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Development of a Nanoelectronic 3-D (NEM O 3-D ) Simulator for M ultimillion
Atom Simulationsand Its Application to Alloyed Quantum Dots

Gerhard Klimeck!?, Fabiano Oyafuso?, Timothy B. Boykin3, R. Chris Bowen?, Paul von Allmen*

Abstract: Material layers with a thickness of a fewsp’s* and spd®s* tight-binding models is developed and
nanometers are common-place in today’s semicondperameterized for bulk material properties of GaAs and
tor devices. Before long, device fabrication methods withAs. The utility of the new tool is demonstrated by an
reach a point at which the other two device dimensioasomistic analysis of the effects of disorder in alloys. In
are scaled down to few tens of nanometers. The togarticular bulk InGa;_yAs and I eGag4As quantum
atom count in such deca-nano devices is reduced to a féwots are examined. The quantum dot simulations show
million. Only a small finite number of “free” electronsthat the random atom configurations in the alloy, without
will operate such nano-scale devices due to quantizauy size or shape variations can lead to optical transition
electron energies and electron charge. This work dememergy variations of several meV. The electron and hole
strates that the simulation of electronic structure amehve functions show significant spatial variations due to
electron transport on these length scales must not osfyatial disorder indicating variations in electron and hole
be fundamentally quantum mechanical, but it must alkmcalization.
include the atomic granularity of the device. Various el-
ements of the theoretical, numerical, and software fodfgyword: quantum dot, alloy, nanoelectronic, sparse
dation of the prototype development of a Nanoelectroriatrix-vector multiplication, tight-binding, optical tran-
Modeling tool (NEMO 3-D) which enables this class ofition, simulation.
device simulation on Beowulf cluster computers are pre-
sented. The electronic system is represented in a sparse
complex Hamiltonian matrix of the order of hundreds o
millions. A custom parallel matrix vector multiply al-Ongoing miniaturization of semiconductor devices has
gorithm that is coupled to a Lanczos and/or Rayleigliven rise to a multitude of applications unfathomed a
Ritz eigenvalue solver has been developed. Benchmaws decades ago. Although the reduction in minimum
of the parallel electronic structure and the parallel straigature size of semiconductor devices has thus far ex-
calculation performed on various Beowulf cluster congeeded every expectation and overcome every predicted
puters and a SGI Origin 2000 are presented. The Bechnological obstacle, it will nevertheless be ultimately
owulf cluster benchmarks show that the competition fgitnited by theatomic granularity of the underlying crys-
memory access on dual CPU PC boards renders the tilline lattice and themall number of “free” electrons.
ity of one of the CPUs useless, if the memory usage ®&fore long, device fabrication methods will reach a
node is about 1-2 GB. A new strain treatment for thspint at which both quantum mechanical effects and ef-
fects induced by the atomistic granularity of the underly-
L gekco@jpl.nasa.gov ing medium (Fig. 1) need to be considered in the device
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sociated with adding a single electron to the systemdsantum dot of 30nm diameter and 5nm height embed-
larger than the thermal energy, and charge quantizataed in GaAs of buffer width 5nm requires a simulation
occurs. State quantization can occur if the central regidamain of 40x 40 x 15nm?, containing approximately

is “clean” enough and if the region’s dimensions areone million atoms. A horizontal array of four such
roughly on the length scale of an electron wavelengttiots separated by 20nm requires a simulation domain of
Quantum dot implementations in various material sy80x 90x 15nn?, 5.2 million atoms. A 70< 70 x 70nm?
tems (including silicon) have been examined since thabe of Silicon contained in an ultra-scaled CMOS de-
late 1980’s (Fig. 1b), and several designs have succeedieg contains about 15 million atoms. The memory and
at room temperature operation. In particular pyramidadmputation time required to model these realistic sys-
self-assembled quantum dot arrays appear to be pronesas, necessitates usage of parallel computers. Section 4
ing candidates for use in quantum well lasers and deteéscusses the specific parallel implementation and paral-
tors [Liu, Gao, McCaffrey (2001)] within a few years. lel performance of NEMO 3-D

Although simulation has proven, especially in recefithe tight-binding model employed by NEMO-3D is
years, to be an important (and cost-effective) componeemi-empirical in nature. Since the employed basis set
of device desigr?, existing commercial device simulais not complete in a mathematical sense, the parameters
tors typically ignore or “patch in” the quantum mecharthat enter the model do not correspond precisely to ac-
ical and atomistic effects that must be included in theal orbital overlaps. Instead, a genetic algorithm pack-
next generation of electronic devices. This document dige is used to establish a set of parameters that represents
scribes the development of an atomistic simulation to@l large number of physical data of the bulk binary system
NEMO-3D, that incorporates quantum mechanical amell. Section 5 presents the parameterization of the tight-
atomistic effects by expanding the valence electron wabiding models in detail.

function in terms of a set of localized orbitals for eachinally, Sections 6 and 7 discuss effects of disorder on
atom in the simulation. NEMO-3D, an extension of thggentical” alloyed quantum dots (i.e. quantum dots that
successful 1D Nanoelectronic modeling tool (NEMQgjffer only in the distribution of their constituent atoms)

[Bowen, etal. (1997a); Klimeck, etal. (1997); Bowen, € presented. Significant variations in the spatial distribu-

al. (1997h)], models the electronic structure of extendggn of hole eigenfunctions and a spread of several meV
systems of atoms on the length scale of tens of nanonjetransition energies are demonstrated.

ters.

Section 2 of this document elaborates on our excitement

about Nanoelectronic device modeling as it bridges gap _ . _

between the “large” size, classical semiconductor de- Nanoelectronic Modeling: A Problem of Conflict-

vice models and the molecular level modeling. Theo- N9 Scales

retical, numerical, and software methods used in NEM . . -
ano-scale device technology is currently a heavily in-

3-D,such as the theoretical background underlying t . ) ; )
sps” and sPdSs* tight-binding models; the strain Com_vestlgated research field. Nanoelectronic device mod-

putation used to determine the atomic spatial configw’?a“—ng in particular is the intriguing area where the two

. - . . rl f micrometer-scale carrier transport simulations
tion; sparse matrix eigenvalue solvers and object orien{ e% ?r?eoerin C) antiaf\g?neetcer scale eIeF():tronic structure
I/O; are described in detail in Section 3. 9 9

o ) ) calculations (solid-state physics) collide. Effects that
Any atomistic, 3-D, nano-scale simulation of a physis, 1 pe traditionally safely ignored (for reasons of com-
cally realls.tlc semiconductor heterostructure-based S}Sﬁ’tational complexity) in the semiconductor device engi-
tem must include a very large number of atoms. FQpeing world such as quantum effects and material gran-
example, modeling an individual, self-assembled INARy ity are the key ingredients in the other world. By the
same token, electronic structure calculations typically do
5Clean refers to a small number of unintentional impurities a¥bt address issues regarding carrier transport and carrier

crystal defects. . . . . .
6 Physics-based device simulation tools have typically only beéﬂteracuons with their environment for reasons of com

used to improve individual device performance after careful caRutational complexity as well. Nanoelectronic device
bration of the simulation parameters modeling must address all of these issues at once.
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Figure1l: (a) Minimum 2D feature size as projected on the SIA roadmap. Layer thicknes®3drOin the next
generation devices are not captured in this graph. (b) Number of electrons under a CMOS SRAM gate. Dopant
fluctuation and particle noise fluctuations may make reliable circuit design impossible, since each device may vary
from the next significantly.

ket

Traditionally, industrial semiconductor device researcH'e hydrodynamic approximation to the BTE has re-
has approached nano-scale dimensions from microm&@htly given rise to a class of models that is a step be-
dimensions. The object of this miniaturization is to mak/€en the drift diffusion approach and the full-fledged
the current state-of-the-art devices operate faster, use REE Solver. Whereas the drift diffusion approach es-

power, and perform at the same level of reliability. Cons€Ntially only considers the zeroth order moment of the

mercial simulators of industrial Silicon based semicof®! £+ the hydrodynamic model extends the approxima-

ductor devices are based on drift diffusion models, whidpn to the first and second order moments. This treat-
treat electrons and holes in their respective bands as el[@€Nt Of higher order moments yields familiar momentum
tron gases. The concept of individual electrons never €d energy conservation equations for an ideal fluid with
plicitly appears since the electron gas is described by #dditional terms for the electric and possibly the mag-
density alone. Furthermore, the underlying matter is dpetic field.  The hydrodynamic method enjoys consid-
proximated by a so-called jellium with atoms represent€§2P!e Popularity since it describes hot carrier transport
by a uniform positive background. Effects due to inteRetter than drift diffusion models yet it is significantly
actions with impurities, phonons and other particles af@Ster than the Monte Carlo BTE method.

included via mobility models, interaction rates, and othémn industry has evolved dedicated to the development
effective potentials. and maintenance of such semiconductor device simula-

0 11 :
More sophisticated and computationally much more dors'® L. However, quantum mechanical effects such

manding models solve the Boltzmann Transport EquAS tunneling and state quantization are not explicitly in-
tion (BTE) within a Monte Carlo framework. Elec_cluded in these models. Current efforts in the traditional

tron§ a”?' hOI_e,S are treqted as _Semi'CIaS,Sical I:)amCie‘%ee MocaSim at http://www.silvaco.com/ products/ vwf/ mo-
moving like billiard balls in the six-dimensional phase casim/ mocasinbr.html or search for MocaSim on Silvaco web-
space and interacting with their environment through ad-site, in http://www.silvaco.com

equately weighted random scattering events. The moggearc_:h for DESSIS on the ISE, Integrated Systems Engineering
comprehensive and commercially available simulator gfe2-Site at hitp:/www.ise.com

N . See Medici at http://www.avanticorp.com/ Avant!/ SolutionsProd-
7
this kind is DAMOCLES built at IBM but other BTE 45/ products/ Item/ 1,1500,192,00.html or search for Medici on

based simulators have also recently appeared on the mate Avant! website, in http://www.avanticorp.com

11see Atlas at http://www.silvaco.com/ products/ vwf/ at-
7See Damocles at http:/iwww.research.ibm.com/ DAMOCLES orlas/ atlas.html or search for Atlas on Silvaco web-site, in
search for Damocles on IBM web-site, in http://www.ibm.com http://www.silvaco.com

2.1 Top-Down Approaches
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device simulation community mainly focus on includhenberg, Kohn (1964); Kohn, Sham (1965); Jones, Gun-
ing these quantum mechanical effects into existing dearson (1985)]. Alternate approaches using the full
vice simulation models incurring the least possible coritamiltonian that explicitly includes electron-electron in-
putational expense and with the overriding requiremetgtraction are based on methods such as quantum Monte
of preserving the overall framework of the existing simcarlo [Needs, Foulkes, Mitas, Rajagopal (2001)].

ulation tools. However, the problem with such simulatqgjithin the one-electron picture, it is in some cases pos-
extensions is that they depend heavily on empirical pgible to solve the all-electron problem, which means
rameterization to operate well on existing devices. TRgat all the electrons in the atoms are explicitly included
use of these tools and its parameterizations is genergiithe self-consistent solution of the density dependent

notaccurate for the next generation of devices. Schodinger equation. The atom is then simply described
by a Coulomb potential with the appropriate charge for
2.2 Bottom-up Approaches the nucleus. However, in most situations only a restricted

While the indust ented iconductor devi number of electrons in the atom participate in the chemi-
ne the industry oriented semiconductor device Teg,, bonding and transport properties (valence electrons).
search community approaches nano-scale transport fr,

the top d the phvsi ented solid stat S8Veral methods have emerged where the core electrons
€ top down, Ihe physics oriented Solid state Teseargl, 1,y e into account by modifying the Coulomb poten-

community apprqaches the same regime from the bottﬂgr of the nucleus with an additional repulsive potential,

up. The_models in the latter appro_ach are fuII_y quantyiiieh describes the interaction of the core electrons with
mechanlca_l and can qnly be_applled to relatively sm e valence electrons. The resulting potential is termed
systems with emphasis on high accuracy. The Syste‘rﬂ§eudopotential”. A number of approaches that have

3redo:tenfpent(?1d|c Wltg u:ut cells %omammg a f(:w P.ur&een explored to build these crucial components of elec-
red o a tew thousand atoms, and the main output IS 96, sty cture calculations are described below.

electronic structure and the equilibrium atomic configu- ] o ) )
ration with emphasis on surface and interface reconstrfiGetdopotentials are divided into several classes. Empir-
pseudopotentials are fitted so that a set of calculated

tion and on impurity and defect levels. Charge transpdé!

is usually not included at the fundamental level, althoudfiOPerties match experimental results. Such empirical
some attempts are mentioned below. pseudopotentials can be defined in real space by a param-

. . . eterized function or directly in reciprocal space, which
In contrast to the methods discussed in Section 2.1, elgﬁ'ers advantages for periodic systems and was one of
tron_ic structure calculations explicitly inplude the 96 first avenues explored [Cohen, Bergstresser (1966)].
ularity of condensed matter and describe the atoms > real space pseudopotentials [Appelbaum, Hamann

:’ﬁ I‘IOliJS ![evels of Sgph's.técag'gn' Ata fur;)dzmggsluleve 1973); RamanaMurty, Atwater (1995)] offer the advan-
€ electrons are described by a many body ger tage that non-bulk systems such as interfaces and sur-

equation in which the Hamiltonian contains interactio]%ces can be described more realistically

potentials with the atoms as well as electron-electron in- o ) ) ]
teraction terms. In this approach, it has already beBlfSt Principles pseudopotentials do not require any fit-

assumed that the electrons adiabatically follow the m@i?9 procedure, but they do require the knowledge of the
tion of the atoms. Effects beyond this approximatio‘?l'gensrates and eigenenergies for isolated ator_ns. A_num-
lead to electron-phonon interaction terms that are evif" Of Schemes have been devised, most of which strive to

uated in subsequent steps. In most cases, even eth@inate the nodes in the valence band electronic wave
full electron problem is intractable, and calculations ifénctions within the core region, to reduce the computa-
volving more than a handful of atoms rely on the scS'—O”aI cost of the numerical solutions. These schemes, in

called single electron approximation. The single elef: can be divided into two categories.

tron approximation circumvents the difficulties raiseblorm conserving pseudopotentials are derived (through
by the interaction between the electrons by introdugversion of the Schudinger equation) from pseudo-
ing a local or sometimes a non-local potential into wave functions with the reassuring property that the as-
one particle Sctutinger equation. Familiar implemensociated integrated charge inside the core region is iden-
tations of this idea are the Hartree-Fock approximatidigal to the charge obtained with the exact eigenfunc-
[McWeeny (1992)] and density functional theory [Hotions. The most famous example and the most widely
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used for benchmarks is the method by Bachelet, Hamarime non-atomistic approaches do not attempt to model
and Schiiter (1982). Another method that has gaineshch individual atom in the structure, but introduce a va-
considerable popularity in conjunction with a plane waugety of different approximations that are usually based

expansion for the numerical solutionwas later developed a continuous, jellium-type description of matter. At

by Troullier and Martins (1991). Troullier and Mar-the lowest order approximation, such approaches only re-
tins method differs by the prescription used to build theain effective masses and band edges from the full elec-
pseudo wave functions tronic band structure, and they have given rise to the

Norm-conserving pseudopotentials require a large pla#gll-known effective mass approximation, in which on
wave cutoff for elements of the first row, oxygerthe scale of atomic distances a slowly varying envelope
and a number of other elements because the pseddpction describes the carriers. That envelope function is
wavefunction cannot be made sufficiently smooth in tfige solution to a one-particle effective mass scimger
core region. Conversely, a real space method would f&uation. The generd-p method leads to a straight-
quire a very fine mesh. Vanderbilt (1990) recently intrdorward extension of that approximation by including
duced a successful ultra-soft pseudopotential for whille coupling between multiple bands. Tkep method

the norm-conserving constraint is relaxed. The disadvdl@s given rise to the popular multi-band effective mass
tages of Vanderbilts method are more complex codif@Proximation [Schuurmanst Hooft (1985), vonAlimen

and the need to solve a generalized eigenvalue problé#92a)], in which an envelope function is associated
rather than a standard eigenvalue problem. with each band explicitly included in the calculation, and

ghset of coupled Schdinger-like equations is solved. It
S

While this document has reviewed the description o .
ould be noted that the limitation to slowly varying per-

atoms with pseudopotentials it should be mentioned thtarbations remains in the multi-band version [vonAllmen
a number of important issues related to improvements 10

the density functional theory and to the development Jfggzz)]' Ihe d|ffer§3nt ma;grlhalsrare desfr;bfddbﬁsﬁi?ne'd
efficient numerical methods, which both lay at the core FPen henf trr)]aramte e_rsl, W 't(;] 3 € separalely dete €
other current investigations in the field, have been omigy” €ach ofthe matenals |r.1 € device. S

ted. One strength of the effective mass approximation is the

Finally, as already mentioned, although earlier most elé:(fa-pab'“ty to discretize realistically-sized systems with-

tronic structure calculations using pseudopotentials a%t the tremendous computational expense of previously

restricted to systems much smaller than the QUantltﬁin nn;[r'%nerdrilb"gmo r:l]e'ihodns:[. izlovxevgirr’ tr][e ?pragg)l(g\r/\;-
dots of interest in this work, it is worthwhile noting. ° erently does not contain any direct ato

that, with a number of approximations, Canning Wanmformation, and is, therefore, not well suited for the rep-

Williamson, Zunger (2000) have recently managed to ef);?_sentatlon of nano-scale features such as interfaces and

onssome of het puopotenavor o systemscAfECTE 1T & anentl pesbece, T ke
taining up to one million atoms. Zunger's method has P y 9

been applied extensivey (see for example [) to model 5 T R CRLAREEE R SAEEL
guantum dot structures, however, without yet includi

. % , Wang, Zunger (1998a); Fu, Wang, Zunger (1998b);
transport calculations. f} u R :
P Efros, Rosen (1998)]. Despite its limitations the effective
23 An Intermediary Approach mass approximation has provided excellent agr_eement
with measurements for a large number of experiments.
Whereas traditional semiconductor device simulators &5gother interesting issue [Keating (1966); Pryor, Kim,
insufficiently equipped to describe quantum effects @jang (1998)] of particular relevance to quantum dots re-
atomic dimensions, most ab-initio methods from coftes to the most appropriate treatment of strain: should
densed matter physics are still computationally too dgontinuum or atomistic models be preferred? This work

manding for application to practical devices, even @ges the atomistic valence force field method by Keating
small as quantum dots. A number of intermediary metjggg).

ods have therefore been developed in recent years. R?gmistic approaches attempt to work directly with the

methods can be divided into two major theory Categorieeﬁzectronic wave function of each individual atom. Ab-
atomistic and non-atomistic.
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initio methods overcome the shortcomings of the effeklimeck, et al. (2000); Klimeck, Bowen, Boykin,
tive mass approximation, however, additional appro&wik (2000)]. NEMO 3-D typically uses an $g' or
imations must be introduced to reduce computatiorsg®d®s* model that consists of five or ten spin degener-
costs. As described briefly in the previous section, oage basis states, respectively.

of the critical questions is the choice of a basis set f@yr the modeling of quantum dots, three main methods
the representation of the electronic wave function. Mafye been used in recent yeaksp [Pryor (1998); Stier,
approaches have been considered, ranging from tra§fundmann, Bimberg (1999)], pseudopotentials [Can-
tional numerical methods, such as finite difference apghqg, wang, Williamson, Zunger (2000)], and empirical
finite elements, as well as plane wave expansions [Cght-binding [Lee, Joensson, Klimeck (2001)]. It is fair
ning, Wang, Williamson, Zunger (2000)], to methodg, note that each of these methods grapples with the same
that exploit the natural properties of chemical bondingtrinsic difficulty: the full description of about a million

in condensed matter. Among these latter approachesi@eracting atoms and all of their electrons. It should also
cal orbital methods are particularly attractive. While thge emphasized that for most semiconductor compounds,
method of using atomic orbitals as a basis set has a lQ§igly fragmentary experimental data exists for the band
history in solid state physics, new basis sets with compagdps and effective masses and their dependence on stress
support have recently been developed [Sankey (1989Md strain. While ab-initio pseudopotential calculations
and, together with specific energy minimization schemeseyond density functional theory do in principle predict
these new basis sets result in computational costs whighth properties, the computational cost is high for even
increase linearly with the number of atoms in the systegfinple properties such as the electronic band gap [Hy-
without much accuracy degradation [Ordejon, Drabolgertsen, Louie (1993)]. It should also be noted that effec-
Grumbach Martin (1993),0rdejon, Galli, Car (1993)live masses, which are a crucial element in the determi-
However, even with such methods, only a few thousafdtion of correct electronic state quantization, are rarely
atoms can be described with present day computatiofigled as a result of first principles calculations. On the
resources. NEMO 3-D uses an empirical tight-bindingher hand, more empirical approaches suck-asand
method [Vogl Hjalmarson, Dow (1983); Jancu, Scholgght-binding use “quality” bulk parameterizations and
Beltram, Bassani (1998)] that is conceptually related ¢an achieve good experimental comparisons in quantum
the local orbital method and that combines the advagyt simulations. The question, however, remains whether
tages of an atomic level description with the intrinsic aghese parameterizations are valid in presence of varia-
curacy of empirical methods. It has already demonstratgshs at the atomic scale. These on-going efforts can be
considerable success [Bowen, et al. (1997a); Klimeckygéwed as complementary rather than mutually exclusive

al. (1997); Bowen, et al. (1997b)] in quantum mechagpmpetitors, and each method can greatly benefit from
ical modeling of electron transport as well as the elegsightful cross-fertilization.

tronic structure modeling of small quantum dots [Leel’he perspective taken in this work is that empirical tight-

Joensson, Klimeck (2001)]. binding models link the physical content of the atomic
The underlying idea of the empirical tight-bindingeye| wave functions of the pseudopotential calculations
method is the selection of a basis consisting of atonyg the jellium approach ok-p, and are the method of
orbitals (such as s, p, and d) which create a single elegpjce for realistic modeling of transport in quantum dot
tron Hamiltonian that represents the bulk electronic progyryctures. Finally, as will be discussed in further detail,
erties of the material. Interactions between differeptshould be emphasized that the quality of the empirical
orbitals within an atom and between nearest neight{fg’ht-binding results depends strongly on a good param-
atoms are treated as empirical fitting parameters. A vatterization of the bulk material properties.

ety of parameterizations of nearest neighbor and second-

nearest neighbor tight-binding models have been pubs Nanoelectronicswith Transport

lished, including different orbital configurations [Vogl

Hjalmarson, Dow; (1983); Boykin, Klimeck, BowenNanoelectronic device simulation must ultimately in-
Lake (1997); Boykin (1997); Boykin, Gamble, Klimeckclude both, the sophisticated physics oriented electronic

Bowen (1999); Jancu, Scholz, Beltram, Bassani (1998}fucture calculations and the engineering oriented trans-
port simulations. Extensive scientific arguments have re-
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cently ensued regarding transport theory, basis represatensive, and fully exploit the computing power of re-
tation, and practical implementation of a simulator capalistically available parallel supercomputers and cluster
ble describing a realistic device. computers.

Starting from the field of molecular chemistry, MujicaQuantum mechanical simulations of electron transport
Kemp, Roitberg, Ratner (1996) applied tight-bindinthrough 3-D confined structures such as quantum dots
based approaches to the modeling of transport in moléave not yet reached the maturity of the 1-D and 2-
ular wires. Later, Derosa and Seminario (2001) modelBdsimulation capabilities mentioned above. Early ef-
molecular charge transport using density functional thisrts were rate equation based [Klimeck, Lake, Datta,
ory and Green functions. Further significant advancesBmnyant (1994); Klimeck, Chen, Datta (1994); Chen et
the understanding of the electronic structure in technak: (1994)], where a simplified electronic structure was
logically relevant devices were recently achieved througlssumed. In the related area of molecular structures, de-
ab initio simulation of MOS devices by Demkov andailed studies of charge transport have recently become
Sankey (1999). Ballistic transport through a thin dia hot research topic where simulations are providing an
electric barrier was evaluated using standard Green fuimoproved understanding of experimental data [Damle,
tion techniques [Demkoy, Liu, Zhang, Loechelt (2000){zhosh, Datta (2001); Anantram, Govindan (1998)].

Demkov, Zhang, Drabold (2001)] without scatteringEmMO 3-D focuses on the atomistic electronic structure
mechanisms. calculation of realistically sized quantum dots at this de-
Conversely, starting from the field of semiconductor deelopment stage. This work is a complement to quan-
vice simulation, various efforts have been undertak&im dot simulations [Williamson, Wang, Zunger (2000);
over the past eight years to develop quantum mechanigéng, Kim, Zunger (1999); Stopa (1996); Pryor (1998);
based device simulators that incorporate scattering me8tier, Grundmann, Bimberg (1999), Sheng, Leburton
anisms at a fundamental level. The Nanoelectronic Mo@001)] performed with other methods discussed in this
eling tool (NEMO 1-D ) built at Texas Instruments section. NEMO 3-D currently doewot include carrier
Raytheon from 1993-1997 is possibly the first large-scal@nsport. However, the Lanczos algorithm (see Sec-
device simulator based on the non-equilibrium Greeion 3.6) has been tested successfully already for non-
function technigue (NEGF) to meet the challenge. Itdermitian matrices, introduced by open boundary con-
initial objective was to achieve a comprehensive simulditions (see Section 3.3) and the code is structured such
tion of the electron transport in resonant tunneling diodésat transport simulations can be incorporated in the fu-
(RTDs). NEGF is a powerful formalism capable ofure without major re-writes of the software.

combining tight-binding band structure, self-consistent

charging effects, electron-phonon interactions, and di- Theoretical, Numerical, and Software M ethods

order effects with the important concept of charge trans-

port from one electron reservoir to another. The concept  Tight Binding Formulation Without Strain

of electron transport between reservoirs was pioneeg§flanwm dots are characterized by confinement in all
in a simpler approach by Landauer (1970) andt®er o0 spatial dimensions so that the Hamiltonian no
(1986), and later expanded for the NEGF formalism ly, ;o1 commutes witany of the discrete translation op-
Caroli, Combescot, Nozieres, Saint-James (1971) TWziors. The wave vector is henoet a good quantum
neling through silicon dioxide barriers, which is a clas;y,mper inany direction. The most natural basis for rep-
sical problem of great technological interest for the dgssenting such a highly confined wave function is, there-
velopment of thin dielectrics, was studied using tighy, o *ne consisting of atomic-like orbitals centered on
binding models within NEMO [Bowen, et al. (1997b)l,cp, atom of the crystal. Solving for the electronic struc-
as well as in a large 3-D cell model bya8igle, Tuttle, 1o of 4 guantum dot requires detailed modeling of the
Hess (2001). Other research groups [Ren (2000); Rengb| onyironment on an atomic scale, and, therefore, in-

al. (2000); Ren, Venugopal, Datta, Lundstrom (2001}l ,ces material considerations into the calculation.
have since then started to develop NEGF-based simul

tors to model MOSFET devices in a 2-D simulation d Wah||e quantum dots may be fabricated in any num-

. . . . er of material ms, from an electronic struc-
main. These simulations are computationally extremgf)? of materials systems

ture point of view, the treatment employed mainly



608 Copyright(© 2002 Tech Science Press CMES, vol.3, no.5, pp.601-642, 2002

depends on whether the bulk lattice constants of &fl Eq.(2),a indexes the atomic-like orbitals centered on
materials are the same. When the bulk lattice cottiepatoms within each celhi, nz, n3). The Schodinger
stants are the same the system is said to be lattieguation thus appears as a system of simultaneous equa-
matched; when they are not, the system is said tions given by:

be lattice-mismatched. Lattice-matched examples in-

clude GaAs/AlAs and its alloys Gal,_,As, as well as <% Rninzna+vulH —E[W> = 0 (3)

IN0.53Ga.47AS/IN0 52Al 0.47AS. AN INAs quantum dot sur- | Eq(3) the matrix elements between localized orbitals
rounded by AkGaxAs and an InAs or AlAs layer in gre expressed as tight-binding parameters with the ad-
a high performance 3Gay.47As/INP resonant tunnel- gitional limitation of interactions to nearest neighbors.
ing diode are examples of lattice-mismatched devicgs,e sPs* model of Vogl et al. (1983), as well as the
The treatment of the two cases is necessarily somewg@dsgk model of Jancu et. al.(1998), are employed
different, since a matrix element of the Hamiltonian b§yitnin the two-center approximation, in which the ma-
_tween two orbitals centered on different atoms depeng$, elements depend only upon the relative positions of
in general, on the position of the atoms. In this worle orpitals. The expressions for the matrix elements be-
the two-center approximation is made, so that only theen these types of orbitals in the two-center approxi-

relative position of neighboring atoms is important. Iphation are given by Slater and Koster (1954) as functions
a lattice-matched system, the atoms constitute a perfgcihe relative atomic positions.

crystal with uniform unit cells; in a lattice-mismatched
system, the atomic positions vary and are only semi re)2 Tight Binding Formulation With Strain

ular. In other words, in such a system one can roughl . . .
y g.}m/a lattice-mismatched system several additional com-

discern unit cells, but these cells vary somewhat in size, ~ .. . )
y qlcatlons arise. First, the “cells” are no longer regularly

and the atomic positions within them vary. The Keat- )
ing [Keating (1966)] valence force field model describd20ed S0 that thBim nang are no longer representable in
later is employed in NEMO 3-D to determine the atomig form given by Eq.(1). In a lattice-mismatched guan-
positions tum dot fabricated from zincblende crystal materials, the
' . .. Rmn2n3 are best considered as giving the location of an
For both types of materials systems, the atomic-like Qfpion_cation pair. Likewise, in Eq.(3), the displacements
bitals are assumed to be orthonormal, following Slatgp,; depend on both the specific “cell” and atom type

and Koster (1954). Bravais lattice points can describegq gre more correctly written ag™™. These compli-
crystal in a lattice-matched system: cations, though important, are rather minor and are auto-

matically accommodated since there is no assumption of
Rninons = Mmap+naz+nzag (1) awave-vector in any dimension in Eq.(2).

I . : . The second complication affects the nearest neighbor pa-
whereg; are primitive direct lattice translation VECIOr§, 1 otars. As mentioned above. in the two-center approx-
anI(IJI | are mtegers. If.:::e;e 1S morelthagache atosm ?ﬁﬁation these nearest neighbor parameters depend upon
cell, as Is the case wiih, Tor example, S or S, I?ﬁe relative atomic positions. For example, the Hamilto-

atoms within a cell are indexed hy and the location nian matrix element between arorbital centered about

of the " atom within the cell located at Eq.(1) is giver}m atom at the origin and @-orbital centered about an

by Rt n2.03+Vy., Wherev,, is the displacement relative to , 0 oved an — % 4 my + nz, whered is the dis-
the cell origin. The wavefunction is normalized over

fince between the atoms ahan, andn are the direction
volume consisting oN; cells in thea; (i = 1,2,3) direc- afan,

: ; cosines is:
tion, and the state is represented as a general expansion
in terms of localized atomic-like orbitals: Ex = WNepo (4)
W = 1 @) Since the bond angle between atoms is no longer uniform
- VNINoNG in a lattice-mismatched system, the direction cosines

v N N vary in magnitude for different pairs of nearest neighbor
1 2 3 . . . .
. atoms, even in nominally zincblende or diamon ruc-
S 3 >SS Cbnlai Retrons > y diamond struc
H

ne1neine s ture materials. Furthermore, the two-center parameters
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such asvsps no longer take on their ideal values as distoms:
tanced between the atoms in each pair is in general dif-

2 2
ferent from its ideal (bulk crystal) value. The two-center O —(E/iy i
0) (iat,iB) (io,jB)

parameters are assumed to scale as: Ea ~ Ejy ‘|’Zcicx iB (6)

: o) E(O) E(O)

B ia T Ejp

do’\ ey, ,(0) where Ei(o?) is the vacuum-referenced ideal same-site

Vogy = <H> Vagy (5) Lowdin orbital parameter for am-orbital on theith atom,

Ei« is the shifted vacuum-referenced corresponding

same-site bivdin orbital parameterE((&jB) (E(ia,jB)>
where for the given pair of atonty is the ideal sepa-the ideal (lattice-mismatched) nearest neighbor parame-
ration, d is the actual separation, aleo) is the ideal ter between aw-orbital on theith atom and &-orbital
parameter for the orbitals involved. The exponents P8 thejth atom, andC; 4 jg is a proportionality constant
chosen to reproduce known bulk behavior under condit-to properly reproduce bulk strain behavior. The sum
tions such as hydrostatic pressure. ¢From the worké@vers all orbital3 and atomg that are nearest neigh-

Harrison (1999)], it is expected that most of these expBors of the atom. The difference in squared matrix ele-

' eeOaLI onsite parameter, and replaces it with the lattice-

: |
Also the same-site parameters are, generally, chang(; . e
from their bulk values. In a lattice-matched system, how-'smaItCheOI shift. Parameterizations of InAs and GaAs,

ever, the changes are usually small. In thé8s' model, mcluqling the st_rain-in(_juced shift of the on-site elements,
there may be no change at all, since in this model itis §t€ discussed in Section 5.2.

ten possible to use a single set of onsite parameters éog
a given atom type, independent of the material. For ex-

ample, As has the same parameters in GaAs, AlAs, aftte finite simulation domain that is represented in the

InAs (see Table 3). electronic structure calculation as a sparse matrix must

In a lattice-mismatched system, atom displacements B¢ terminated by physically meaningful boundary condi-
fect the same-site parameters more strongly. To undégns. There are currently 2 kinds of boundary conditions
stand the reason for this shift, recall that the atomic-lig@plemented in NEMO 3-D: periodic and closed sys-
orbitals are assumed to be orthogonal. They are, thi@h- Periodic boundary conditions which satisfy Bloch’s
not true atomic orbitals, but are more properlgwdin theorem allow for a study of the bulk properties of alloys
functions [Loewdin (1950)], which are orthogonal ye®s long as the periodicity of the domain is much larger
transform under symmetry operations of the crystal, than the largest feature size within the domain. Closed
would the atomic orbital whose label they bear. Whegystem boundary conditions terminate the bonds of the
atoms are displaced in a lattice-mismatched system, fidfface atoms abruptly. The dangling bonds are “passi-
only do the tight-binding parameters of Eq.(4) chang\é?ted" with fixed potentials to avoid the inclusion of sur-
s0, t00, do the overlaps of the true atomic orbitals frofce states in the energy range of interest. The thickness
which the Lowdin functions are constructed. While th&f an isolating GaAs buffer around a InAs quantum dot
overlaps do not appear in an orthogonal, empirical tigﬁioes influence the energy of the confined states, and the
binding approach such as the one employed here, a fgffer size must be chosen adequately large.

sonable approximation is to assume that the overlap Baother desirable boundary condition developed in the
tween two nearest neighbor orbitals is proportional 8SEMO 1-D code is the open boundary through which
their Hamiltonian matrix element divided by the surparticles can be injected from reservoirs and through
of the vacuum-referenced onsite energies of the orbitalkich particles can escape to reservoirs. The bound-
[Harrison (1999)] With this approximationdwidin’s for- ary conditions developed [Klimeck, et al. (1995); Lake,
mula is used to first order in the orbital overlaps to obtaklimeck, Bowen, Jovanovic(1997)] for NEMO 1-D were
an onsite Hamiltonian matrix element, which includese key to the success in the transport simulations through
the effect of the displacement of the nearest neighbrealistically sized resonant tunneling diodes [Bowen, et

Electronic Structure Boundary Conditions
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al. (1997a); Klimeck, et al. (1997)] and MOS devicesublattices. In this papem’'s andf’s obtained by Martin
[Bowen, et al. (1997b)]. These boundary conditior{&970) to account for the Coulomb correction are used.
change the character of the Hamiltonian matrix froffhe total strain energy is computed as the sum of the lo-
Hermitian to non-Hermitian, and the imaginary part afal strain energies over all atoms.

the quasi-bound state eigen-energies now corresponds to

the lifetime of the state in the confinement. To enable tB& Atomistic Strain Boundary Conditions

simulation of charge transport in NEMO 3;@2n open
boundary condition for the 3-D system is currently und
development.

several boundary conditions for the strain calculation are
currently implemented in NEMO 3-DTo model systems

of finite extent, three boundary conditions are available:
3.4 Atomistic Strain Calculation 1) the hard wall condition in which all outer shell atoms

_ _ _are fixed to user determined lattice constants, 2) the soft
An accurate calculation of the electronic structure Wlthwa” condition in which no atom position is fixed, and

the tight-binding model necessitates an accurate repgeyhe softwall boundary condition in which one atom
sentation of the positions of each atom. The atom pos§issition in the system is fixed.

tions in strained materials are shifted from the ideal b . . -

o S . 0 enable the simulation of bulk systems, periodic

positions to minimize the overall strain energy of the sys- . ) )
Pundary conditions have been implemented. In this

. NEM -D | f field (VFF . . .
tem O 3-D uses a valence force field ( )mOdcase the dimensions of the fundamental domain and,

[Keating (1966); Pryor, Kim, Wang (1998)] in which the . . :
, . therefore, the separations between neighboring boundary

total strain energy, expressed as a local nearest neighbor o .
toms are not known a priori. Thus, the crystal is allowed

functional of atomic positions, is minimized. The local’ ; y . . N
. L , to “breathe” such that the strain energy is also minimized
strain energy at atotinis given by:

with respect to the period in each direction in which pe-

-3 aij A riodic boundary conditions are applied.
E= 162 o (Ri—o)
3.6 Eigenvalue Solution
n /B..B.k 2
t2 g _I(Jj_kl (Rij ‘Rik—dij 'dik> } (7) One simulation objective is to solve the eigenvalue prob-
& dijdi

lem for low lying electron and hole states near the band-
where the sum is over neighbojof atomi. Here,d;; edge. The nearest peighbor tight-bin.ding Hamiltor_wi_an
andR;; are the equilibrium and actual distances betwe&An D€ represented in a sparse matrix. A one million
atomsi and j, respectively. Eq. 7 is included as Eq. 1410m system represented in thé'ds" basis establishes
in reference [] except for some corrected coefficiengs.Matrix size of 20 million< 20 million. A *direct
The local parameters;; andp;; represent the force Con__solver”, in which the entire column space is worked on
stants for bond-length and bond-angle distortions in buffk COmpletely unfeasible for a variety of reasons, es-
zinc-blende materials, respectively, and, in the abse&¢ially due to the full matrix storage requirement of

of Coulomb corrections, are related to the bulk elastﬁg_ox_loe)2><16 bytes=6400TB. A variety of sparse ma-
moduli by: trix eigenvalue and eigenvector algorithms have been de-

veloped, some of which are available publitdy Most

V3 of these eigenvalue/vector algorithms are some form of a

Ct2C = Hij<3a”+l3”> (8) Krylov/Lanczos/Arnoldi subspace approach [Gloub, Van
J/3 Loan (1989)]. These methods approximate the solution
Ci11—Cpp = ?B” on a small subspace which is increased until a desired
') tolerance is achieved. One the major advantage is that

Cu = ﬁ 4 Bij only require memory of the order of the length of sev-

4di; o + Bij eral eigenvectors is required. At the lowest level of the

. . . algorithm, trial vectors are repeatedly multiplied by the
In zinc-blende materials, however, these relations arg P y P y

modified by the inclusion of Coulomb effects due to the2see ARPACK at htp://www.caam.rice.edu/ software/ ARPACK/
unequal charge distribution between the anion and catioindex.html
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matrix of interest. Storage of the matrix is not mandavritten in FORTRAN and C showed that FORTRAN
tory if the matrix can be reconstructed on the fly ducould outperform C by about a factor of 4. On today’s
ing the matrix-vector multiply process. The performandatel cluster based computers such a speed discrepancy
of these algorithms operating on large systems, thergay not really exist anymore in part due to the advance-
fore, strongly depends on the efficient implementationents in C compilers and the lack of competition for fast
of a matrix-vector multiply algorithm for the problem aFORTRAN compilers.

hand. One major software component in NEMO 1-D is the
The Lanczos-based solver technology of non-Hermitiagpresentation of materials in a tight-binding basis in-
matrices developed [Bowen, Frensley Klimeck, Lal@duding various orbitals and nearest neighbor counts.
(1995)] for NEMO 1-D was applied for NEMO 3-D asAdding a new tight-binding model amounts to adding a
well. Early in the development of NEMO 3-D the new Hamiltonian constructor. Bulk band structure and
Lanczos-eigenvalue solver prototype with was compareldarge transport calculations are almost independent of
ARPACK. For a system of about 100,000 atoms it wdlse underlying Hamiltonian details and form a higher
found that our custom solver was significantly fasterlevel building block by themselves. This modular de-
than ARPACK. Therefore, parallelization of our custorsign enables the introduction of more advanced tight-
solver was implemented to attack large-scale problembinding models as they become available, without inter-

The folded-spectrum method [Wang, Zunger (1994fgring with higher level algorithms. The 8g°s* model
which is based on a minimization of the squared tdhas been added at JPL recently within this architecture.
get matrix, has been proposed, implemented, and heaviligierarchically higher software block in NEMO 1-D ac-
used by Zunger et al. Before the matrix is squared itéesses the bulk bandstructure routines through a script-
shifted to the energy range of interest, i.e. close to the ddased database module. The ASCII database can be
pected eigenenergies. The overall algorithm is then baseddified outside the NEMO 1-D core to contain arbi-
on a conjugate gradient minimization of a trial vectotrary tight-binding input parameters as well as a vari-
This method also relies heavily on a matrix-vector mukty of different database entries. The relatively sim-
tiply algorithm and it has been implemented in NEM@le database access to bulk bandstructure has enabled

3-D. a straight-forward integration of NEMO into a genetic
algorithm based optimization tool. This tool is used
3.7 Software Methods for tight-binding parameter optimization as discussed on

_ Section 5.1. The material parameter database is also ac-
The NEMO 3-D project leverages some of the SOftwaE%ssed in the new NEMO 3-D code.

technology developed in the original NEMO 1-D project

[Blanks, et al. (1997); Klimeck et al. (1997)] as WeI|\/Iost research oriented simulators must be fed a wash
as impr’ovem.ents of NEMO 1-D unaertaken at %Llist of parameters, some of which are dependent on oth-

[Klimeck (2002)]. NEMO 1-D contains roughly 250,00("S: SOme of which may be superfluous, or some of which
lines of C. FORTRAN and F90 code. Data manageméﬂ?y cause crashes unless some other options have been
is performed in an object oriented fashion in C, witlet Often these dependencies require an expert user
out using C++. On the lowest level, FORTRAN ani{'créasing the initial barrier to simulator usage. The
F90 are used to perform small matrix operations such'%EMO 1-D input has been structured hierarchically such

matrix inversions and matrix-vector multiplication. Thé"at the user can prowdt_a mformaﬂon in automated de-
Fndent blocks. Informationis, therefore, requested from

language hybrid structure was introduced to utilize fa ) : .
FORTRAN and F90 compilers that were available o € user as a progressively dependent input. Such input
sentation is customary in a properly implemented in a

the SGI, HP, and Sun development machines in the ezﬂ& hical interf GUI

stages of NEMO 1-D At that time identical algorithms graphical user interface (GUL).

Such well organized user input presentation is relatively
13\We speculate that this is in part due to our utilization of the Hesimply incorporated with a static GUI in software whose

anitiity of H input is well specified. Research software under rapid
JPL Technical Report, "NEMO Benchmarks on SUN, HP, SGI

and Intel Pentium I1”. http://hpc.jpl.nasa.gov/PEP/gekco/parallgp\/ebpmem’ h‘_""’ever’ tends to change; Its requirements
benchmark.html frequently. Rapid changes force a static GUI to always
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lag behind the actual theory software that it operatdsased approack? is currently developed.

Such static design also creates a maintenance nightmare,

since new options must be added at two places indepgn-Numerical Implementations and Parallel Perfor-
dently, in the theory code and the GUI. Such issues are mance

addressed in NEMO 1-D and NEMO 3-D in away thatis

at least novel in the electronic device simulator and elebl Hardware and Software Specifications

tronic structure simulator field. The input groups are fofp, performance of the parallelized eigenvalue solver
mulated as hierarchical C data structures that are used,RY sirain minimization algorithm implemented i
the theory code as well as the GUI. The input structurggpmo 3-D is benchmarked on four different parallel
are formatted by translator functions into user-friend%mputers_ Three of these computers are commodity PC
and storage-friendly representations, such as windoygsters (Beowulf) of various generations, and the fourth
and html-like text, respectively. With the translators i,q is a shared memory SGI Origin 2000. The three Be-
place GUI options are generated dynamically from thg, i clusters (P450, P800, and P933) are based on In-
data structures that are determined by the requirement§9bantium 111 processors running at 450MHz, 800MHz,
the theory code. The theory programmer can add MQigy 933 MHz in various memory, CPU, and network con-
options and data structures as needed, without CONCRi ations. Details are shown in Table 1. The P800 has
for the representation of that information to the user gf networking systems that can operate simultaneously:
the transfer of it in and out the simulator. With the deI) the standard 100Mbps Ethernet, and 2) the advanced,
sign of the data structure translators the developmentgf, latency, high bandwidth (and high breakdown expe-
the GUI and the theory cod_e are essentially decoupl?g,nce) 1.8Gbps Myricon netwolk Most of the bench-
and GUI, theory, and numerical developers can work il s discussed here are based on the P800 performance.
their respective blocks of code independently. The other machines are used to analyze issues of mem-
The input/output design has been presented in some @8 latency and speed increase with increased clock and
tail in reference []. In NEMO 3-D this approach has beatommunication speedHyglac, the grandfather of Be-
generalized significantly. The architecture of the threagiwulf clusters was built in the High Performance Com-
ing of the various input/output options and data struguting (HPC) Group at JPL by Thomas Sterling et al.
tures has been implemented in NEMO 3-D as an obj&gt1997 and it won the the Gordon Bell prize for lowest
oriented, table-based inheritance. Options that requ@est/Performance at Supercomputing 199%yglac is
more input are associated with the creation function phsed on a cluster of 16 200MHz Pentium Pro processors
that child data structure. As the user input is translat@gth 128MB RAM each. JPL's HPC group continued to
into the content of the data structure, new creation funsush on Beowulf computers and is currently focused on
tions are put on the stack of non-entered user input. Usie¢ use of high-speed networks with real world MPI ap-
input is requested until the stack of required user inputjgications and large memory usage.

empty. This object-oriented input completely precludeg of the parallel algorithms discussed in this paper are
if ... then ... else” input parsing in NEMO 3-D implemented with the message passing interface (MPI)
To tackle the data management on the various clugi@Ffopp, Lusk, Skjellum (1997); Gropp, Lusk (1997)].
computers in the High Performance Computing (HPGhe SGI has its own proprietary implementation of MPI
group at JPL a Tcl/Tk client-server based interfagghich utilizes the fast SGI interconnect as well as the
was built. This interface works with NEMO 3-D andshared memory within one 4-CPU board.

other completely independent simulators such as gengjigious MPI/MPICH [Groupp, Lusk, Skjellum (1997):

algorithm-based optimization tools entitled GENES (G‘?Sropp Lusk (1997)] releases have been installed on the
netically Engineered Nanostructured Devices)[Klimecka q\vare in Table 1 throughout the last three years. On
Salazar-Lazaro, Stoica, Cwik (1999) and EHWPagks g1 cPU Beowulf, the shared memory versus dis-

(Evolvable Hardware Package) [Keymeulen et &lih,ted memory configurations of MPICH have been
(2000)]. To improve the generality of this approach and

to enable a web-based treatment of the overall deviégSee WIGLAF at http://ess.jpl.nasa.gov/ subpages/ reports/ Olre-

simulation on a remote computing cluster a JAVA / XML, Port/ WIGLAF/ WIGLAF-01.htm
165ee Myricom, in http://www.myricom.com
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Table 1: Specifications of the parallel computers used in this work.

Name| CPU | $2&¢ | RV | Bus | SE5 | Nodes| CPUs| RE! | Network | Purchasd Motherboard
SGI | R12000, 300 2 4 32 128 | 64 1998 | SGI Origin
2000
P450 | PIII 450 | 0.512 | 100 | 1 32 32 16 | 100Mbps| 1999 | Shuttle Intel
440BX
chipset
P800 | PIII 800 2 133 | 2 32 64 64 | 100Mbps| 2000 | Supermicro
1.8Ghps 370DLE,
Intel LE
chipset
P933 | PIII 933 1 133 | 2 32 64 32 | 100Mbps| 2001 | Supermicro
370DL3,
Intel LE
chipset

examined for their relative performance. Small perfo42 Parallel | mplementation of Sparse Matrix-Vector
mance increases due to the shared memory / reduced Multiplication

communication cost have been found in the electronic _ _ _ _ _ _
structure calculation. Even if the shared memory optidii€ numerically most intensive step in the iterative

is turned off, the communication from one CPU to th%igenvalue solution discussed in Section 3.6 is the sparse
other on the same board is faster than to a CPU off-bodRftrix-vector multiplication of the matrbH and the
Apparently the network card relays the communicati&_Ha_I ve_ctor|kIJn>. .For egample, thg majmx-.vector m_uI-
back to the on-board CPU without actually sending tHjlication of the tight-binding Hamiltonian in a 1 mil-
message to the switch. A disadvantage of the sha}@@ atom ;ystem with 4 ne|gg1bors per_atom ina 10 or-
memory implementation is the a priori determination GHt&l: eXplicit spin basis (sfis" ) requires roughly 5

a maximum message buffer size as an environment viHlion full 2020 complex matrix-vector multiplica-
able before the software is executed. The simulation Wi This corresponds to>810°x 400—2x 10° com-

fail if the simulation exceeds that maximum communf2l€x Multiplications or roughly 810° double precision
cation buffer size. Due to this static handicap and ghaultiplications and 410° additions. The single matrix-

minimal performance increase, the non-shared mem?fﬂftgg multipcl)igcation s]:[Iep can,htherefot:e, be es'gmatre]zd as
model is typically chosen. 8x10°4+-4x10°=12 Gflop. In the sps* basis used in the

benchmarks shown in Section 4.4 the operation count is

Parallelization efficiency using OpenMP has been “Educed by a factor of 4 to about 3 Gflop. These estimates

plored in the early stages of the development ProcesS&Riude overhead for the sparse matrix reconstruction,

?n engir:j:ebmené 0 “éFSUTSe ogjec_tlr\]/elvllitlo co dmm%n'c%eemory alignment, and construction of the fully assem-
rom . oard to oard wit and within Bled target vectofWn,1>. With an expected iteration
board with OpenMP and shared memory. In the exam Igunt in the Lanczos algorithm 0525000, a total num-

algorithms that have been explored the creation and & of operations of 30 Tflop and 120 Tflop are antici-

struction of threads using OpenMP were found to cau g 5 . ,
ted for the sfs* and spd°s* model, respectively. With
a significantly large overhead such that the parallel eg- p P y

. ot For th h bi ingle CPU operating at 0.5 Gflops, such computations
ciency was unsatistactory. For that reason the combingg, i e through 0.7 and 2.8 days, respectively. Actually,

MPI and Openl\/cIjP approach V\I/Ias abﬁnldoned. Openlgl_lg Gflops appears to be a high estimate for sustained
was not pursued as an overall paralle CommunlCat'&r)]mputational throughput on the latest 2 GHz Pentium 4
scheme across the cluster, since no reliable cluster-baa;ﬁgs Three years ago, when this project was initiated
OpenMP compilers were available. peak performance was about a factor of 5 slower. The
reduction in wall clock time for the completion of such a

computation is highly desirable. This is particularly true
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for systems in excess of ten million atoms. This scheme lends itself to a two-step communication

The 3 to 12 Gflop needed to perform a single matrij/OCESS.

vector multiplication correspond to 3 or 12 seconds dn the first step or the two-step process all even numbered
a single 0.5 Gflop machine. This load is large enough @PUs, 2, communicate to the CPU “to the right’n2 1.
warrant parallelization on multiple CPUs. For implemerAll odd numbered CPUs, 21, issue a communication
tation on a distributed memory platform, data must mmmand to CPUs,®2 This communication is issued
partitioned across processors to facilitate this fundamemith the MPI commandIPI_SendReceive, which can

tal operation. For good load balance, the device is paée implemented in the underlying MPI library as a full
titioned into approximately equally sized sets of atomduplexing operation. That means that once the commu-
which are mapped to individual processors. Becausieation channel is established, which can take a signif-
only nearest neighbor interactions are modeled, a naiwant time on a standard 100 Mbps Ethernet, the infor-
partition of the device by parallel slices creates a mamation packages can be exchanged in both directions si-
ping such that any atom must communicate with neighultaneously. In the second communication step all even
bors that are, at most, one processor away. numbered CPUs,r communicate to the “left”, 2—1.

This scheme, shown in Figure 2a), lends itself to Simultaneously all odd CPUs2-1 communicate to the
1D chain network topology, and results in a blockeven CPUs @. Within this communication scheme col-
tridiagonal Hamiltonian for non-periodic boundary conlisions between messages do not occur and messages do
ditions in which where each block corresponds to Pt accumulate on one CPU while other CPUs wait for
pair of processors, and each processor holds the coluifi completion of the communicatidh

of blocks associated with its atoms (Figure 2b). ThEhe message size can be reduced by a compression
gray squares in the corners symbolize fill-in regions deeheme, since most of the off-diagonal blocks are zero.
to periodic boundary conditions. Communication costhe sparse structure of the blocks depends on the par-
roughly proportional to the boundary separating thesieular crystal structure in question. In practice a suf-
sets, scales only with surface aréx16%/2)) rather than ficient fraction of zero rows exists such that compress-
with volume Q(n)), wheren is the number of atoms. Ining the matrix-vector multiplication by removing struc-

a matrix-vector multiplication, both the sparse Hamiltdurally guaranteed zeros is worthwhile despite the addi-
nian and the dense vector are partitioned among procésnal level of indirection required to track the non-zero
sors in an intuitive way; each procesgmrholds unique structure.

copies of both the nonzero matrix elements of the spargge 1-D decomposition scheme performs well when the
Hamiltonian associated with the orbitals of the atomg@tio of the number of atoms on the surface of the slab
mapped to processqrand also the components of thgg the total number of atoms in the slab is small. As the
dense vector associated with atomic orbitals mappedn@nper of CPUs in the parallel computation increases,
p. The matrix-vector multiplication is performed in &or a given problem size, the surface to volume atom ra-
column-wise fashion as shown in Fig. 2b). Thatis, preip increases to a limit of one, and the communication to
cessor] computes: computation ratio increases as well. Spatial decomposi-
S tion schemes more elaborate than the 1-D scheme pre-
i = Hix (=1J.j+1) © sented here can be implemented. One example is thltoa 3-
D decomposition in small cubes. Such schemes would

where H; ; is the block of the Hamiltonian associate(ﬁ’mbably enable_the efficient participation of more CPQS
with nodesi andj, andx; are the components @fstored in the computation; however such schemes come with

locally on nodej. There are three results generated by tHgMediately increased communication overhead, as six,
multiplication on processof: the diagonal componentss'nce each CPU must exchange data with six rather then

yi.j, which are needed locally by processorand two two _”surrounding” CPUs. Sections 4.4-4.8 explo_re the
off-diagonal componentg;_y ; andyj. 1, which need scaling of the simple 1-D topology parallel algorithms

to be communicated to processgrsl andj+1, respec- 17 Only if periodic boundary conditions are applied with an odd num-

tively. Within the same scheme processprsl andj+1 ber of CPUs in the MPI run one needs three communication cycles
share one of their off-diagonal results with procesgor due to a conflict at the first and the last CPU communication.
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Figure 2 : (a) The device is decomposed into slabs (layers of atoms) which are directly mapped to individual
processors. The gray blocks in the corner indicate the optional filling due to periodic boundary conditions. (b)
Example matrix-vector multiplication on 5 processors performed in a column-wise fashion, so ttjdt theck
column and sectior; are stored on processprThe nearest neighbor model with non-periodic boundary conditions
guarantees that the Hamiltonian is block-tridiagonal, so that communication is performed only with nearest neighbor
processors.

and show reasonable scaling for the mid-size clusters thaiowever, such a scheme was pursued in the NEMO 1-
are available at the High Performance Computing GroOytransport code where the memory storage was arranged
at JPL. such that the Hamiltonian matrix elements fit completely
into cache memory. This scheme allowed the rapid com-
putation of the transport kernel [Bowen et al. (1997)] us-
ing the recursive Green function algorithm which scales
linearly with the order N of lattice sites. The resulting
The first NEMO 3-D prototypes were focused on theomputation time for a single energy pass through the
generality of the tight-binding orbitals and exploredvhole Hamiltonian is so small, that the parallelization of
the reduction of the memory requirements to simulatiee computation of a single transport kernel element can-
realistically sized structures of several million atomsot be parallelized efficiently [Klimeck (2002)].

The memory requirement for storing the sparse Mfne individual tight-binding Hamiltonian construction
trix tight-binding Hamiltonian for a 1 million atom sys--an pe formulated as a table look-up operation, which is
tem in a 10 spin-degenerate orbital basis can be egf in principle, time consuming, except for the scaling
mated as 1Datomsx 5 diagonalsx (20x 20 basis) X of the nearest neighbor coupling elements due to strain
16bytes/2( forHermiticity) = 16 GB. Additional mem- (gqs. 5 and 6). Therefore, the firstimplementation of the
ory storage is needed for atom positions, eigenvectaksatrix-vector multiplication does not store the Hamilto-
etc; therefore the 16 GB available in the P450 is inadgzn byt re-computes the Hamiltonian on the fly in each
quate. multiplication step.

If the system of interest is unstrained, as is the cag@miltonian storage became more feasible for million
for free standing quantum dots [Lee, Joensson, Klimegkym size systems when P800 with its 64 GB of total
(2001)], the memory requirement is reduced dramagfemory came on-line in the year 2000. The first Hamil-
cally, since only a few uniquely different neighbor interonjan storage implementation stores the entire block of
actions need to be stored. The overall Hamiltonian ca}epasis x basisfor each atom and its neighbor interac-
be generated from the replication of the few unique §lyns, This storage scheme preserves the generality of the
ements. Since immediate interest was focused on sofigye and the independent choice of number of orbitals.
state implementations on a bulk substrate, such simpﬁming experiments similar to those presented in Sec-

fications were not in the immediate development pagian 4.4 show that the speed increase due to Hamiltonian
and they have not yet been implemented in NEMO 3-D

4.3 Hamiltonian Storage and Memory Usage Reduc-
tion



616 Copyright(© 2002 Tech Science Press CMES, vol.3, no.5, pp.601-642, 2002

storage is surprisingly small on the Beowulf systems, bdif 8, and 16 million atom systems cannot run on a sin-
is significant on the SGI. The low speed increase on tgke CPU, because the single CPU RAM on P800 would
Beowulf may be associated with memory latency issules exceeded. Even without Hamiltonian storage, these
of the Pentium architecture. A further reduction in mentarger systems require at least 2, 10, and 16 CPUs, re-
ory usage is, therefore, desirable. spectively, to avoid swapping.

A more detailed analysis of the % and Since P800 consists of 32 dual CPU nodes, a variety of
sp’d®s*  Hamiltonian blocks provides insight intoloading schemes are possible in the distribution of MPI
the memory allocation actually needed to store tlpeocesses to the various CPUs. Figure 3a) explores two
Hamiltonian. The diagonal blocks are only filled oschemes: 1) dashed lines with crosses - one process per
their diagonal and on a small number of off-diagonalode (1 CPU idle), and 2) solid lines with circles - two
sites. These off-diagonals are in general complex amacesses per node (both CPUs active). Although the sin-
describe the spin-orbit coupling of the spin-up and thgde process per node distributionincurs an increased cost
spin-down Hamiltonian blocks. The off-diagonal blocksm communication off the node, the overall computation
of the Hamiltonian can be separated into a smalléme is slightly less when compared to the 2 processes per
spin-up and spin-down components which are identicabde case, for system sizes 1/4 - 4 million atoms. Larger
and real. This symmetry can be exploited to redusgstems (8 and 16 million atoms) produce a significantly
the Hamiltonian storage requirement by a factor of l&etter performance with the 1 process per node configu-
for both the sps* and the spd®s* models. A priori ration. It appears more efficient to leave one CPU idle
knowledge on which matrix elements are real arahd utilize all the memory on board, rather than use all
which are complex can be utilized to increase the spetb@ CPUs and share the memory between two CPUs on
of the custom matrix-vector multiplication. A speedhe same board. This behavior can be associated with a
increase due to the compact storage scheme of sligmigmory latency / competition problem, and it is exam-
over 5 compared to the original storage scheme haed further below.

been observed. This custom storage and matrix-vec{9fe green dashed lines in Figure 3a) indicate perfect
multiplication scheme is used in the benchmarks in thigajing for the 1 and 4 million atom system sizes. An
paper when the Hamiltonian is stored. The utilizatigicreasing deviation from ideal scaling is observed with
of C data management and the simple explicit acceg§$increased number of CPUs. However, the computa-
to real and imaginary elements of complex numbefgn time is still reduced when the number of CPUs is
leads to significantly faster small matrix-vector multiplycreased. Figure 3b) shows the efficiency computed as

algorithms in C compared to FROTRAN or F90. the ratio of ideal time and actual time (1 and 4 million
atom systems in red and blue, respectively). A serial to
4.4 Lanczos Scaling with CPU Number parallel code ratio of 1.6% can be extracted if the 1 mil-

n atom, two processes per node efficiency curve is fit-

. . . . lio
This section describes the performance analysis of ée% to Amdahl’s law. This ratio indicates a high degree
Lanczos iterations on P800 in a variety of load disrrb’fparallelism in the code
0

bution and memory storage schemes as a function _ o _
utilized CPUs. The execution time for seven differThe reconstruction of the Hamiltonian matrix at each

ent systems consisting of 1/4 to 16 million atoms for 1atrix-vector-multiplication step saves memory, but

Hamiltonian matrix that is reconstructed at each matrig®€S require additional computation time. The perfor-

vector-multiplication step is shown in Figure 3a). ThEance of the matnx-ve;ctor_—multlpllt_:atlon step can be
sps* model is used in these simulations, resulting #fProved through Hamiltonian Smatrlx storage and the
10x 10 Hamiltonian matrix sub-blocks. In the 1 miIIionUt'I'Z""tIon of the sﬁs* and Sﬁd s* Hamiltonian sub-

atom system case, the problem is equivalent to a maffiglix Symmetries (see Section 4.3). Analogous to Fig-
of 107x 107, and the myricom communication path is utidre 3a), Flgu_re 39) shows the .pa.rallel performance in the
lized. The nearest neighbor CPU communication limit§3S€ of H.amlltonlan Storage S|m|I.ar. N

tion (discussed in Section 4.2) limits the 1/4, 1/2, 1, andith the increased storage requirements, the minimum
2 million atom systems to a maximum number of papumber of CPUs required for the swap-free matrix-vector
allel processes to 32, 40, 51, and 63, respectively. Thglltiplication for systems containing 1, 2, 4, and 8 mil-
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Figure 3: (a) Execution time of 30 Lanczos iterations P800. The green dashed lines illustrate ideal scaling. Solid
line: 2 processes per node (2Px), dashed line 1 process per node (1Px). First row: recomputed Hamiltonian (x=r),
Second row: stored Hamiltonian (x=s). (b) Efficiency as defined as the ratio of actual compute time to ideal compute
time. (c) and (d) similar to (a) and (b) except the Hamiltoniandhrecomputed in each step, but stored in the first
step. (e) Speed-up due to Hamiltonian storage for 1 and 4 million atom systems. (f) Execution time on 24 processors
as a function of system size.
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lion atoms increases to 2, 4, 6, and 16 CPUs from 1, 1rate of 0.07 Gflops is obtained. Using 24 CPUs and 81
and 10 CPUs. The 16 million atom system no longer fiseconds the operation countis 1.1 Gflops. For the largest
onto P800. With the increased memory requirement, thehievable 16 million atom system running on 20 CPUs
distribution of processes onto different compute nodés 2355 seconds a 0.61 Gflops rating can be achieved.
becomes much more critical, even for smaller problefimese operation counts exclude the operations needed to
sizes. This result indicates clearly that the 2 CPUs oeconstruct the Hamiltonian on the fly. Hamiltonian stor-
each motherboard compete for memory access at a aige roughly triples or quadruples these Gflops ratings.
nificant performance cost. It appears to be more effigure 3 shows that the Lanczos algorithm performs well
cient to place a single process on each node for systenough to enable the simulation of 8 and 16 million atom
sizes that are larger than about 4 million atoms when thgstems on reasonably sized Beowulf clusters. The sus-
Hamiltonian is stored, compared to 8 million atoms whetained Gflop results are well within the expectations of a
the Hamiltonian is reconstructed. The 8 million atorrealistic application.

simulation incurs dramatic performance losses if run on

2 processes per node, similar to the 16 million atom ca : .

without Hamiltonian storage shown in Figure 3a). E% Lanczos Scaling With System Size
Figure 3d) shows a greater parallel efficiency of thehe preceding Section 4.4 presented the scaling of the
stored Hamiltonian algorithm versus the recomputégnczos algorithm as a function of employed number of
Hamiltonian algorithm of Figure 3b). However, the poin€CPUs for different system sizes on the P800 cluster. This
of ideal performance increases from 1 CPU since thection discusses a subset of the same data as a function
problems no longer fit onto a single CPU. Comparingf system size for a fixed number of 24 CPUs. Four dif-
the ideal scaling indicated by the green lines in Fiderent data sets are considered based on the cross-product
ure 3a) and (c) shows that the stored Hamiltonian algsembination of 1 or 2 processes per node (symbol 1Px
rithm scales better with an increasing number of CPUmd 2Px, respectively) and stored or recomputed Hamil-
This observation contradicts the expectation that a mdomian (x=s and x=r, respectively).

CPU intensive calculation such as the slower recomputegure 3f) shows a plot of wall clock time as a function

Hamiltonian algorithm scales better than the recompute

Hamiltonian algorithm is not available. T(2Pr) = 18568+ 59.825N13%5L R— 0.99976

. . . )
Figure 3e) shows the speed increase due to Hamiltonj B 099821 o
storage for a system of 1 and 4 million atoms derive-lzll 1Pr) = 1.064+2034N ; R=0.99997

from the data shown in Figure 3a) and (c). Both systeh{2Ps) = 15484+26.13N"%% R=0.99997
sizes show a greater speed increase when one proddd®s) = 5.8046+73154N118% R— 0.99999
rather than two resides on a node. The speed increase

due to storage is not constant, but increases with an ;4 fitted exponentials range froNP998 to N1.366 with
creasing number of CPUs. The total memory used RERigh regression value> 0.999.

CPU decreases with an increasing number of particip%— total tation ti tonlvd q the ti
ing CPUs. This memory reduction reduces the compe-e otalcomputation time hot on'y depends on the ime

» i m n matrix-v r multiplication, but also on
tition for memory access and the speed increase curvegsu ed o at ecto P

increase with increasing number of CPUs. Competitigﬁe number of iterations needed for corvergence within

for memory between the 2 processes on a single ncg]g Lan_czos_algorithm. Experieqce shows_that the num-
with 2 CPUs is again visible. er of |t9rat|on need_ed to obtain a certain number of
) ] ] ) bound eigen-states in a quantum dot system depends
With an estimate of 3 Gflop for a single matrix-vectaf,e a4y on the system size. Typical iteration counts are of
multiplication in a 1 million atom system (see SeCyq orger of 1000 to 5000. The Lanczos solver presented

tion_ 4'2)_’ the.exe.cution time of a_bOUt 1247 seconds _fﬁ’{ this work, therefore, scales roughly linearly with the
30 iterations in Figure 3a) on a single CPU, a operatlgg}stem size.
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4.6 Lanczos Performance with different Network to compute the 30 Lanczos iterations and the curves lay
Speeds on top of each other. By contrast, if the memory usage is
.I::Increased due to the Hamiltonian storage, P450 requires
the simulations shown in Figure 3. The Myricom ne _ewer.CPU gycles .to compute the same problem. as the
. machines with a high frequency rating. The additional
work can be directly compared to a standard 100 Mbps - )
. : cles are spent waiting for the memory to arrive at the
Ethernet on P800, since both networks are installed 11- : :
N ast CPUs, which perform the computation faster than the
dependently. For the benchmarks shown in Figure 3 vir- .
. . . . . .~ _“memory delivery takes place.
tually identical results are obtained, if the simulation is
pe.rformed on _the significantly sIovyer Ef[hernet networl;i..8 Parallel Strain Algorithm Performance
This result indicates that the algorithm is not communi-
cation limited. The minimization of the total strain energy is numeri-
cally significantly less taxing than the electronic struc-
4.7 Examination of Memory Latency by Comparison ture calculation. The strain computation was therefore

of Different Machines not immediately parallelized. However, simulating sys-

Section 4.4 showed that the dual CPU P800 machine &l Sizes of 1 million a:)oms or more, shows thﬁ‘t the se-
fers from performance degradation due to memory accHgbStrain computation becomes computationally as tax-
in the computation of large systems or a stored Hamipg as the parallel electronic structure calculation that it
tonian. This section examines this performance bott%r_ecedes. The mechanical strain calculation has there-

neck further by comparing the Pentium-based cluster nﬁgr_e been parallelized as well. This strain parallelization

chines with the SGI machine (see Table 1 for the machiﬁ%mbined with the parallel electronic structure calcula-

specifications). Figure 4a) compares execution timestQ enabled some of the alloy S|.mulat|_ons shown in th'_s
30 Lanczos iterations on P800 (red), P450 (blue), aR@per as well as the bulk alloy 5|mulat|_on5 shown previ-
SGI (black) with (dashed line) and without (solid linefUs!y [Oyafuso, Klimeck, Bowen, Boykin (2002)].

storage of a 2 million atom Hamiltonian. The P450 ouPata are distributed in the same manner as in the elec-
performs the SGI without Hamiltonian storage by a fa¢ronic calculation: the simulation domain is decomposed
tor of 1.6 to 1.9. The fast, yet expensive memory of thato slabs such that atomic information associated with
SGI produces a more dramatic speed increase comp&@i@ins within a slab is held by only one processor (see
to P450 and the two machines have roughly the safigure 2a)). Message passing then takes place only be-
performance on this problem. Figure 4b) shows that thieen neighboring processors and the message size is
speed increase for SGI reaches a factor of about 9 wiif@portional to the surface area of each slab, since the
it reaches a factor of 5.5 on P450. P800 only achiev@sality of the strain energy requires only that positions
speed increase factors of about 3 to 4 due to Hamiltoni@hatoms on the boundary be passed. Since the gradi-
storage, depending on the node load configuration; ho@t of the strain energy in Eq.(7) is just as computation-
ever, P800 still outperforms the significantly more expedlly inexpensive to determine as the total strain itself,

sive (and 2 years older) SGI by a factor of approximatefyconjugate-gradient-based method that uses the deriva-
2. tive with respect to atomic configuration and periodic-

The memory latency problem can also be examined 10 Perform the line searcfi is used to minimize the
comparison of execution times of the same executafSfsain energy. The parallelization of the algorithm occurs
and the same communication network type (L00Mbpg%) two levels. First, the conjugate-gradient-based min-
on the P450. P800. and P933 machine when the numiJaigation involves computation of various inner prod-
of CPU cycles is plotted as a function of employed nunfts through a sum reduction and broadcast. Second,
ber of parallel CPUs. The number of cycles is estimatdif function (and gradient) call to determine the local
as the total wall time multiplied by the frequency rating!2in €Nergy at an atomic site requires information about

of the CPU in MHz. Figure 4c) shows such a plot fgpeighboring atp_ms _that may lie on neighboring proces-
a system of 1 million atoms. If the Hamiltonian is reSOrs: Only position information of atoms on neighboring

computed on the fly and the required memory is small allssee the for example macopt in  http:/iwol.ra.phy.cam.ac.uk/
three machines require almost identical number of cyclesnackay/c/ macopt.html
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Figure 4 : (a) Execution time of 30 Lanczos iterations on three different machines: P800 (red), P450 (blue), and
SGI (black) with (dashed line) and without (solid line) storage of a 2 million atom Hamiltonian. (b) Corresponding
speed increase due to Hamiltonian storage (solid lines). Dashed line corresponds to P800 with 1 process per node.
(c) Number of CPU cycles (wall time times CPU frequency) for the P450, P800, and P933 machine with and without
stored Hamiltonian.

processors that are on the boundary is sent. number of processors is increased, however, the ratio

Figure 5 shows scaling results for the wall time requirédf communication cost to computational cost increases;
to achieve convergence for a system of sizex3@x 32 the communication expense is proportional to the surface
nm consisting of approximately one million atoms. Tharea of the slabs which remains fixed while the compu-
simulation was run on two different hardware configurdational cost is proportional to the slab volumes and thus
tions P800 connected by the 2 Gbps Myrinet (solid linBversely proportional to the number of processors. This
with stars) and P933 connected by standard 100 Mggsluction in efficiency with processor number is most ev-
ethernet (dashed line with circles). No shared memdggnt for the slow 100 Mbps network. Using Ethernet the
was used in either case. On a single processor, th@xgcution time is more than a factor of two greater than
using Myricom 1.8 Gbps network.
For the mechanical strain calculation a significant im-
-O- P933, 100 MbpS proveme_nt of the scaling with increasing number qf
— P800. 2 Gbps CPUs with the_ usage of_a faster, low latency ne_twork is
! observed. This result differs from the electronic struc-
ture calculation discussed in Section 4.4. In that case no
speed increase of improved performance with increasing
number of CPUs was observed (and therefore not shown
inagraph). Thisdiscrepancy is a result of the larger com-
"O--0 putational demand in the electronic structure calculation.
The mechanical strain calculation deals only with three
. real numbers (the displacements from some ideal posi-
100 101 10 tion) for each atom and with the relative distance to its
surrounding four neighbors. The electronic structure cal-
Number of Processors culation by contrast deals with 1.0 and 20<20 com-
Figure 5 : Wall clock time to compute the strain in a Iplex matrices for each atom and its four neighbors.
million atom system on P933 with its 100Mbps network

(dashed line with circles) and on P800 with its 1.8Gbs Bulk Material Parameterizationsand Properties
network (solid line with stars).
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5.1 Genetic Algorithm-Based Fitting

are no communication costs, and P933 outperforms P&l6ctronic structure calculations in the lowest conduc-
by about a ratio of the clock cycles of 800/933. As thi&on and the highest valence band require a good pa-
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rameterization of the band gaps, effective masses aation operations. The parameterizations used in this
band-anisotropies (for the holes). One of the drawbackerk have been obtained using this GA approach, start-
of the empirical tight-binding models is that there is nimg from earlier parameterizations [Boykin, Klimeck,
simple relation between these physical observables @&ulven, Lake (1997); Boykin (1997); Boykin, Gamble,
the orbital energies. The analytical formulas that hatdimeck, Bowen (1999); Jancu, Scholz, Beltram, Bas-
been developed in the past [Boykin, Klimeck, Bowersani (1998)].

Lake (1997); Boykin (1997); Boykin, Gamble, KlimeckiThe following sections present the parameterization data,

Bowen (1999)] serve as a guide for the general capabjlq the resulting unstrained and strained bulk-properties.
ity of a particular model and show that the optimization

space is not smooth. The fitting of the parameters us- _
ing these formulas has led to dramatic improvements3r? Parameter Tablesand Bulk Properties

the simulation capabilities of high performance resonafip|a 2 jists the parameters that enter thassmodel
tunneling diodes [Bowen, et al. (1997a); Klimeck, et 8l,5e i this paper. The parameterization for InAs was
(1997)], although the process remained tedious at besfyyained from a GA, while the GaAs data was originally
A very nice and diligent parameterization of theelivered by Boykin to the NEMO 1-D project. No ef-
sp’d®s* model has been published by Jancu Scholz, Bebrt has been made in this parameterization to fit the off-
tram, Bassani (1998)]. A large number of the technicaliifagonal or the diagonal matrix element strain correc-
relevant I11-V materials as well as elemental semicondugons. All off-diagonal matrix elements are scaled with
tors have been parameterized in their work. They hayg ideal exponent [Harrison (1999)] gf=2 and the di-
also optimized orbital-dependent distance scaling expgyonal correction is set to zero.

nentsn to fit strain-dependent quantities such as defog;, explicit InAs valence band offset vs. GaAs

mation p_otentigls.. To enhance the pgrformanpe of_tgle 0.22795 is used in this parameterization. The
model with strain in a layered superlattice conflguratlogbsdss;k parameterization in contrast is based on common

Jancu edl. have developed a method where the d orbitg,, ) hotentials and has the valence band offset built into
on-site energy is shifted as a function of strain. For ”fﬁe parameter set.

general 3-D electronic structure case thatis subjectto t_t|1i le 3 sh th let terizati f GaA
work, a more general treatment of the on-site energies go'€ 2 Shows the (éomp ele parameterizafion of S
nd InAs in our spd°s* tight-binding model including

a function of strain must be included. In the NEMO3§1h i | and di | strai i "
D implementation of the tight-binding model, all on-sitd '€ O-dlagonal and diagonal strain scaling parameters.

energies can be shifted due to strain in an arbitrary 3'—?) thls model a gqod fit based on common atomic po-
configuration. tentials of the As in the GaAs and InAs has been ob-

o o o tained. A valence band offset of the unstrained mate-
To automate the fitting of the orbital tight-binding paranyj, s of 0.2259eV is built into the parameter set. The

eters to the desired bqu_ material properties [Madeluggzdss* model is rich enough in its physical content to
(1996); Landolt-Bornstein (1982), Jancu, Scholz, Belyapie the fitting of GaAs, InAs, and AlAs with comon
tram, Bassani (1998)] a genetic algorithm (GA) based, ,,tentials and built-in valence band offsets. Common
software package. The details of this algorithm and sey,, hotentials and built-in valence band offsets cannot

eral improved material parameterizations are descrihgd. -niaved in the 35* model, unless some of the fitting
elsewhere [Klimeck et al. (2000); Klimeck, Bowenrequirements are severely relaxed.

Boykin, Cwik (2000)] was developed. The general idea

of the GA is the stochastic exploration of a parame-zr-able 4 summarizes the major unstrained bulk mate-

ter space with a large set of individuals, which repréi-al properties that have been targeted in théssand

5 . .
sent different parameter configurations. The individﬁp3d s’ parameterization for Gas and InAs. The target

. : : : rameters are taken from various experimental and the-
als are measured against a certain desired fitness fpameters are take P

tion and ranked. Some of the individuals (for eXargo_retical references [Madelung (1996); Landolt-Bornstein
ple 10% of the worst performers) are thrown out 119_82)' Jancu, SChO_IZ' Beltram, Bass_anl (19_98)]' The
major parameters of interest are associated with the low-

the gene pool and replaced by new individuals that a ) ,
derived from better performers by cross-over and mEsSt conduction and the two highest valence bands. In Ta-

ble 4 these properties are separated by a horizontal line
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Table 3 : sp’d®s* tight-binding model parameters for GaAs and InAs. All energies are in units of eV, the lattice

Copyright(© 2002 Tech Science Press

constant is in units of nm and the strain parameteasnidC are unitless.

CMES, vol.3, no.5, pp.601-642, 2002

TB Parameter GaAs INAS || Ngrain GaAs InAs Cqrain GaAs InAs
lattice 0.56532| 0.60583

E(sa) -5.50042| -5.50042

E(pa) 4.15107| 4.15107

E(sc) -0.24119| -0.58193

E(pe) 6.70776| 6.97163

E(s) 19.71059| 19.71059

E(s) 22.66352| 19.94138

E(da) 13.03169| 13.03169

E(dc) 12.74846| 13.30709

0,/3.0 0.17234| 0.17234

A:/3.0 0.02179| 0.13120 Eqift | 27.0000| 27.0000
V(s,9) -1.64508| -1.69435| ss*o | 0.00000| 0.06080 C(s,s) | 0.58696| 0.53699
V(s*,s") -3.67720| -4.21045| s*s‘c | 0.21266| 0.00081| C(s*,s*) | 0.48609| 1.05899
V(s s) -2.20777| -2.42674| sso | 2.06001 | 1.92494 | C(si,s.) | 0.88921| 0.46356
V(Sa,S5) -1.31491| -1.15987| spo | 1.38498| 1.57003 | C(s,,s:) | 0.77095| 1.94509
V (Sa, Pc) 2.66493| 2.59823| ppo | 2.68497|2.06151| C(Sa,pc) | 0.75979| 1.86392
V(S Pa) 2.96032| 2.80936| pprmt | 1.31405| 1.60247 || C(Sc, pa) | 1.45891| 3.00000
V(s pe) 1.97650| 2.06766| sdo | 1.89889|1.76566| C(s}, pc) | 0.81079| 0.40772
V(s pa) 1.02755| 0.93734| s*po | 1.39930| 1.79877|| C(s, pa) | 1.21202| 2.99993
V (S, dc) -2.58357| -2.26837| pdo | 1.81235| 2.38382| C(sa,dc) | 1.07015| 0.00000
V (s, da) -2.32059| -2.29309| pdm | 2.37964| 2.45560 | C(sc,da) | 0.38053| 0.07982
V(sh,dc) -0.62820| -0.89937| Cgiag | 2.93686| 2.34322|| C(s},d;) | 1.03256| 0.00000
V(s da) 0.13324| -0.48899| ddo | 1.72443| 2.32291 || C(s{,dg) | 1.31726| 0.75515
V(p, p,0) 4.15080| 4.31064| ddm |1.97253|1.61589| C(p,p) |0.00000 |1.97354
V(p,p,T) -1.42744| -1.28895 dddé | 1.89672| 2.34131

V(pa,dc,0) -1.87428| -1.73141|| s*do | 1.78540| 2.02387| C(pa,dc) | 1.61350| 0.00000
V(pc,da, 0) -1.88964| -1.97842 C(pc,da) | 0.00000| 0.00000
V(pa, de, TT) 2.52926| 2.18886

V(pc, da, T0) 2.54913| 2.45602

V(d,d, o) -1.26996| -1.58461 C(d,d) | 1.26262| 0.10541
Vv (d,d,m) 2.50536| 2.71793

V(d,d,d) -0.85174| -0.50509
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Table 2 : sps* tight-binding parameters for GaAs an@ompared to the $8* model, the spd®s* model gener-
InAs. All energies are in units of eV and the lattice corlly provides better fits to the hole effective masses and
stant is in units of nm. For this parameterization all reléhe electron effective masseslaend L. The failure of
vant off-diagonal stain scaling parameters are sg@ the sps* model to properly reproduce the transverse ef-
and all diagonal strain scaling parameters are $8t0. fective mass on thA line towards X is well understood

Parameter GaAs InAs [Klimeck, et al. (2000)]. The sfu°s* model does allow
E‘?Si:)e/ (nm) ggiggg gggggg the proper modeling of the effective masses in that part
E(p) 0.954046| 0739114 of the Brillouin zone.

E(s) -2.77475| -2.55269 Figure 6 shows the bulk dispersion of GaAs (left column)
E(pc) 3.43405| 3.71931 and InAs (right column) computed from the tight-binding
E(s1) 8.45405| 7.40911 parameters listed in Tables 2 and 3 without strain. The
E(s) 6.58405| 6.73931 dispersion corresponding to the3sp model is plotted
xg)s( )s()) ?3241128 iggggg in a dashed line and compared to the results from the
V(X:y) 4.77000| 446930 sp’d®s* model in a solid line. The first row in Figure 6

V (Sa, Pe) 4.68000| 3.03540 shows the bands in a relatively large energy range in-
V (S, Pa) 7.70000| 6.33890 cluding the lowest valence band in the models as well
V (S, Pe) 4.85000| 3.37440 as several excited conduction bands. The second row in
V(Pa, S) 7.01000| 3.90970 Figure 6 zooms in on the central bands of interest. The
A 0.42000| 0.42000 sp’s* and spd°s* model agree reasonably well with each
Be 0.17400| 0.39300 other at the Gamma pointin their energies as well as their
Ev 0.00000] 0.22795 curvatures of the central bands of interest. Off the zone

center the deviation between the two models become sig-
nificant. Some of the band energies are hard to probe
. experimentally and are only known from other theoreti-
from parameters that are outside these central bandg gf - 0 [Madelung (1996); Landolt-Bornstein (1982):

mtere_st: The upper and Iower_ ban_d edge; as We”ﬁ%cu, Scholz Beltram, Bassani (1998)]. However the
the minimum pointin the [111] directioky are included conduction band energies at X and L and their corre-
in the optimization target with a relatively small WeightSponding masses are well known, and thésspnodel
These properties are included in the optimization to prg(-)es fail to deliver a good fit. The %ﬂﬁf model generally

SEIVe an ‘overall” good shapg of the bands outside t pears to deviate strongly from the’dps* model in the
major interest. If they are not included, upper and low 11] direction even for the central bands of interest.
bands will distort significantly to aid the desired perfe

properties of the central bands. This distortion can lead , ¢ _
to undesired band crossings on and off the zone cente?’.‘3 Band Edgesas a Function of Strain

Also included (yet not shown in the table) is another r&-he deformation of atomic positions from their ideal
striction on the GaAs and InAs parameters to alloy “welValues in a relaxed semiconductor crystal modifies the
within the virtual crystal approximation (VCA). It hasinteraction between atomic neighbors and therefore the
been found that parameter sets that represent the indidkctronic bandstructure. The ability to form strained
ual GaAs and InAs quite well can resultin g/fBa;_xAs structures without defects opens a new design space ex-
alloy representation that has completely wrong behaviglioited by many commercially relevant devices, includ-
of the bands as a function gf{dramatic non-linear bow- ing, for example, InGaAsP-based laser diodes operating
ing). Typically a target that linearly interpolates the cerat 1.55um. Although good qualitative results have been
tral conduction and valence band edges fqGQe_xAs obtained for the strain-dependence of the effects of inter-
from GaAs and InAs as a function riis included. Bow- est in these devices [Silver, Oreilly (1995)], very precise
ing is not built into these VCA parameters, but estalbaeasurements of all the empirical parameters that influ-
lishes itself in the 3-D disordered system (see referergece strain are still lacking. The baseline strain parame-
[] for an AlxGa;_xAs example and Section 6.2 for a disterization to which the calculation is compared and fitted
cussion on IRGa;_xAS). to has been presented by Van de Walle (1989). Van de
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Table 4 : Optimization targets and optimized results for thésimnd s3d5s* model for GaAs and InAs.

Property ||| GaAs sps % dev || spds % dev InAs sps % dev | spds % dev
Target Target

El 1.4240 || 1.4173 | 0.4676 | 1.4242 | 0.0150 ||| 0.3700 | 0.3740 | 1.0679 |0.3699 |0.0232

Ef 1.4240 || 1.4173 | 0.4675 || 1.4212 | 0.1996 ||| 0.5957 | 0.6019 | 1.0406 |0.5942 |0.2496

Vin 0.0000 || 0.0000 | 0.0000 || -0.0031|0.3055 ||| 0.2257 |0.2279 | 0.2247 |0.2243 |0.1401

m:[001] || 0.0670 || 0.0679 | 1.3195 | 0.0662 |1.1353 ||0.0239 |0.0245 |2.3030 |0.0235 |1.5417
m;, (001 ||| -0.087 | -0.0699 | 19.7125 || -0.0830 | 4.6849 |(-0.0273 |-0.0282 [ 3.2117 |-0.0281 |2.9541
m, (011 ||| -0.080 | -0.0661 | 17.7381| -0.0759 | 5.6414 ||-0.0264 |-0.0275 | 4.3227 |-0.0273 |3.3575
m;,[111 || -0.078 | -0.0498| 36.6755 || -0.0740 | 5.8547 ||| -0.0261 |-0.0207 || 20.7535 |-0.0270 |3.5783
m, (001 ||| -0.403 || -0.4436| 10.0710| -0.3751 | 6.9198 |[-0.3448 | -0.4410 | 27.9049 |-0.3516 |1.9617
m, (011 ||| -0.660 | -0.7103|7.6270 | -0.6538 |0.9421 |[|-0.6391 |-0.7159 | 12.0144 |-0.5634 |11.8389
m,[111 ||| -0.813 | -0.8726|7.3332 | -0.8352|2.7329 ||-0.8764 |-0.8972 |2.3757 |-0.6982 |20.3385
m;,[001] ||| -0.150 | -0.1447|3.5239 | -0.1629 | 8.6134
EX—El || 0.4760 || 0.4742 | 0.3753 | 0.4760 |0.0099 ||| 1.9100 |1.9008 |/ 0.4829 [1.9131 |0.1626
mi[long] ||| 1.3000 || 1.2552 | 3.4436 | 1.3138 | 1.0596
m trang] ||| 0.2300 || 4.1920 | 1722.61 0.1740 | 24.3358
K 0.9000 || 0.8550 | 5.0000 | 0.8860 |1.5556
EL—E[ || 0.2840 || 0.5339 | 88.0001| 0.2825 |0.5201 ||| 1.1600 |1.3394 | 15.4628 [1.1589 |0.0915

my [long] 1.9000 || 2.9849 | 57.0979|| 1.7125 | 9.8685
my [trans| ||| 0.0754 || 1.1972 | 1487.74| 0.0971 | 28.7342

ke 1.0000 || 1.0000 | 0.0000 || 1.0000 | 0.0000 ||| 1.0000 |1.0000 || 0.0000 |1.0000 |0.0000
Ag 0.3400 || 0.3636 | 6.9545 || 0.3265 | 3.9792 ||| 0.3800 |0.4150 ([9.2117 |0.3932 |3.4644
Ef, -13.10 || -12.703| 3.0321 || -12.370|5.5723 ||| -12.300 |-12.535 (|1.9149 |(-13.417 {9.0847
ES -0.340 || -0.3636| 6.9545 || -0.3265| 3.9792 ||| -0.3800 |-0.4150 [|9.2117 |-0.3932 |3.4644
Ef. 1.4240 || 1.4173 | 0.4676 || 1.4242 | 0.0150 ||| 0.3700 | 0.3740 || 1.0679 |0.3699 |0.0232
Ef. 4.5300 || 4.3557 | 3.8468 || 3.4544 | 23.7449 ||| 4.3900 |4.3314 | 1.3342 |3.7402 |14.8027
EL. 4.7160 || 4.5861 | 2.7546 || 3.5785 | 24.1198 ||| 4.6300 |4.7294 | 2.1474 |4.0466 |12.6013
Eg, -2.880 || -2.8013| 2.7321 || -2.2302 | 22.5631 ||| -2.4000 |-2.5311 || 5.4607 |-2.3486 |2.1434
EX -2.800 || -2.6699| 4.6481 || -2.0470| 26.8927 ||| -2.4000 |-2.4383 || 1.5958 |[-2.2525 [6.1441
EX 1.9800 || 1.9278 | 2.6376 || 1.9199 | 3.0363 ||| 2.5000 | 3.2599 || 30.3955|2.6286 |5.1458
EX. 2.3200 || 2.1101 | 9.0469 | 2.1298 | 8.1972

EL, -10.920| -11.111| 1.7551 | -10.580| 3.1117
EL, -6.2300| -6.9272|| 11.1903| -5.8611 | 5.9221
ES, -1.420 || -1.5793| 11.2172|| -1.1169 | 21.3432 ||| -1.2000 | -1.4897 || 24.1448 |-1.3048 |8.7339
Eg\, -1.200 || -1.2766| 6.3866 || -0.8975 | 25.2051 ||| -0.9000 |-1.1221 || 24.6830 |-1.0129 |12.5407
Es. 1.8500 || 1.9513 | 5.4736 || 1.7067 | 7.7440 ||| 1.5000 | 1.7133 || 14.2213|1.5289 |1.9235

E’. 5.4700 || 3.1464 | 42.4786|| 3.9357 | 28.0501 ||| 5.4000 |4.3284 || 19.8452 (4.1758 |22.6708
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Figure 6 : E(k) dispersion for GaAs (left column) and InAs (right column) computed with this'sfashed line)
and spd®s* (solid line model).

Walle’s parameterization is not purely empirically basedpme hydrostatic strain distributions can be expected as
but partially dependent onkap expansion following Pol- well, due to the finite extent of the InAs quantum dots in-
lak and Cardona (1968). For this work, Van de Wallesde the GaAs buffer. The z-directional strain component
parameters have been slightly modified to represent roomthe bi-axial strain case is computedeas— Zg—ﬁsxx and
temperature bandgaps. Eyy = Exx-

Figure 7 shows the conduction and valence band ed@ssh tight-binding models follow the trends set by the
for GaAs (left column) and InAs (right column) as &an de Walle reference reasonably well. Generally
function of hydrostatic strain (top row) and bi-axial straispeaking the sfi®s* model performs better than the
(bottom row). Three parameterizations are comparedsipls* model (which actually was not optimized for its
each graph: 1) reference data by Van de Walle (dashstiin performance). It has been particularly hard to im-
line), 2) data computed from the &j¥s* model (circles), prove the under-prediction of the InAs band gap (Fig-
and 3) data computed from the®sp model (solid line). ure 7d)) for large compressive bi-axial strain. The rea-
The test application in this paper is the modeling of sonably good fit has been obtained by compromising the
strained InGaAs system grown on top of a GaAs sufit of the conduction band under hydrostatic compressive
strate. Since InAs has a larger lattice constant than Gagsin. In contrast, the InAs valence bands has not not
one needs to model effects on InAs as it is compresgmzsed any problem at all to be fit to the Van de Walle
towards the GaAs lattice constant (7% negative straidata.

GaAs bonds, by contrast, are expected to be stretched to-

wards the InAs bondlength at interfaces (positive straifh4 Effective Masses asa Function of Strain

Since the InGaAs quantum dots grown on GaAs which . . . .

are considered in the next two sectins 6 and 7 are Slgnﬂ[‘ewous na_no_electronlc_ transport  simulations have
cantly larger in their width than their height, one can ex; own that it is essential [Bowen, et al. (1997a);

pect the strain in the dot to be mostly bi-axial. Howevé<r|'meck etal. (1997); Bowen, et al. (1997b)] to prop-
erly model the band edges and effective masses in the
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Figure 7 : GaAs and InAs conduction band, heavy-hole, light-hole and split-off band edges as a function of hydro-

static and bi-axial strain. Dashed line from parameterization of Van de Walle (1989). Circles ffdAs‘smodel
and solid line from sfs* model.
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Figure 8 : Electron, heavy hole (HH) and light-hole (LH) effective masses in the [001] direction as a function of

hydrostatic (circles) and bi-axial (no symbols) strain for théss@nd the spd®s* model. Left column GaAs, right
column InAs. Negative strain numbers correspond to compressive strain.
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heterostructure. In a single band model the dependenoease in the GaAs HH mass, while thédd}s* model

of eigen-energy of a confined state is inversely prop@hows the opposite trend. In the case of InAs the two
tional to the effective mass. With the strong dependenemdels predict conflicting trends in both strain regimes.
of the band-edges on the strain shown in Figure 7 one ddate that both models have slightly different zero-strain
also expect a strong dependence of the effective masségins as indicated in Table 4. The difference in the
on the strain. Figure 8 shows the electron (first rondtrain dependence trends for the HH mass in the two
light hole (second row), and heavy hole (third row) etight-binding models may result in different hole con-
fective masses for GaAs (first column) and InAs (sefinements and hole state separations predicted by the two
ond column) as a function of hydrostatic strain (linesiodels. Although the conflicting trends are somewhat
with circles) and bi-axial strain (lines without symbolsylisturbing and warrant further examination on their ef-
for the spPs’ (dashed line) and the 3g°s* model (solid fects on confined hole masses, it is also important to note
line) computed in the [001] direction. Negative straithat the overall variation due to strain is small to within
values correspond to compressive strain. For the elabout 15%. Variations with strain in the electron and
tron mass the sis* and the spd®s* model show roughly light hole masses are much more significant on the or-
the same trends for GaAs as well as InAs. The Gader of 100% and both models predict the same trend.
mass drops towards the smaller InAs mass as GaAs is

stretched towards InAs. In InAs the electron mass is iB8- Application of NEM O 3-D to InGaAsAlloyed Sys-
creased towards the heavier GaAs mass as the materiatems

is compressed towards GaAs. Thédis* model shows
a larger difference between the effect of hydrostatic a
bi-axial strain than the sis* model.

hhe previous Section 5 discusses the parameterization
of GaAs and InAs in the sjs* and sgd®s* model. All

The chanae in the effective m in InAs under com rthe material properties in that section were computed on
€ change € cliective mass S UNder comprege asis of a single primitive fcc-based cell. This sec-

sive bi-axial strain is quite important. Under 7% bi-aXiehon 6 and section 7 focus on the properties of the alloy

strain the effective mass approximately doublgs. This 'nfoag_xAs modeled by the constituents of GaAs and
crease in the effective mass lowers the conflnementﬁw

S : : ) As in a 3-D chunk of material consisting of tens of
ergies in the the quantum dots, effectively increasing t

: ) ) Tousands to over 6 million atoms. Two different sys-
confinement. The spacing between the confined elect[
states will also be significantly reduced.

8Mhs are considered in detail: 1) bulk(®a_xAs and

its properties as a function of In concentration x, and 2)
The light hole masses (Fig 8c,d)) show a similar IinemmG&mAs dome shaped quantum dots embedded in
dependence thydrostatic strain as the electron massegaas. Within each system the strain properties are ex-
for both band structure models. Under bi-axial comymined first, followed by an analysis of the electronic

pressive strain, however, the light hole mass increasgs;cture. Throughout this section the3dps* model is

dramatically towards the heavy hole mass. Both tighised for all the electronic structure calculations.
binding models predict roughly the same behavior. In the

case of thin InGaAs quantum dots strained on GaAs tlid  Strain Propertiesof Bulk InyGa; _xAs
implies that the light hole confinement is much stronger

and the light hole state separation is much smaller th-la;He S‘afﬂng point of many gtomistic electro_nic stru_cture
the unstrained LH effective mass would indicate. Nofé culations is a thermlnatlon of the atomlc_ configura-
however that the LH band is significantly separated fro n through a minimization of the total strain energy.

the HH band due to strain as indicated in Figure 7d). The straln cglculatlon discussed earll_er_ls applied to a
small, periodic InGa;_xAs system consisting of approx-

While the two tight-binding models show similar trendﬁnately 13000 atoms. Figure 9 shows the mean bond
for the electron and light hole effective masses for G gths for such a small system. The curve in red (blue)
ahd InAs under both pressure types, the two models Sh&Wresponds to the mean In-As (Ga-As) bond length and
different trends for the heavy hole masses. In the c3s§,,nged by dotted curves that delimit the range of
of GaAs under hydrostatic pressure the two models sl 4 jengths that lie within one standard deviation of the
predict the same trends for the HH mass. However, Wil o, - Clearly, as the material in question becomes less
increasing bi-axial strain the 3g' model predicts an in- alloy-like (i.e more GaAs-like or InAs-like) the standard
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deviations approach zero. tight-binding Hamiltonian on a single unit cell with peri-

The curve in green is the average of the Ga-As and Rfic boundary conditions, in which the cation-anion cou-
As bond lengths weighted by the concentration of eaing potentials are determined by a strict average of the
cation and represents the mean bond length throughtbuf\s and Ga-As coupling potentials. The lattice con-
the crystal. Note that this mean is strongly linear withtant of the single cubic unit cell is determined by Veg-
a very slight upward bowing and is consistent with Veard's law [Chen, Sher (1995)]. The resulting energy gap
gard's law [Chen, Sher (1995)]. Also evident is thts mostly linear, but displays a very slight upward bow-
bimodal nature of the bond length distribution whicHd- The blue curve is obtained by diagonalizing the full
demonstrates that on a local scale the crystalline stré@miltonian of the alloyed system. The system size is
ture around any particular cation retains to a large deg@#ficiently large that variations of the energy gap due to
the character of the binary bulk material. The computé@nfigurational noise (see analysis in Section 7) is not
bond lengths show reasonable agreement with those #élble on the energy scale shown in the figure. The de-
termined from experiment [Mikkelsen, Boyce (1982fgrmined energy gap differs from the VCA result by a

(shown in black), but tend closer to the mean crystdlaximum of 60 meV and displays a slight downward
value. bowing, although significantly less than that of the ex-

perimental result [Landolt-Bornstein (1982)]. The linear
behavior in the VCA computed bandgap is included in
0.265 ) ) ) ) the tight-binding parameter fitting as discussed in Sec-
0261 tion 5.2. The random cation disorder in the 3-D bulk
' system can, therefore, be attributed with the bowing.
In similar AlyGa,_xAs simulations [Oyafuso, Klimeck,
Bowen, Boykin (2002)] much better agreement between
the 3-D simulation and the experimental results has been
achieved. Some bowing might have to be built into the
VCA based parameterization of GaAs and InAs to ac-

bond length (nm)
o o
[ N
5 N O
($)] ()] (&)

-6~ mean In-As bond length + std : :
024} -6~ mean Ga-As bond length +std | | commodate the larger bowing in thgBa_xAs system
. — Mikkelsen/Boyce (1982) compare to the AlGa;_xAs.
mean bond length of entire crystal
0.235 . . . .
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In concentration :I_.4é e experiment | -
. - - alloy
Figure9: In-As (red) and Ga-As (blue) bond length av O X vea

erage (with an error margin of one standard deviation) % 1.27
a function of In concentration x. Black line corresponc =
to experimental data reported by Mikkelsen and Boy: S
(1982). Dot-dashed green line corresponds to a VCA | >

. . o
sult representing the mean bond length of the entire cn 5

tal. u‘—] 0.6

0.4 S
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6.2 Electronic Propertiesof Bulk InyGa; xAs

With the atomic configurations the electronic prope
ties of the IneGa4As system can be obtained. Fig-
ure 10 compares the experimentally measured [Landditgure 10 :  Experimentally measured [Landolt-
Bornstein (1982)] energy gap (shown in green) &ornstein (1982)] energy gap (solid line) ofd@a;_xAs
In,Gay_As as a function of In concentratiorwith nu- s a function of In concentrationrcompared with results
merical results, obtained in two different ways. The reéfsed on the 3-D random alloy simulation (circles) and a
curve is the VCA result, obtained by diagonalizing théirtual crystal approximation (stars).
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6.3 Strain in an Alloyed Quantum Dot

This section demonstrates an example of the strain cal-

culation in an alloyed quantum dot using NEMO 3-D
The model problem is a dome-shape@ dGay 4As

QD of diameter 30 nm and height 5 nm enclosed in a

GaAs box of size 74 74 x 28nn?. The entire struc-

CMES, vol.3, no.5, pp.601-642, 2002

ture, which contains roughly 6.3 million atoms, is al 0.06 (@) Ga—As bonds | Ll ‘-Sxx
lowed to expand freely to minimize the total strain energ 0.04 . LR <€y

(no fixed boundary conditions). The diagonal part of tt “. .0 ?r{e}
local strain tensor is examined along tk@xis, which 0.02+ - e oo 1
lies halfway between the top and bottom of the dome a £ YT *

parallel to its base. Figures 1l1a) and 11b) show t S 0 . Ve s % .'oi
components, (blue), &,y (green),e,, (red), and Tr§) & 0.02 43 ;':‘:"go:.,_

(black) of the local strain tensor of the primitive cell cen a H!.; ‘,. 32 "-.‘._" :

tered about the Ga and In cations respectively. With e

the QD, the In-As bonds (see Figure 11b) are comprt -0.047 oLt .

sively strained roughly equally in theandy directions 0.06 ‘ ‘ ‘
(approximately 4.69% and 4.99% respectively). There -20 0 20

a very slight tensile strain in thedirection ¢~ 0.02 %). Position along x (nm)

There are three competing effects that determine the sign

and magnitude of this strain. First, there is a negative 0.05

hydrostatic component due to the smaller lattice constant SN . s

of the buffer. Second, the flatness of the dome means 0l ees. -.'" PRCRIP R o
that close to the center of the QD, the strain field should o ; ".' 2 .:. ...:.'- " e
approach that of quantum well in which the cubic celk I PR PR T LR
is compressively strained laterally (i.e. sandy) and & -0.05 % & %ot B LT R 4
stretched ire. Finally, the presence of nearby Ga cation KR _:- ::,'_ e -_" > 3, . * ot
provides an additional negative hydrostatic component to PR . ) N .,“..-..','...'.,
the strain. The combination of these three effects gives -0-107 fpat M3 ™ @770 "L ¥ 3T Je u™¥
rise to a large biaxial compressive strain and a nearly van-

ishing strain component normal to the flat dome. (b) In-As bonds  « & Eyy* Ezz* TrE)

The Ga cations within the dome (see Figure 11a) are sub-
ject to only one of these effects, that of the biaxial strain

-0.15

-10 -5 0 5

Position along x (nm)

10

of nearby In-As bonds. Interestingly, the Ga-As bongig,re 11 : Components of strain tensor for primitive
lengths are reduced laterally (-1.98% &nd -1.90%Y))  ce|is centered around (a) Ga and (b) In cations along an

from their bulk values. This reduction is likely an ef ;g midway from the top and bottom of the dome and
fort to match the very large-component of the In-As parallel to its base.

bondlengths. The resulting average tension inzli
rection is 2.14%.

Just outside the dome, along the Ga atoms suffer
tensile strain iny and inz (although more so i) to
match the effective lattice constant on the boundary of
the dome. This stretching results in compressive strain
alongx as indicated in Figure 11(a) by the negative value
of g4 outside the QD.



Development of a nanoelectronic 3-D (NEMO 3-D ) Simulator for multimillion atom simulations

631

6.4 Local Band Structurein an Alloyed Quantum Dot

Figure 12 shows the effect of the deformation of t
primitive cells under strain on the local electron and hole
band structure. Each point represents a “local” eig T
energy obtained by constructing a bulk solid from thg
primitive cell formed from the four As anions enclosin
each cation. One sees that outside the QD, the tenglle
strain the GaAs cells experience reduces the conductio
band edge slightly from its bulk value and splits the d
generate valence band (shown in black) into heavy h

(HH) and light hole (LH) bands.

en-

laterally resulting in a increase in local electron eigen-
energies. The resulting mean electron band edge along
fe x-axis and within the QD is indicated by the thin
solid line. Biaxial compressive strain also raises (low-
rs) the local HH (LH) eigen-energies within the QD for
oth InAs and GaAs cells, and, again, the average HH
D band edge is indicated by a thin solid line. Clearly,

€ random distribution induces a large variation in local
or%entials, which will shortly be seen to strongly affect

ﬁhallow hole states.
ole

6.5 Wave Functionsin an Alloyed Quantum Dot

This section examines the effect of disorder on electron

(@) . [ Igg\; (Et) and hole eigenfunctions. Three different alloy configura-
16} o S ... ) s D] tions are examined for the same quantum dot size, shape,
15! IR RN ] and number of included atoms — two different random al-
> . €. % s loy configurations that differ only by the random place-
> ' S | y g y by p
NG 1.4 \‘ . ?""_' ment of the In and Ga atoms in thegl§Gap4As, and a
o | ¢ o ° . VCA-based configuration without spatial disorder. In the
L 1.3 ‘-*ﬁ A VCA representation all cations within the QD are of a
e e fictiti “Ing 6Gay.4” in which all tight-binding pa-
121 oINS ictitious type “Ing6Gap.4” in which all tight-binding pa
e %ee o oot rameters (and the strain parameters) are linearly averaged
11¢ : * between InAs and GaAs parameté?s This case corre-
10 ‘ ‘ ‘ sponds most closely to a jellium description and is used
' -20 0 20 as our baseline reference. The disordered wave functions
Position along x (nm) are shown to be significantly different from each other
as well as from the homogeneous VCA system wave-
b ‘ ‘ functions. A detailed statistical analysis of the computed
0.4+ (b) °e o InAs (HH) |1 . . . L
" « o |einas(tH) eigen energies as a result of the wave function variations
0.3} . ‘ R N Bl i is deferred to Section 7. The quantum dot and compo-
. 230 1 g, L GaAS (LH) ition is identical he di . b H
— WP NR sition is identical to the discussion above. However, to
i 0.2} ':f'—'ﬁ'i""‘.-—‘ifr reduce the computational expense, the GaAs buffer is re-
> 01! AP ETRIS :', LA | duced to a size of 74 74 x 15 nm? and contains roughly
= v 3 *,h,-‘f‘.__ﬁ..‘.."“:: 3.6 million atoms.
& 0 AR m: ", Figure 13 shows four different representations of the
. Sewes oA ground state electron wave function obtained for three
-0.17 o % | different configurations. The first column shows results
02! S for a VCA implementation. The other two columns dis-
' 2‘0 0 2‘0 play results for two separate random distributions of In

Position along x (nm)

and Ga atoms within the QD. The first row depicts scatter
plots of the probability density, where the red points mark

Figure 12 : “Local” conduction (a) and valence (b) banétomic sites where the probability density exceeds one-
edges determined by imposing periodic boundary contfird of the maximum value, and green and blue points
tions on a primitive cell constructed from the four anionmark higher values. Clearly there is not much differ-

surrounding a given cation.

19The anion As parameters are in general averaged as well in the
VCA approximation. However in the $g°s* parameterization
Within the QD, both GaAs and InAs cells are squeezediiscussed in Section 5.2 all As parameters are already identical.
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Figure 13 : Electron ground state wave functions without disorder - VCA (first column), and two different random
alloy configurations (middle and right column). First row: scatter plot of wave function in 3-D. Second, third, and
fourth row: colored contour plot, outlined contour and surface plot sliced through the middle of the quantum dot at

a constant z, respectively.
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ence between the three plots except that the VCA restdinverged on an intermediate eigenvalue. Second, the
is somewhat smoother. Also, the VCA plot is slightlgisorder in the system may rearrange the ordering of the
larger indicating a slower decay as one moves away fr@igenstates. Note that there exist several pairs of states
the central axis of the QD. The next two rows are conto(glectron 2 and 3; electron 5 and 6; and hole 2 and 3) that
plots of a slice parallel to the base of the dome and miskem from degenerate states in the homogeneous system,
way up in height. Here, the impact of the disorder on thyet the disorder splits their eigenenergies by up to 1.4
wave function is quite evident, although the s-like chameV. Since this splitting due to disorder is roughly the
acter of the wave function still closely resembles that same order of magnitude as the separation of the excited
the homogeneous QD. Also, the difference between ttates, itis conceivable that the disorder can rearrange the
two disordered QDs is not significant. The eigenenergieslering of the eigenstates.

differ by about 1.38meV. The last row depicts a surface

plot of the wave function (normalized to unity over the o ) ) )

entire simulation domain) and shows that the homogh- Statistical Analysis of Random Disorder in Al-

nous result is a smoothed version of the disordered wave 0yed Quantum Dots

function with a lower maximum. 71 Set-up of the Numerical Experiment

Figure 14 shows a set of hole wave functions analogous
to the those shown in Figure 13 for the electron grourddlis section considers the same dome shaped
state. First note that the VCA scatter plot looks simildRoeGa.4As quantum dot as the previous sections.
to the ground state VCA electron wavefunction, excepince the In and Ga ions inside the alloyed dot are
that it is flatter. The stronger localization in taedi- randomly distributed, different alloy configurations
rection reflects the greater confinement due to the lar§&St and optical transition energies from one dot to
hole mass relative to that of the electron. The larger hdfee next may vary, even if the size and the shape of
mass also makes the wave function more susceptibldftg dot are assumed to be fixed. This section seeks
perturbations in the local potential. This effect is demo© answer the question: What is the minimal optical
strated in the three hole scatter plots, where the disoriBg Width that can be expected for such an alloyed dot
strongly changes the appearance of the wave functiBgdlecting any experimental size variations? To enable
Note, also, that different placements of cations can pfe simulation of about 1000 different configurations
duce noticeably different results as seen in the contdlf required simulation time was reduced by three
plots where the location of the wave function peaks vafgditional approximations / simplifications: 1) the
by several nm. The greater localization in systems wigfrounding GaAs buffer is reduced to 5nm in each
disorder also manifests itself by the much larger peaksdifection around the quantum dot. This results in a total
the surface plots, where the probability density is, aga#imulation domain of approximately 1,000,000 atoms
normalized to unity over the entire simulation domain iWith about 718,000 atoms in the quantum dot itself, 2)
each of the three cases. The hole eigenvalues differtBy use of sgs" model instead of the Sp°s* model (a
-3.44meV compared to a difference of +1.38meV for tfigduction of the required compute time by abou).4
electrons. A more detailed statistical analysis of the didd 3) the computation of the eigenvalues without the
tribution of eigenvalues is the topic of the following seccorresponding eigenvectors (resulting in a reduction of
tion 7. compute time by exactly a factor of two). With these
Figure 15 shows the six lowest electron (rows 1 and 3 proximations and sjmplifications the wall (T\IOCk time
and hole (rows 3 and 4) states for a similar system wif ol_ataln one set of e|genvalules for one particular alloy
cgpflguratlon took about 25 minutes on 31 processors of

the same dome dimensions, but enclosed in a buffer i .
size 56x 56 x 24 nnP. First, note that the electron state§933' 1000 different alloy samples therefore required

more closely resemble the states one would expect fr&QPrommately 420 hours or 17.4 days wall clock time

a homogeneous QD. Also, the three lowest hole staPésabOUI 13,000 hours or 538 days single processor

correspond well to their electron counterparts, buthigh%?mputlng time. The mechanical strain is minimized

energy states differ. There are two possible eprar:%ésiing a valence force field method [Keating (1966);

tions. First, the Lanczos algorithm might not have y {Yor Kim, Wang.(1998.)] as dlscu.ssed In Section 3.4
or each alloy configuration. Changing the random seed
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Figure 14 : Hole ground state wave functions without disorder - VCA (first column), and two different random
alloy configurations (middle and right column). First row: scatter plot of wave function in 3-D. Second, third, and

fourth row: colored contour plot, outlined contour and surface plot sliced through the middle of the quantum dot at
a constant z, respectively.
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Figure 15 : Electron and hole wave functions with disorder.

635



636 Copyright(© 2002 Tech Science Press CMES, vol.3, no.5, pp.601-642, 2002

of the random number generator generates the randagh Statistical Analysis of State Distributions

alloy configurations. The reduced GaAs buffer sizgo 4490 | luated for the atomi
tends to increase the optical band-to-band transiti ﬁ an sampies were evajuated for the atomic gran-

rity (AG) and cell granularity (CG), respectively. Fig-

energy by simultaneously raising the electron ener ) ) .
and lowering the hole energy. The use of thésspnode (ll;y; 1.6 provides a graphical gnaly5|s of some .Of the data
tained. The first row of Figure 16 shows histograms

compromises some of the accuracy of the electrof X
P y Ethe valence band, conduction band, and band-gap en-

structure due to strain (see discussions in Section 5).q i0s for the 560 atomi larit | ing 30
particular one can expect that the optical band gap wilid'€s for the 5oL atomic granufarity sampres using
mples per bin. The standard deviation of the valence

be underpredicted since the bi-axially strained InAs baiid AG :
gap is under predicted in bulk (see Figure 7d). Whi and statesq,”™ = 0.9mev) is smaller than that of the

the absolute energies are shifted from the experimenctgpducnon band state_zs@ezl.4meV). This dlﬁgrence
data, one can, however, still expect that the distributi§h >3 from the heavier h.ole mass anq the hlgher den-
and extent of the variations in the eigenvalues genera étéll of sFates as observed in .bUIk alloy simulations [Oya-
by the alloy disorder around the mean energies HSO: Klimeck, Bowen, Boykin (2002)]. The second row

independent of the mean, and therefore independeng IFig_ure 16 compares the histograms Of. the first row
the buffer siz& atomic granularity) to the corresponding histograms ob-

, tained in the model of cell granularity. Similar to the pure
NEMO 3-D currently supports two disorder models. Thﬁ’ulk alloy results [Oyafuso, Klimeck, Bowen, Boykin

first makes the simplifying assumption that neighboringny] the cell granularity results in standard deviations

catlon_s are completgly gncorrelat_ed so that the speciegghe energies that are larger than the atomic granularity
a particular cation site is determined randomly accorgéviations(yAG— 2.8meV,a”C — 1.9meV). For this par-
e=2. 02 =1 .

ing to the expected concentratigiand independently of ticular dot size the difference between AG and CG is

the configuration of the remainder of the supercell. Thig,, + 5 factor of two. Similar to the bulk simulations

disorder is referred to as atomic granularity (AG) in thifbyafuso Klimeck, Bowen, Boykin (2002)] a change

paper. The second model of compositional disorder, i the valence band state state energy average that is

creases the granularity of the disorder from the ato”i'éﬁger than the shift in the conduction band energy av-
level to that of the cubic cell, so that all four cationgrage can be observeAR, — ECG — EAG — (0.1938V —
— v VA

within a unit cell are of the same species resulting in cgllygga/ — 7 7mev AE. = ESG _ EAG — 12207V —

: o : . =7 AE¢ = ES AG _ 1,
granularity (CG). Within the AG model the cation cony 559g4/— _0.8mev). Again an overall reduction in the
centrations can be allowed to vary statistically or theyiiea| hand gap is the result of the increased granularity

can be pinned to a single value, enabling the simulatit)REG _ E(C;G—EéG:l.O3523V—1.O43GeV: —8.4meV).

of pure configuration noise.
P g The band-gap deviation is roughly additive from the va-

Previous work [Oyafuso, Klimeck, Bowen, BoykiNence and conduction band deviations. This additive be-
(2002)] on an unstrained AGaxAs bulk System poyior indicates a correlation between the conduction
showed that concentrational noise (concentration X varigs | -jence state energies. This correlation can be ex-
statistically) dominates over the configurational nOispﬂored with a scatter plot oE versusE, for all sam-
(fixed concentration x) by at least one order of magnitu%r{ees as shown in Figure 16g). A linear regression of the
in the standard deviations in the conduction and valenge, < atter plots result i, — 1.4685— 1.282F, and
band edge. The pure configurational noise is therefcgg:: 1.405— 1.193%E,, for the AG and CG distributions,
not considered here anymore, since there is eXperimFéEpectively, with a good regression quality£ 0.8. A

tally no exact control over the concentration x anynow, ation petween these strongly correlated energy values
Instead the two granularity models are examined in MR the hylk band structure is discussed in the following

detail. Section 7.3.

20puring the review process we have started to examine a poskie data can also be analyzed with respect to its depen-
ble GaAs buffer size dependence on the distribution function gfence of the actual In concentration x in the@®a,_,AS
the eigenenergies and have found that the dependence is not negli- . . . L .
gible. Anincrease in the GaAs buffer size decreases the spreag ||!10y' Figure 16i) shows a hlstogrgm ofthe I_n d|StrlbUtl_on
energy due. We are still in the process of exploring these data méfethe€ CG model. The expectation value is the desired

carefully and plan to publish details of that study at a later time. 0.6, the standard deviation of 0.0016. This deviation is
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Figure 16 : First row: histogram distributions of 560 samples with 30 samples per bin for the valence band edge
(a), conduction band edge (b), and band gap (c) using atomic granularity (AG). Second row: comparison of cell
granularity (CG) disorder results to results in the first row based on 490 samples. (g) scatter plpteeofusE,

for all the samples shown in (a-b) and (d-e). Red solid lines indicate least mean square fit. (h) scattdf phs of

a function of actual In concentration for cell granularity. (i) histogram on actual In alloy concentration in the cell
granularity.
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purely determined by the statistical variation as a funthe x-y plane (solid line). It is interesting to see that the
tion of systems size [Oyafuso, Klimeck, Bowen, Boykihydrostatically compressed InGaAs has a very small de-
(2002)] (about 718,000 atoms in the dot in this case) apdndence on the In concentration. The same graph also
the random selection with expectation of 0.6. The statshows the scatter plot of the quantized conduction and
tical variation is certainly smaller than the experimentablence band energies as a function of actual alloy com-
control on the alloy concentration and one can expect thesition.

experimental uncertainty in the alloy concentration to bghe single cross symbols indicate the average bottom of
significantly larger. the conduction and the average top of the valence band in
Figure 16h) shows a scatter plot of the conduction baadsmall region of the center of the quantum dot (see the
state energies computed in the CG model as a functiscussion of the spatially varying local band structure in
of their corresponding In concentration. The scatter pls¢ction 6.4). The electron and valence band states show
appears more like a round blob, indicating a weak cormenfinement energies of roughly 96meV and 50meV, re-
lation, and indeed the linear regressiorkm=1.4871— spectively. The difference in the confinement energies
0.4301% is characterized by a small regression qualitg of course expected due to the difference in the heavy-
R=0.24. A similarly weak correlation can be found fohole and electron masses. The placement in energy of
the valence band statek, = 0.04574+ 0.2468% with the local conduction and valence band edge as well as
R=0.21. This weak correlation d&; andE, with X is in the quantized state energies in the quantum dot indicate
contrast to a strong correlation we have seen in our buhat the states inside the quantum dot are influenced by
simulations [Oyafuso, Klimeck, Bowen, Boykin (2002)]bi-axial as well as hydrostatic strain components com-

bined.
7.3 Quantized Energy Comparison Against Bulk similar to to Figure 16h) the linear regression is shown
Data as a red line running roughly parallel to the bulk bi-axial

The quantized single particle energies in the quantum ¢&@in liné. Little trust can be given to the linear regres-
are determined by a multitude of influences. The firSon lines due to their small quality valuesRf=0.21.
order effects are based on the underlying semicondudiVever. the slopes do not conflict with the hypothesis
band structure, the confinement by the heterostructurelfidt the electronic state is dominated by the bi-axial strain
terfaces, the composition of the material and the size%}'ﬁs with some hydro-static strain shift contributions.
the dots. Effects due to disorder and electron-electrbigure 17b) plots the data of (a) orea vs. E, coordinate
interactions have to be considered second order effesi¢stem. Within this reference frame Figure 16g) already
The discussion in this section examines the correlatiSAOW a strong correlation between the quantZednd
between the quantizefl, andE, energies shown in Fig- Ec energies with a trustworthy linear regression of slope
ure 16g) and verifies that the quantized eigen-energidsl939. The unstrained, hydrostatically strained and bi-
shown in Figure 16 fit within the underlying semiconducaxially strained bulk slopes are: -10.747, -3.5726, and
tor band structure. This comparison serves as an overl8186, respectively. Again one can infer a strong in-
sanity check and as a characterization of the relative iffttence on the confined states by the bi-axial strain. The
portance of hydrostatic and bi-axial strain contributiorigdividual square symbols indicate the alloy composition
to the quantized states in the quantum dot. of 60% In and the cross indicates the average local band

Figure 17a) shows the bulk conduction and valence batigHcture value in the middle of the dot.

edge of IRGa_xAs as a function of In concentratio
x in a VCA approximation of a single unit cell. Th
graphs are computed using the same GaAs and IR numerical experiment shows a mean optical transi-
sp’s* parameter set that was used for the statistical quaien energy of about 1.04eV and a standard deviation, or
tum dot analysis in the section above. Three diffeassociated linewidth of approximately 2 to 5meV assum-
ent strain conditions are evaluated: 1) unstrained bullg a fixed quantum dot size and a narrow In concen-
(dashed line), 2) hydrostatically compresseg €&,y = tration distribution. This corresponds to an experimen-
€) to the GaAs lattice constant (dotted line), and 3) bially reported [Leon, Fafard, Piva (1998)] linewidth of

axially compressed(y =&,y #£z) to a GaAs substrate in34.6meV at an optical transition energy of about 1.09eV.

27.4 Comparison Against Experimental Data
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Figurel17: (a) three sets of conduction and valence bands,gbba_«As as a function of In concentration Dashed

line: no strain, solid line: bi-axially strained to GaAs, dotted line: hydrostatically strained to GagsandE,;

guantum dot energy distributions (circles) similar to Figure 16h) with their linear regression fits (red lines). Locally
averaged conduction and valence band edge inside a quantum dot is indicated with a plus sign. (b) conduction band
energies plotted versus corresponding valence band edges from (a). Squares indicate an In concentration of 0.6.

The optical bandgap is underpredicted by about 50me@s* and sgd®s* tight-binding models to compute elec-

in the sp's* model used in the alloy disorder study ofronic structure in systems containing up to 16 million
Section 7. The sfo®s* model used in Section 6 predictstoms. An eigenvalue solver that scales linearly with the
an optical band gap of about 1.151eV, about 60meV toamber of atoms in the system has been demonstrated.
large compared to the experiment. Excitonic interactioBeowulf cluster computers are shownto be efficient com-
will reduce the optical bandgap by about 10 to 30meyuting engines for such electronic structure calculations.
With an experimentally observed optical line width oThe electronic structure calculations require a signifi-
34.6meV the sp®s* model is well within the experi- cant RAM access by the CPU, and the Intel Pentium IlI
mental and theoretical errors. The experimental data ldenchmarks presented in this work show that dual CPU
of course include quantum dot size variations, and thetherboards suffer from severe memory access prob-
actual alloy concentration and alloy distribution are uhems. Faster computation completion can be obtained by
known. We plan to simulate larger sample space tHaaving one of the CPUs on each board idle. This sug-
does include quantum dot size variations and different glests that high memory use applications do not benefit at
loy profiles [Sheng, Leburton (2001)] in the future. Thall from a dual Pentium Ill motherboard. Genetic algo-
major result of this simulation is the observation thaithms are used to determine the empirical parameteriza-
there will be a significant optical line width variation dugion of the atomistic tight-binding models. The details of
to alloy disorder alone, even if all the quantum dots wetbe new tight-binding model parameterizations for GaAs
perfectly identical in size with a well-known alloy con-and InAs are discussed with respect to their unstrained
centration. and strained bulk properties. NEMO 3-D is used to study
the effects of disorder in §Ga;_xAs bulk material and

in IngeGay4As quantum dots. The bulk properties are
shown to be represented well within NEMO 3-Drhe
guantum dot simulations show significant distortions in
the confined electron and hole wavefunctions introduced
This paper presents the major theoretical, numerical, dandrandom cation disorder. The distortion is more pro-
software elements that have entered into the NEMO 3sunced for the hole states than the electron states and
D development over the past three years. The atoitis not visible within a smooth virtual crystal approx-
istic valence-force field method is used for the determiniaation, which resembles non-atomistic methods. Over
tion of atom positions in conjunction with the atomisti@ thousand different alloy distributed quantum dots are

8 Conclusion and Future Outlook

8.1 Summary
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simulated and a variation of the optical transition energyith an external magnetic field, which can originate di-

of several meV is observed. rectly from a source external to the device or from mag-
netic impurities embedded in the semiconductor. This
8.2 Future Simulations interaction contributes 8- H term to the Hamiltonian

and in a first approximation can be taken as an on-site

The s_trong variations in the elgctron and hole Wavef“n&'agonal term in the tight-binding Hamiltonian, where
tions introduced by the alloy disorder beg for the evaly,ch spin band is now treated explicitly. Together with
ation of these effects on the optical matrix elements gq yector potential contribution to the kinetic energy this
these transitions. This is an issue that is planned for €44ition should yield a Laraifactor in good agreement

amination in the near future. The computation of g experiment and give a good description of charge
optical matrix elements in the incomplete t'ght'b'nd'”gansport for example in MRAMs.

basis il fo_IIow the preécrlptlon givenin ref.erences 0 The other spin-induced contribution to the Hamiltonian
Other possible studies include the comparison of the a4 spin-spin interaction term proportional o5 - S.

loy disorder effects with a constant quantum dot size adghce 5 scattering event mediated by this interaction
shape with effects due to variations in size and shapen change the spin of the electron, the self-energy and
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