conformations using the evolving parameters with exter-
nally supplied energies and forces. The inherent advan-
tage of GA over other techniques, therefore, is that one
can use close to equilibrium (energetically minimized) as
well as far from equilibrium (energetically excited) con-
figurations. This is significantly different from the ap-
proaches built around fitting only the near equilibrium
configurations. Specifically, JavaGenes uses three forms
of fitness functions. The forms are: (i) root-mean-square
(RMS) deviation from externally supplied energies, (ii)
RMS of |a-b|/(|a|+ |b|) where a and b are the calculated
and externally supplied energies, respectively, and (iii)
RMS of |c-d|/(|c|+ |d|) where c and d are the calculated
and externally supplied forces, respectively. The first is
an accepted measure of deviation, but has problems when

the absolute value of the supplied energy varies wildly.
For example, energies at very small separation have very
large values and can have excessive influence on deter-
mining the full force field function. In reality, much of
the room temperature and reactive state behavior is de-
termined by the energies near equilibrium or large sepa-
rations. The form used in (ii) and (iii) always returns a
value between 0 and 1, eliminating the scaling problem
of the form used in (i). The form in (ii) and (iii), however,
may exhibit poor behavior if the calculated and standard
values are of opposite sign. All three forms are combined
by applying each to different conformations and taking a
weighted sum as the fitness function.

A fitness function can be no better than the externally
supplied energies and forces. These could be obtained
from either better accuracy ab-initio or tight-binding in-
teractions or from experiments. In a single objective GA,
as described in this work, we either use the values known
from the S-W potential itself to demonstrate the efficacy
of the GA technique, or the values obtained from a non-
orthogonal quantum tight-binding description for a range
of Si cluster configurations to predict the values of the
clusters not included in the fitness procedure. In a multi-
objective GA, which has been implemented but not used
for the data in this paper, it will be possible to fit to the ex-
perimental values as well as values obtained from higher
accuracy computational approaches simultaneously.

For example, Table 1 summarizes the terminology as
well as the details of the GA-parameters used in each
of the experimental runs. The GA-parameters through-
out the description are chosen to determine the run con-
ditions of GA jobs while the overall objective is to fit
the molecular force-field-parameters of a given func-
tional form. The original JavaGenes [Globus, Lawton,
Wipke (1999)] GA code, written for finding pharmaceu-
tical drug molecules, was modified to evolve force field
parameters for a given functional. As an example, in
this work, we focus on demonstrating the efficacy of the
method in finding Si force field parameters for S-W func-
tional form. In the future, we will use the developed tech-
nique to fit the more complex force field functions for
multi-atomic species systems.

In the beginning, 30-100 single-workstation GA tra-
jectories with identical GA-parameters (except the ran-
dom number seed) for each force-field-parameter search
were run with populations varying between 1000-3000.
The GA-parameters that worked for one search (say, Si
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Table 1 : GA Parameters
Conformations Describes the atomic conformations used in the fitness function

Several sets of conformations were used. The fitness value
for each set was calculated and a linear combination of the fitness for
each set was the final fitness.

39 “far wall” dimers evenly spaced from 0.5 - 1.728 angstroms

7 “near wall” dimers evenly spaced form 1.599 - 1.793 angstroms

Conformation sets 44 “minimum” dimers evenly spaced from 1.793 - 3.183 angstroms

41 “tail” dimers evenly spaced from 2.407 - 3.7 angstroms

All other clusters are randomized around the minimum energy as calculated
by tight-binding

• 67 3-atom clusters
• 51 4-atom clusters
• 41 5-atom clusters
• 34 6-atom clusters

Describes the source of the energies and forces
Target energies (and forces) used in the fitness function. This was always either the

Stillinger-Weber potential with published parameters or the Menon
tight-bonding code.
Describes the function used to compare energies and/or
forces with the target energies and/or forces

Energy (and force) RMS of |a−b|/(|a|+ |b|) on wall and tail
comparison RMS elsewhere

Each set of conformations generated a seperate value
and these were summed to get the fitness. The near wall
value was multiplied by 0.5 before summation.

Number of jobs Number of separate, single-workstation jobs in the run = 1001
Popluation size Size of the population = 100
Children per generation Number generated for each generation = 2000
Number of generations Number of generations = 200

Mix of crossover and mutation transmission operators =
Transmission operators [0-5] interval crossover, [1-30] mutation chosen at

random
For the interval crossover transmission operator, the

Interval crossover parameter amount the interval between parental values of a parameter
grew or shrank before chossing a random value
within the interval = [0.3 to 3]
The probability that any one GA-parameter was

Mutation frequency mutated by the mutation transmission operator = [0.1
to 0.9]
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Mutation standard deviation

The mutation operator modified GA-parameters by choosing ran-
domly from a Gaussian distribution centered on the parental value.
This value is expressed as a fraction of the allowed interval for a
GA-parameter = [0.1 to 0.9].

Stillinger-Weber parameter varies
from

The range within which a Stillinger-Weber parameter could vary.
Note that the interval crossover operator could be set to ignore
this interval

A,B,alpha, gamma = [-100 to -50] to [75 to 150]
p,q = 0 to [12 to 24]
C, gamma = 0 to [3 to 8]

Immigrants

When searching for both the two- and three-body parameters,
JavaGenes sometimes initialized the population with two-body
values taken from a run that focused on the two-body parameters.

25% of jobs initial population started with best two-body
evolved parameters.

25% of jobs half of initial population started with best two-
body evolved parameters.

GA-parameter values placed between brackets, ”[” and ”]”, indiicate that the value was chosen randomly within
limits. For example, [0.1-0.9] inicates that a GA-parameter was randomly chosen for each job between 0.1 and 0.9

inclusive.

dimers in the fitness function) would fail in a similar
search for a different system. The alternate technique
of using approximately a thousand trajectories with ran-
domized GA-parameters and smaller populations (100)
worked very well for all the systems attempted. As stated
above, we first reproduced the Stillinger-Weber (S-W) re-
sults using S-W small cluster energies derived from the
published parameters in the fitness function. This shows
that the method can find the global, not just the local,
minimum. Then, using the same small Sin clusters (n <

7), we found a “new” set of parameters using the energies
and forces supplied by a quantum non-orthogonal tight-
binding method of Menon and Subbaswami (1993) that
showed good results for small Sin clusters (n > 6) and
Si33 clusters that had both tetrahedral and under- over-
coordinated Si atoms in the system.

2.2 An Example Molecular Force-Field Function:
Stillinger-Weber (S-W) Potential

The above developed approach is for fitting parameters of
molecular force field functions for complex multi-atomic
species systems not available so far. Choosing a func-

tional form to describe such a complex system with rea-
sonable accuracy is an involved process and will be at-
tempted in the future. The focus of this work is on es-
tablishing the GA technique for finding the force field
parameters for a given functional form. We have cho-
sen the S-W functional form as an example and fitted the
parameters using the GA approach in the two cases as
described above. In this section we briefly discuss the
S-W functional form and the parameters that need to be
evaluated using the GA approach.

The S-W molecular potential expresses the total energy
of a given configuration in terms of the sum of two- and
three-body contributions to the energy as a function of
the atomic positions in the configuration:

E = ∑
i, j

i< j

v2(i, j)+ ∑
i, j,k

i< j<k

v3(i, j,k) (1)

where E is total interaction energy, i,j,k indicate individ-
ual atoms, and v is the interaction energy of n atoms.

To reduce computation, reactive potentials often have a
cutoff function which forces each term to zero at large
atomic separations. This converts the problem from
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O(n3) to O(n) since only near neighbors need be consid-
ered. The S-W potential used in this paper only considers
two- and three-body terms and has an exponential cutoff
on both the terms. The terms are:

v2(i, j) = A(Br−p− r−q)c1 (2)

c1 = e
C

r−a ; r < a

c1 = 0; r ≥ a

where r is the i,j inter-atomic distance and all other values
are adjustable parameters.

v3(i, j,k) = α +λ(cosθ−cosθ0)2c2 (3)

c2 = e
r

ri, j−a1
+ r

r j,i−a1 ; ri, j < a1 ∩ r j,k < a2

c2 = 0; ri, j ≥ a1 ∪ r j,k ≥ a2

where ri jand r jk are the two inter-atomic distances, theta
is the angle and all other values are adjustable parame-
ters. The parameters a, a1, and a2 defining the cut-off dis-
tance on the two- and three-body terms are not evolved
because their choice is determined by the physical and
chemical considerations in the system. The typical cut-
off distances are chosen within first and second neighbor
distances so as to keep the numerical efficacy of the short
range reactive potentials. Lastly, the preferred bond an-
gle θ0 is also not evolved since it is readily available from
experiment and theoretical considerations (θ0 is the tetra-
hedral angle in solid-state Si ).

The functional form should reflect the physics of the sys-
tem of interest, and parameters should allow the form
to fit the available data, although sometimes specific pa-
rameters have specific physical meaning. The relevant
data include energies and forces for various atomic con-
formations calculated by higher accuracy methods, bond
lengths, angles for energy minimized structures, bulk lat-
tice constants, elastic and vibrational properties, and a
host of other experimental data. Most of the tedium in
multi-species reactive potential function development is
in parameter fitting. Thus, if the multi-dimensional fit
to the complex parameter space can be automated, then
rapid development of broadly applicable potentials may
be enabled by iterating the coarser grain procedure on the
choice of functional forms as well.

2.3 CPU Cycle Scavenging System: Condor

For the current work, we used the Condor [Litzkow,
Livny, Mutka (1988)] cycle scavenger running on about

350 SGI and Sun machines at the NASA Advanced
Supercomputing (NAS) Division [www.nas.nasa.gov].
Each workstation runs a daemon that watches user I/O
and CPU load. When a workstation has been idle for
2 hours, a job from the batch queue is assigned to the
workstation and will run until the daemon detects a
keystroke, mouse motion, or high non-Condor CPU us-
age. At that point, the job is removed from the work-
station and placed back on the batch queue. The job
eventually runs again, although probably on a different
machine. Typically, between 100-250 NAS machines are
available for batch processing through the NAS Condor
pool at any one time. Although the NAS Condor pool
supplies substantial processing power, it is by no means
the largest cycle-scavenging compute facility. The best-
known cycle-scavenging computation is seti@home [se-
tiathome.ssl.berkeley.edu], that typically uses more than
3 million computers to provide about 23 teraflops/sec.

While cycle-scavenging systems can supply huge
amounts of CPU, they are restricted to embarrassingly
parallel problems with minimal I/O requirements. Many
important problems fit within these restrictions, includ-
ing parameter studies, Monte Carlo simulations, and
GAs. For example, part of the data for this paper was
generated by running 1000 ∼8 hour genetic algorithm
(GA) jobs with randomized GA-parameters. This pro-
cedure can use hundreds of processors with no inter-
process communication and minimal disk I/O. As a re-
sult, typically 2000+ CPU hours of computation is rou-
tinely accomplished overnight without purchasing any
new hardware. The results described below are repro-
ducible only in a statistical sense - although repeated
tries of the same runs give similar results. The runs are
not exactly repeatable because of permitted variations
in IEEE floating point arithmetic combined with cycle-
scavenging in a heterogeneous environment. The vari-
ation, however, appears to be well within the range of
error associated with the accuracy of atomic force field
functions.

While only some computations can use cycle-
scavenging, those that can, such as JavaGenes, need
not be very concerned with efficient use of CPU cycles
since the vast majority of CPU-cycles on the vast
majority of all desktop computers do absolutely nothing
other than wait for user input. Thus, even the most
inefficient cycle-scavenging computation makes better
use of the available resources so long as each desktop
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computer rapidly responds to user input (mouse motion
or keystroke).

3 Results

As an example of fitting parameters of known and well
established molecular force function with the above de-
scribed methodology we chose the Stillinger-Weber (S-
W) potential described above. First, as validation, we
use the published S-W potential calculated energies and
forces of small Sin (n < 7) clusters in the fitness function,
and compare the results in the case of Sin (n > 6) clus-
ters that were not used in the fitness function. Second, as
a test of the approach, we find “new” GA evolved S-W
potential parameters where only the functional form was
assumed to be known, and the fitness function was de-
scribed by energies and forces of small Si clusters com-
puted from the non-orthogonal tight-binding scheme of
Menon and Subbaswamy. The fitness function based on
small Sin clusters gives GA evolved potential parameters
that describe the energetics of both small and large Si n

clusters rather well.

3.1 Validation: evolution and comparison with pub-
lished S-W values

In the first attempt, the two-and three-body terms were
fitted separately and sequentially, with an attempt to find
out if the feeding of the first fitted two-body term (with
a Si dimer) in the GA job for a three-body term (for a Si
trimer) facilitates or accelerates the fitting procedure. No
such facilitation was observed. Never the less, some im-
portant observations were made. For example, in Table
2a, we show the GA evolved parameters for the two-body
term based on a fitness function spanning the energies of
100 Si dimers equally spaced within the range of 0.5 to
3.7 Ang. At first glance, the evolved parameters seem to
be incorrect. However, it turns out that C is nearly correct
and p and q are (approximately) reversed. This is because
p and q are related through dependence on A and the GA
evolution has essentially performed an algebraic opera-
tion during the fitting procedure. The equivalence be-
tween the published and evolved expressions is shown in
Table 2b. The comparison of energy and forces obtained
from the evolved parameters and the published parame-
ters in Figure 2 shows a good fit in the entire range.

The parameters for two- and three-body terms together
using 1000 GA jobs with a fitness function based on

the energies of 2-6 atom Si clusters were evolved. The
two-atom clusters or dimers were the same ones used
in the two-body GA jobs described above. The mini-
mum energy configurations for 3 to 6 atom Si clusters
were first generated using the generalized tight-binding
molecular dynamics (GTBMD) method of Menon and
Subbaswamy. Using the minimum energy configurations
as seed, the rest of the hundreds of conformations were
generated by random displacements of atomic coordi-
nates around minimum energy configurations. The fit-
ness function was based on the energies and forces com-
puted for the members of the population using the pub-
lished S-W potential. In some jobs, part of the initial
population was set to the best two-body parameters of
the independently evolved two-body parameters. The
two-body parameters were, however, allowed to evolve
further with the rest of the three-body parameters, and
no noticeable difference was observed in using this strat-
egy as compared to the case where the full search did
not assume any previous knowledge of the best two-body
parameters. Table 3 shows the most fit GA evolved pa-
rameters as compared with their published value in the
original S-W potential.

Figure 1 compares the energies of Si clusters as calcu-
lated by S-W potential with GA evolved parameters with
those computed by using the published parameters in two
cases. First, in Figure 1(a), we show the comparison for
Sin clusters with n ≤ 6, i.e., the clusters used in the fit-
ting procedure. Second, in Figure 1(b), the comparison is
shown for Sin clusters for n = 7, 8, i.e., clusters not used
in the fitting procedure. The figure shows the comparison
of the energies in the full range of the configurations, i.e.,
the minimum energy configurations as well as the config-
urations generated by the random displacements of the
atomic positions around the minimum energy positions.
The comparison shows a good fit in both cases. The de-
viation is found to be within a few tens of kcal/mol.

Figure 2 compares the energy and force curves generated
by the two-body term of the published and GA evolved
S-W potential. The fit is very good but not quite exact.
The GA techniques are often efficient in getting close to
the desired values but are not for the final refinement to-
wards the exact fit. For materials physics and chemistry,
where the data for the fitness function is a general but
not exact reflection of the reality, this limitation is not se-
rious and perhaps even an advantage. The figures 3 (a)
and (b) show contour plots of the comparison of the en-
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Table 2 a: Si two-body parameters
Parameters S-W Published

value
Evolved with S-W
Fitness Function

A 7.0495 -4.21
B 0.602 1.67
C 1.0 1.01
p 4.0 -0.05
q 0.0 4.01

Table 2 b: Parameters of Table 2a rewritten for comparison
Energy

(r) = A(Br−p − r−q) Published Evolved
Inital form 7(0.6r−4− r0) −4.2(1.67r−0.05− r−4.01

with A distributd 4.2r−4 −7r0 −7.01r−0.05 +4.2r−4.01
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Figure 1 : Comparison of energies calculated for Si2-8 clusters using the published and evolved S-W parameters.
Each cross represents a cluster. The horizontal/vertical axes are the energies calculated using the published/evolved
parameters in kcal/mol. Crosses on the diagonal line are a perfect fit: (a) shows data for clusters (2-6) that were used
in the fitness function, and (b) shows results for clusters (7,8) that were not used in the fitness function.
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Figure 2 : Comparison of 2-body energies and forces calculated using published and evolved S-W parameters.
Parameters were evolved using a fitness function with Si2 cluster energies calculated by S-W with published param-
eters. The solid lines represent values calculated using the published parameters. The dashed lines represent values
calculated using evolved parameters.
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Table 3 : Si parameters for S-W fit
Parameters S-W Published

Value
Evolved with S-W
Fitness Function

A 7.0495 -4.51
B 0.602 1.68
C 1 1.06
p 4 0.015
q 0 4.066
Alpha 0 -1.68
Lambda 21 30.5
Gamma 1.2 1.289

ergies for the three-body term where both the angle and
the bond lengths of a 3 atom Si cluster are varied within
a possible range. The comparison shows a good fit but
not as close as that for the two-body term in Figure 2.
This is because the three-body term tends to contribute
much smaller energies towards the total energy of a clus-
ter, as compared to the contribution of the two-body term,
which dominates the value of the fitness function during
the evolution. It is conceivable that in a multi-objective
GA evolution, in the future, we may use a physical ob-
servable in the data that is more sensitive to the contri-
bution of the three-body term as compared to that of the
two-body term.

3.2 Test: evolution of new S-W Potential parameters
for small and large Si clusters

Having validated JavaGenes by reproducing the two- and
three-body parameters published by Stillinger-Weber,
and comparing the energetics of Si clusters not used
in the fitting procedure, in this section, we describe
evolving “new” SW parameters suitable for describing
the dynamics of small and large Si clusters. This is
done by constructing the fitness function by energies
and forces calculated by a non-orthogonal tight-binding
quantum description of Si interactions by Menon and
Subbaswamy (1993), which has been previously shown
to describe the energetics and dynamics of small and
large Si clusters rather well.

The generalized tight-binding scheme differs from the
conventional orthogonal tight-binding schemes in that
explicit use is made of the nonorthogonality of the or-
bitals. This allows for proper accounting of local en-
vironments. The method has been successfully used
for silicon [Menon, Subbaswamy (1997)], germanium

[Menon, Condens (1998)] and carbon [Menon, Richter,
Subbaswamy (1996)] systems to give good agreement in
the range all the way from a few atoms to the condensed
solid. Additionally, the vibrational frequencies for the
dimer and also for the bulk structures at various symme-
try points are in excellent agreement with experiment.

Parameters for the Si dimer were evolved using non-
orthogonal tight-binding energies and forces in the fit-
ness function. The S-W functional form has been con-
structed to give energies and forces going to zero at the
cut-off distance and beyond because it is a short range po-
tential. No such restriction, however, is imposed on the
energies and forces computed from the quantum tight-
binding method. At or near the minimum energy config-
uration and at short separations, therefore, we use ener-
gies in the fitness function. For long separations far from
equilibrium the fitness function was based on using the
forces computed by the quantum tight-binding method.
A total of 1001 GA trajectories were run with random-
ized GA-parameters and the best fit values of the fitted
S-W potential parameters are listed in Table 4. The pa-
rameters evolved with the fitness function based on tight-
binding energies and forces appear quite different from
those evolved with the fitness function based on S-W en-
ergies and forces. However, given a functional form for
the molecular force field, there is no unique set of pa-
rameters that will be suitable for describing the resultant
energetics and dynamics of the system. The real test,
however, is how the energies and forces computed by the
“new” set of parameters compare with those computed
by the published set of parameters and how these com-
pare with the energies and forces for a broader set of ap-
plications. The comparison of the energies and forces in
the two cases of GA evolution is shown in Figure 4(a,b).

The “new” evolved parameters match the tight-binding
data much better than the published parameters for all
configurations. The major difference between the S-W
evolved parameter energies and the tight-binding ener-
gies is at separations far from equilibrium (> 3 angstrom)
where the S-W form is required to go to zero at the cut-
off distance and beyond. In this region we have used
forces, instead of energy in the fitness function. The
force curve shows a smooth matching between the S-
W evolved curve and the tight-binding evolved curve
between 3 angstrom and the cut-off distance. Having
found a good match for the two-body terms, the param-
eters for the full potential were evolved with the fitness
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Figure 3 : Comparison of the 3-body energies calculated using the published and evolved S-W parameters. For each
3-body calculation, both bond lengths are kept equal: (a) shows the energies calculated using the evolved parameters,
and (b) shows the energies calculated using the published parameters. Note that the minimum around 109.5 degress
in (a) is below –1.5 kcal/mol.

Table 4 : Parameters for S-W published, S-W evolved,
Tight-binding evolved cases

Parameters S-W
Published
Values

Evolved
with S-W
fitness
functions

Evolved
with tight-
binding
fitness
function

A 7.0495 -4.21 -0.66
B 0.602 1.67 14.23
C 1 1.01 1.48
p 4 -0.05 -2.50
q 0 4.01 18.67
Alpha 0 -1.68 11.7
Gamma 21 30.5 10.9
Lambda 1.2 1.289 1.38

function based on the tight-binding derived energies and
forces of 2-6 atom Si clusters. The Si dimers were han-
dled as above, and the seed for the 3-6 atom Si clusters
were the minimum energy configurations computed by
quantum tight-binding method. The remaining config-
urations were generated by random displacements of the
atomic positions near minimum energy configurations. A
total of 1001 GA jobs were run with randomized GA-
parameters, and the role of one of these parameters was
to import the previously evolved two-body potential pa-
rameters as a starting point for part or all of the popula-
tion.

The best of these sets not only matched the energies of
the 2-6 atom Si clusters, but also of the 7 and 8 atom
Si clusters near minimum energy, and the configura-
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Figure 4 : Comparison of 2-body energies and forces calculated using tight-binding; and published and evolved S-W
parameters. The long dashed lines represent values calculated by the tight-binding code. The solid lines represent
values calculated using the published parameters. The short dashed lines represent values calculated using evolved
parameters.

tions generated by random displacements of atomic co-
ordinates around their minimum energy configurations.
These are shown in Figure 5 (a) and (c). The match is
very good for 2-6 atom Si clusters, as might be expected,
because the energies and forces for these clusters were
used in the fitness function. The comparison of the en-
ergies of 7 and 8 atom Si clusters, which were not used
in the fitting procedure, also show good results suggest-
ing that the approach is transferable. Figure 5 (b) and (d)
shows the comparison of tight-binding energies with en-
ergies calculated from the original S-W parameters. The
fit is much worse than for the evolved parameters.

A comparison of two-body energies and forces in the

three cases, with the energies and forces computed by the
published S-W parameters and tight-binding, is shown in
Figure 6. The energies and forces generated by the S-
W evolved parameters are somewhat different from the
energies and forces computed by the evolved parameters
with fitness function based on dimers. Specifically, the
minimum energy is lower. This is explained by examin-
ing the energies of the three-body S-W term in isolation
(Figure 7 which also shows the published SW parame-
ter results for comparison). We found that the shallow
well depth near minimum in the two-body term is com-
pensated by the larger contribution from the three-body
term. These are the energies from the S-W three-body
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Figure 5 : Comparison of energies calculated for Si2-8 clusters using tight-binding; and published and evolved S-W
parameters. Parameters were evolved using a fitness function with Si2-6 cluster energies calculated by the tight-
binding method. For (a) and (c) the vertical axis is the energy calculated using evolved parameters in kcal/mol. For
(b) and (d) the vertical axis is the energy calculated using the published parameters. Horizontal axes are the energies
calculated by the tight-binding method. Figures (a) and (b) show data for clusters (2-6) that were used in the fitness
function. Figures (c) and (d) show results for clusters (7-8) that were not used in the fitness function.

term alone, and no such comparable separation of terms
exists in the tight-binding approach. This is natural be-
cause the cutoff for the S-W three-body term depends on
the lengths of the two involved bonds, and the GA evolu-
tion has moved some of the functionality of the two-body
term into the three-body term and sacrificed on the en-
ergy of an isolated Si dimer configuration. We note that
at long separations, the evolved parameters and the force
field functions show little preference for any angle in the
configuration because the energetics is dominated by the
two-body terms. This is natural as an isolated Si atom
start to approach a Si dimer, at large distances the ap-
proach pathway is equally favorable from all directions.
The angular part starts to dominate the configuration as

the atoms are pulled in closer at short distances.

Finally, a more rigorous test of the fitted tight-binding
evolved parameters is to check the energies of even larger
Si clusters, with under and over coordinated Si atoms,
such as Si33 with the newly fitted silicon S-W poten-
tial parameters. The silicon coordination and bonding in
larger Si clusters such as Si33 are different from the co-
ordination and bonding in small Si n (n < 7) clusters be-
cause Si atoms are present in the surface configurations
as well as in bulk configurations together with under-
and over-coordinated Si atoms. The energy minimized
structures of Si33, calculated by the tight-binding molec-
ular dynamics method, have been reported in the liter-
ature and are found to be stable under dynamic condi-
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Figure 6 : Comparison of 2-body energies and forces calculated using tight-binding; and published and evolved
S-W parameters. Parameters were evolved using a fitness function with Si2-6 cluster energies calculated by the
tight-binding method. The long dashed lines represent values calculated by the tight-binding code. The solid lines
represent values calculated using the published parameters. The short dashed lines represent values calculated using
evolved parameters.

tions. Figure 8(a) compares the evolved S-W energies
with those from the tight-binding energies of the near
equilibrium and/or deformed Si33 clusters randomized
around the equilibrium configurations. As with other
results, the fit is closest at lower energies (within 200
kcal/mol) and is within 500 kcal/mol for heavily de-
formed configurations, although most configurations are
much closer (mean 88, std 98, max 469). However, Fig-
ure 8(b) shows that S-W with the original parameters fits
the tight-binding energies much less well (mean 500, std
327, max 1073).

4 Comments

Given a functional form for molecular force field func-
tions, we have shown that genetic algorithms (GA) show
promise for automating the task of fitting parameters over
a complex range of configurations using large amounts
of otherwise unused compute cycles in a distributed non-
homogeneous computing environment. The GA fitness
function is based on energies and forces of atoms and
clusters near as well as far from equilibrium configura-
tions. Therefore, it is possible to include a rather com-
plete sampling of the configuration space as compared
to the methods that are based mainly on the energies of
the near equilibrium configurations. Specific choosing
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Figure 7 : Comparison of the 3-body energies calculated using the published and evolved S-W parameters in the
similar scenario as in Fig. 6. For each 3-body calculation, both bond lengths are kept equal: Figure (a) shows the
energies with the evolved parameters, and (b) shows energies with the published parameters.

of GA-parameters during the fitting procedure was found
to be very time consuming and involved. The chosen
GA parameters would work in some cases and would not
work in other cases. However, taking advantage of CPU
cycle scavenging through Condor, we found that the ran-
domization of the GA-parameters within suitable ranges
over many runs is an effective strategy.

As an example, in this work, we have demonstrated and
validated the approach by finding parameters of the S-W
Si potential in a variety of scenarios. Using the ener-
gies and forces computed by the published S-W Si po-
tential in the fitness function, first, we have shown that
JavaGenes is capable of reproducing the published S-W
parameters and the energy and force curves – to very
high precision. Using the energies and forces computed
by a non-orthogonal tight-binding quantum description,
for small Sin (n < 7) clusters, in the fitness function we

have found a “new” set of Si parameters for the S-W
functional form. The “new” set of GA evolved Si S-
W parameters, not only reproduce the energies of the
small Sin (n < 7) clusters used in the fitting procedure
but also of Sin ( n = 7,8,33) which were not used in the
fitting procedure. The bonding and coordination in the
largest cluster is significantly different from that of the
small Si clusters (that were used in the fitting procedure)
and yet the energies are reproduced well in comparison
with the non-orthogonal tight-binding energies. We be-
lieve that this is primarily because both the near and far
from equilibrium configurations for small Si clusters are
used in the fitness function. The distorted Si clusters,
even for small Si clusters, are able to include the effect
of under- and over-coordination in the fitting procedure
and the resulting “new” parameters give good results for
Sin ( n = 7,8,33). Work on extending the approach to
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Figure 8 : Comparison of energies calculated for Si33 clusters using tight-binding; and published and evolved S-W
parameters in the similar scenario as in Fig. 8.

evolve parameters for multi-component atomic systems,
and generalizing the implementation to include experi-
mental data (via a multi-objective GA) in the procedure,
is in progress and will be published elsewhere.

Acknowledgement: We thank NASA’s NAS super-
computing facility for funding and computational sup-
port, Eric Langhirt for maintaining the NAS Condor Pool
and solving systems issues as they arose, and Charles
Bauschlicher and Sandra Johan for assistance. We thank
NASA’s NAS supercomputing facility for funding and
computational support through the CICT program ITSR
project. Part of this work (AG and DS) is supported by
NASA contract 704-40-32 to CSC.

References

Bazant, M. Z.; Kaxiras, E. (1997): Environment - de-
pendent interatomic potential for bulk silicon. Physical
Review B, vol. 56, no. 14, pp. 8542 - 8551

Brenner, D. W. (1990): Empirical potential for hydro-
carbons for use in simulating the chemical vapor deposi-
tion of diamond films. Physical Review B - Condensed
Matter, vol. 42, no. 15, pp. 9458 - 9471

Cundari, T. R.; Fu, W. T. (2000): Genetic algorithm op-
timization of a molecular mechanics force field for tech-
netium. Inorganica Chimica Acta 300-302, pp.113-124

Garrison, B. J. (1992): Molecular dynamics simulations
of surface chemical reactions. Chemical Society Review,
vol. 21, pp. 155 - 162

Garrison, B. J.; Srivastava, D. (1995): Potential energy
surfaces for chemical reactions at solid surfaces. Annual



574 Copyright c© 2002 Tech Science Press CMES, vol.3, no.5, pp.557-574, 2002

Review of Physics and Chemistry, vol. 46, pp. 373-394

Garrison, B. J.; Kodali, P. B.; Srivastava, D. (1996):
Modeling of surface processes as exemplified by hydro-
carbon reactions. Chemical Reviews 96, pp. 1327 - 1241

Globus, A.; Bauschlicher, C.; Han, J.; Jaffe, R.; Levit
C.; Srivastava , D. (1998): Machine phase fullerene
nanotechnology. Nanotechnology, vol. 10, no. 2, pp.
192 - 199

Globus, A.; Lawton, J.; Wipke, T. (1999): Automatic
molecular design using evolutionary techniques. Nan-
otechnology, vol. 10, no. 3, pp. 290-299

Han, J. ; Globus, A.; Jaffe, R.; Deardorff, G.
(1997): Molecular dynamics simulation of carbon nan-
otube based gears. Nanotechnology, vol. 8, no. 3, pp.
95-102

Hunger, J.; Beyreuther, S.; Huttner, G.; Allinger, K.;
Radelof , U.; Zsolnai, L. (1998): How to derive force
field parameters by genetic algorithms: modeling tripod-
Mo(CO)3 compounds as an example . European Journal
of Inorganic Chemistry, pp, 693-702

Hunger, J.; Huttner, G. (1999): Optimization and anal-
ysis of force field parameters by a combination of genetic
algorithms and neural networks. Journal of Computa-
tional Chemistry, vol. 20, pp. 455-471

Litzkow, M.; Livny, M.; Mutka, M. W. (1988): Con-
dor - a hunter of idle workstations. Proceedings of the
8th International Conference of Distributed Computing
Systems, pp. 104-111

Menon, M.; Subbaswamy, K. R. (1993): Non-
orthogonal tight-binding molecular-dynamics study of
silicon clusters. Physical Review B, vol. 47, no. 19,
pp. 754-759

Menon, M. ; Richter, E.; Subbaswamy, K. R. (1996):
Structural and vibrational properties of fullerenes and
nanotubes in a non - orthogonal tight - binding scheme.
Journal of Chemical Physics, vol. 104, pp. 5875 - 5882

Menon, M.; Subbaswamy, K.R. (1997): Non - orthog-
onal Tight - Binding Scheme for Silicon with Improved
Transferability. Physical Review B, vol. 55, pp. 9231 -
9234

Srivastava, D.; Garrison, B. J.; Brenner, D. W. (1991):
Modeling the growth of semiconductor epitaxial films
via nanosecond time - scale molecular dynamics simu-
lations. Langmuir, vol. 7, pp. 683 - 692

Srivastava, D.; Menon, M.; Cho, K. (2001): Com-

putational nanotechnology with carbon nanotubes and
fullerenes. CMES: Computing in Science and Engineer-
ing, July - August 2001, pp. 42 - 55

Stillinger, F. H.; Weber, T. A. (1985): Computer simula-
tion of local order in condensed phases of silicon. Physi-
cal Review B, vol. 31, no. 8, pp. 5262-5271

Tersoff, J. (1989): Modeling solid - state chemistry: in-
teratomic potentials for multicomponent systems. Physi-
cal Review B, vol. 93, no. 8, pp. 5566 - 5568

Wang, J.; Kollman, P. A. (2001): Automatic parame-
terization of force field by systematic search and genetic
algorithms. Journal of Computational Chemistry, vol.
22, no. 12, pp. 1219 - 1228

Yu, J.; Kalia, R.;Vashishta, P. (1997): Crack front prop-
agation and fracture in a graphite sheet: a molecular -
dynamics study on parallel computers. Physical Review
Letters, vol. 78, pp. 2148 - 2151


