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Development of a Nanoelectronic 3-D (NEMO 3-D ) Simulator for Multimillion
Atom Simulations and Its Application to Alloyed Quantum Dots

Gerhard Klimeck12, Fabiano Oyafuso2, Timothy B. Boykin3, R. Chris Bowen2, Paul von Allmen4

Abstract: Material layers with a thickness of a few
nanometers are common-place in today’s semiconduc-
tor devices. Before long, device fabrication methods will
reach a point at which the other two device dimensions
are scaled down to few tens of nanometers. The total
atom count in such deca-nano devices is reduced to a few
million. Only a small finite number of “free” electrons
will operate such nano-scale devices due to quantized
electron energies and electron charge. This work demon-
strates that the simulation of electronic structure and
electron transport on these length scales must not only
be fundamentally quantum mechanical, but it must also
include the atomic granularity of the device. Various el-
ements of the theoretical, numerical, and software foun-
dation of the prototype development of a Nanoelectronic
Modeling tool (NEMO 3-D) which enables this class of
device simulation on Beowulf cluster computers are pre-
sented. The electronic system is represented in a sparse
complex Hamiltonian matrix of the order of hundreds of
millions. A custom parallel matrix vector multiply al-
gorithm that is coupled to a Lanczos and/or Rayleigh-
Ritz eigenvalue solver has been developed. Benchmarks
of the parallel electronic structure and the parallel strain
calculation performed on various Beowulf cluster com-
puters and a SGI Origin 2000 are presented. The Be-
owulf cluster benchmarks show that the competition for
memory access on dual CPU PC boards renders the util-
ity of one of the CPUs useless, if the memory usage per
node is about 1-2 GB. A new strain treatment for the
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sp3s∗ and sp3d5s∗ tight-binding models is developed and
parameterized for bulk material properties of GaAs and
InAs. The utility of the new tool is demonstrated by an
atomistic analysis of the effects of disorder in alloys. In
particular bulk InxGa1−xAs and In0.6Ga0.4As quantum
dots are examined. The quantum dot simulations show
that the random atom configurations in the alloy, without
any size or shape variations can lead to optical transition
energy variations of several meV. The electron and hole
wave functions show significant spatial variations due to
spatial disorder indicating variations in electron and hole
localization.
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1 Introduction

Ongoing miniaturization of semiconductor devices has
given rise to a multitude of applications unfathomed a
few decades ago. Although the reduction in minimum
feature size of semiconductor devices has thus far ex-
ceeded every expectation and overcome every predicted
technological obstacle, it will nevertheless be ultimately
limited by theatomic granularity of the underlying crys-
talline lattice and thesmall number of “free” electrons.
Before long, device fabrication methods will reach a
point at which both quantum mechanical effects and ef-
fects induced by the atomistic granularity of the underly-
ing medium (Fig. 1) need to be considered in the device
design.

Quantum dots represent one incarnation of semiconduc-
tor devices at the end of the roadmap. Quantum dots
can be characterized roughly as well-conducting, low en-
ergy regions surrounded on a nanometer scale by ”in-
sulating” materials. The self-capacitance of the spatial
confinement region is reduced with decreasing sizes. A
situation can arise, in which the capacitive energy as-
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sociated with adding a single electron to the system is
larger than the thermal energy, and charge quantization
occurs. State quantization can occur if the central region
is “clean” enough5 and if the region’s dimensions are
roughly on the length scale of an electron wavelength.
Quantum dot implementations in various material sys-
tems (including silicon) have been examined since the
late 1980’s (Fig. 1b), and several designs have succeeded
at room temperature operation. In particular pyramidal
self-assembled quantum dot arrays appear to be promis-
ing candidates for use in quantum well lasers and detec-
tors [Liu, Gao, McCaffrey (2001)] within a few years.

Although simulation has proven, especially in recent
years, to be an important (and cost-effective) component
of device design6, existing commercial device simula-
tors typically ignore or “patch in” the quantum mechan-
ical and atomistic effects that must be included in the
next generation of electronic devices. This document de-
scribes the development of an atomistic simulation tool,
NEMO-3D, that incorporates quantum mechanical and
atomistic effects by expanding the valence electron wave
function in terms of a set of localized orbitals for each
atom in the simulation. NEMO-3D, an extension of the
successful 1D Nanoelectronic modeling tool (NEMO)
[Bowen, et al. (1997a); Klimeck, et al. (1997); Bowen, et
al. (1997b)], models the electronic structure of extended
systems of atoms on the length scale of tens of nanome-
ters.

Section 2 of this document elaborates on our excitement
about Nanoelectronic device modeling as it bridges gap
between the “large” size, classical semiconductor de-
vice models and the molecular level modeling. Theo-
retical, numerical, and software methods used in NEMO
3-D ,such as the theoretical background underlying the
sp3s∗ and sp3d5s∗ tight-binding models; the strain com-
putation used to determine the atomic spatial configura-
tion; sparse matrix eigenvalue solvers and object oriented
I/O; are described in detail in Section 3.

Any atomistic, 3-D, nano-scale simulation of a physi-
cally realistic semiconductor heterostructure-based sys-
tem must include a very large number of atoms. For
example, modeling an individual, self-assembled InAs

5 Clean refers to a small number of unintentional impurities and
crystal defects.
6 Physics-based device simulation tools have typically only been
used to improve individual device performance after careful cali-
bration of the simulation parameters

quantum dot of 30nm diameter and 5nm height embed-
ded in GaAs of buffer width 5nm requires a simulation
domain of 40× 40× 15nm3, containing approximately
one million atoms. A horizontal array of four such
dots separated by 20nm requires a simulation domain of
90×90×15nm3, 5.2 million atoms. A 70×70×70nm3

cube of Silicon contained in an ultra-scaled CMOS de-
vice contains about 15 million atoms. The memory and
computation time required to model these realistic sys-
tems, necessitates usage of parallel computers. Section 4
discusses the specific parallel implementation and paral-
lel performance of NEMO 3-D.

The tight-binding model employed by NEMO-3D is
semi-empirical in nature. Since the employed basis set
is not complete in a mathematical sense, the parameters
that enter the model do not correspond precisely to ac-
tual orbital overlaps. Instead, a genetic algorithm pack-
age is used to establish a set of parameters that represents
a large number of physical data of the bulk binary system
well. Section 5 presents the parameterization of the tight-
binding models in detail.

Finally, Sections 6 and 7 discuss effects of disorder on
“identical” alloyed quantum dots (i.e. quantum dots that
differ only in the distribution of their constituent atoms)
is presented. Significant variations in the spatial distribu-
tion of hole eigenfunctions and a spread of several meV
in transition energies are demonstrated.

2 Nanoelectronic Modeling: A Problem of Conflict-
ing Scales

Nano-scale device technology is currently a heavily in-
vestigated research field. Nanoelectronic device mod-
eling in particular is the intriguing area where the two
worlds of micrometer-scale carrier transport simulations
(engineering) and nanometer-scale electronic structure
calculations (solid-state physics) collide. Effects that
could be traditionally safely ignored (for reasons of com-
putational complexity) in the semiconductor device engi-
neering world such as quantum effects and material gran-
ularity are the key ingredients in the other world. By the
same token, electronic structure calculations typically do
not address issues regarding carrier transport and carrier
interactions with their environment for reasons of com-
putational complexity as well. Nanoelectronic device
modeling must address all of these issues at once.



Development of a nanoelectronic 3-D (NEMO 3-D ) Simulator for multimillion atom simulations 603

10 -3

10 -2

10 -1

10 0

1980 1990 2000 2010 2020

M
in

im
um

 
F

ea
tu

re
 

S
iz

e 
(

m
)

Year

SIA Roadmap

DRAM

 Quantum Devices
"single electronics"
     "spintronics" 

CMOS
Devices

CMOS Devices
with Quantum Effects

100

101

102

103

104

1980 1990 2000 2010 2020

N
um

be
r 

of
 E

le
ct

ro
ns

Year

SIA projection
for SRAM

Number of Electrons

dopant fluctuations
particle noise problems

  3-D q.dot
heterostruct.

(a) (b)

 electrically
gated q.dots

Figure 1 : (a) Minimum 2D feature size as projected on the SIA roadmap. Layer thickness od 0.01µm in the next
generation devices are not captured in this graph. (b) Number of electrons under a CMOS SRAM gate. Dopant
fluctuation and particle noise fluctuations may make reliable circuit design impossible, since each device may vary
from the next significantly.

2.1 Top-Down Approaches

Traditionally, industrial semiconductor device research
has approached nano-scale dimensions from micrometer
dimensions. The object of this miniaturization is to make
the current state-of-the-art devices operate faster, use less
power, and perform at the same level of reliability. Com-
mercial simulators of industrial Silicon based semicon-
ductor devices are based on drift diffusion models, which
treat electrons and holes in their respective bands as elec-
tron gases. The concept of individual electrons never ex-
plicitly appears since the electron gas is described by its
density alone. Furthermore, the underlying matter is ap-
proximated by a so-called jellium with atoms represented
by a uniform positive background. Effects due to inter-
actions with impurities, phonons and other particles are
included via mobility models, interaction rates, and other
effective potentials.

More sophisticated and computationally much more de-
manding models solve the Boltzmann Transport Equa-
tion (BTE) within a Monte Carlo framework. Elec-
trons and holes are treated as semi-classical particles
moving like billiard balls in the six-dimensional phase
space and interacting with their environment through ad-
equately weighted random scattering events. The most
comprehensive and commercially available simulator of
this kind is DAMOCLES7 built at IBM but other BTE
based simulators have also recently appeared on the mar-

7 See Damocles at http://www.research.ibm.com/ DAMOCLES or
search for Damocles on IBM web-site, in http://www.ibm.com

ket89.

The hydrodynamic approximation to the BTE has re-
cently given rise to a class of models that is a step be-
tween the drift diffusion approach and the full-fledged
BTE solver. Whereas the drift diffusion approach es-
sentially only considers the zeroth order moment of the
BTE, the hydrodynamic model extends the approxima-
tion to the first and second order moments. This treat-
ment of higher order moments yields familiar momentum
and energy conservation equations for an ideal fluid with
additional terms for the electric and possibly the mag-
netic field. The hydrodynamic method enjoys consid-
erable popularity since it describes hot carrier transport
better than drift diffusion models yet it is significantly
faster than the Monte Carlo BTE method.

An industry has evolved dedicated to the development
and maintenance of such semiconductor device simula-
tors10 11. However, quantum mechanical effects such
as tunneling and state quantization are not explicitly in-
cluded in these models. Current efforts in the traditional

8 See MocaSim at http://www.silvaco.com/ products/ vwf/ mo-
casim/ mocasimbr.html or search for MocaSim on Silvaco web-
site, in http://www.silvaco.com
9 Search for DESSIS on the ISE, Integrated Systems Engineering
web-site at http://www.ise.com

10See Medici at http://www.avanticorp.com/ Avant!/ SolutionsProd-
ucts/ Products/ Item/ 1,1500,192,00.html or search for Medici on
the Avant! website, in http://www.avanticorp.com
11See Atlas at http://www.silvaco.com/ products/ vwf/ at-
las/ atlas.html or search for Atlas on Silvaco web-site, in
http://www.silvaco.com
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device simulation community mainly focus on includ-
ing these quantum mechanical effects into existing de-
vice simulation models incurring the least possible com-
putational expense and with the overriding requirement
of preserving the overall framework of the existing sim-
ulation tools. However, the problem with such simulator
extensions is that they depend heavily on empirical pa-
rameterization to operate well on existing devices. The
use of these tools and its parameterizations is generally
not accurate for the next generation of devices.

2.2 Bottom-up Approaches

While the industry oriented semiconductor device re-
search community approaches nano-scale transport from
the top down, the physics oriented solid state research
community approaches the same regime from the bottom
up. The models in the latter approach are fully quantum
mechanical and can only be applied to relatively small
systems with emphasis on high accuracy. The systems
are often periodic with unit cells containing a few hun-
dred to a few thousand atoms, and the main output is the
electronic structure and the equilibrium atomic configu-
ration with emphasis on surface and interface reconstruc-
tion and on impurity and defect levels. Charge transport
is usually not included at the fundamental level, although
some attempts are mentioned below.

In contrast to the methods discussed in Section 2.1, elec-
tronic structure calculations explicitly include the gran-
ularity of condensed matter and describe the atoms at
various levels of sophistication. At a fundamental level,
the electrons are described by a many body Schr¨odinger
equation in which the Hamiltonian contains interaction
potentials with the atoms as well as electron-electron in-
teraction terms. In this approach, it has already been
assumed that the electrons adiabatically follow the mo-
tion of the atoms. Effects beyond this approximation
lead to electron-phonon interaction terms that are eval-
uated in subsequent steps. In most cases, even the
full electron problem is intractable, and calculations in-
volving more than a handful of atoms rely on the so-
called single electron approximation. The single elec-
tron approximation circumvents the difficulties raised
by the interaction between the electrons by introduc-
ing a local or sometimes a non-local potential into a
one particle Schr¨odinger equation. Familiar implemen-
tations of this idea are the Hartree-Fock approximation
[McWeeny (1992)] and density functional theory [Ho-

henberg, Kohn (1964); Kohn, Sham (1965); Jones, Gun-
narson (1985)]. Alternate approaches using the full
Hamiltonian that explicitly includes electron-electron in-
teraction are based on methods such as quantum Monte
Carlo [Needs, Foulkes, Mitas, Rajagopal (2001)].

Within the one-electron picture, it is in some cases pos-
sible to solve the all-electron problem, which means
that all the electrons in the atoms are explicitly included
in the self-consistent solution of the density dependent
Schrödinger equation. The atom is then simply described
by a Coulomb potential with the appropriate charge for
the nucleus. However, in most situations only a restricted
number of electrons in the atom participate in the chemi-
cal bonding and transport properties (valence electrons).
Several methods have emerged where the core electrons
are taken into account by modifying the Coulomb poten-
tial of the nucleus with an additional repulsive potential,
which describes the interaction of the core electrons with
the valence electrons. The resulting potential is termed
“pseudopotential”. A number of approaches that have
been explored to build these crucial components of elec-
tronic structure calculations are described below.

Pseudopotentials are divided into several classes. Empir-
ical pseudopotentials are fitted so that a set of calculated
properties match experimental results. Such empirical
pseudopotentialscan be defined in real space by a param-
eterized function or directly in reciprocal space, which
offers advantages for periodic systems and was one of
the first avenues explored [Cohen, Bergstresser (1966)].
The real space pseudopotentials [Appelbaum, Hamann
(1973); RamanaMurty, Atwater (1995)] offer the advan-
tage that non-bulk systems such as interfaces and sur-
faces can be described more realistically.

First principles pseudopotentials do not require any fit-
ting procedure, but they do require the knowledge of the
eigenstates and eigenenergies for isolated atoms. A num-
ber of schemes have been devised, most of which strive to
eliminate the nodes in the valence band electronic wave
functions within the core region, to reduce the computa-
tional cost of the numerical solutions. These schemes, in
turn, can be divided into two categories.

Norm conserving pseudopotentials are derived (through
inversion of the Schr¨odinger equation) from pseudo-
wave functions with the reassuring property that the as-
sociated integrated charge inside the core region is iden-
tical to the charge obtained with the exact eigenfunc-
tions. The most famous example and the most widely
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used for benchmarks is the method by Bachelet, Hamann
and Schl¨uter (1982). Another method that has gained
considerable popularity in conjunction with a plane wave
expansion for the numerical solution was later developed
by Troullier and Martins (1991). Troullier and Mar-
tins method differs by the prescription used to build the
pseudo wave functions

Norm-conserving pseudopotentials require a large plane
wave cutoff for elements of the first row, oxygen,
and a number of other elements because the pseudo-
wavefunction cannot be made sufficiently smooth in the
core region. Conversely, a real space method would re-
quire a very fine mesh. Vanderbilt (1990) recently intro-
duced a successful ultra-soft pseudopotential for which
the norm-conserving constraint is relaxed. The disadvan-
tages of Vanderbilt’s method are more complex coding
and the need to solve a generalized eigenvalue problem,
rather than a standard eigenvalue problem.

While this document has reviewed the description of
atoms with pseudopotentials it should be mentioned that
a number of important issues related to improvements to
the density functional theory and to the development of
efficient numerical methods, which both lay at the core of
other current investigations in the field, have been omit-
ted.

Finally, as already mentioned, although earlier most elec-
tronic structure calculations using pseudopotentials are
restricted to systems much smaller than the quantum
dots of interest in this work, it is worthwhile noting
that, with a number of approximations, Canning, Wang,
Williamson, Zunger (2000) have recently managed to ex-
tend some of their pseudopotential work to systems con-
taining up to one million atoms. Zunger’s method has
been applied extensively (see for example []) to model
quantum dot structures, however, without yet including
transport calculations.

2.3 An Intermediary Approach

Whereas traditional semiconductor device simulators are
insufficiently equipped to describe quantum effects at
atomic dimensions, most ab-initio methods from con-
densed matter physics are still computationally too de-
manding for application to practical devices, even as
small as quantum dots. A number of intermediary meth-
ods have therefore been developed in recent years. The
methods can be divided into two major theory categories:
atomistic and non-atomistic.

The non-atomistic approaches do not attempt to model
each individual atom in the structure, but introduce a va-
riety of different approximations that are usually based
on a continuous, jellium-type description of matter. At
the lowest order approximation, such approaches only re-
tain effective masses and band edges from the full elec-
tronic band structure, and they have given rise to the
well-known effective mass approximation, in which on
the scale of atomic distances a slowly varying envelope
function describes the carriers. That envelope function is
the solution to a one-particle effective mass Schr¨odinger
equation. The generalk ·p method leads to a straight-
forward extension of that approximation by including
the coupling between multiple bands. Thek ·p method
has given rise to the popular multi-band effective mass
approximation [Schuurmanst Hooft (1985), vonAllmen
(1992a)], in which an envelope function is associated
with each band explicitly included in the calculation, and
a set of coupled Schr¨odinger-like equations is solved. It
should be noted that the limitation to slowly varying per-
turbations remains in the multi-band version [vonAllmen
(1992b)]. The different materials are described by space-
dependent parameters which are separately determined
for each of the materials in the device.

One strength of the effective mass approximation is the
capability to discretize realistically-sized systems with-
out the tremendous computational expense of previously
mentioned ab-initio methods. However, the approxima-
tion inherently does not contain any direct atomic level
information, and is, therefore, not well suited for the rep-
resentation of nano-scale features such as interfaces and
disorder from a fundamental perspective. This limita-
tion has sparked lively discussions concerning the valid-
ity of the near-zone center plane wave expansionk·p ba-
sis and the need to include each atom in the simulation
[Fu, Wang, Zunger (1998a); Fu, Wang, Zunger (1998b);
Efros, Rosen (1998)]. Despite its limitations the effective
mass approximation has provided excellent agreement
with measurements for a large number of experiments.
Another interesting issue [Keating (1966); Pryor, Kim,
Wang (1998)] of particular relevance to quantum dots re-
lates to the most appropriate treatment of strain: should
continuum or atomistic models be preferred? This work
uses the atomistic valence force field method by Keating
(1996).

Atomistic approaches attempt to work directly with the
electronic wave function of each individual atom. Ab-
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initio methods overcome the shortcomings of the effec-
tive mass approximation, however, additional approx-
imations must be introduced to reduce computational
costs. As described briefly in the previous section, one
of the critical questions is the choice of a basis set for
the representation of the electronic wave function. Many
approaches have been considered, ranging from tradi-
tional numerical methods, such as finite difference and
finite elements, as well as plane wave expansions [Can-
ning, Wang, Williamson, Zunger (2000)], to methods
that exploit the natural properties of chemical bonding
in condensed matter. Among these latter approaches, lo-
cal orbital methods are particularly attractive. While the
method of using atomic orbitals as a basis set has a long
history in solid state physics, new basis sets with compact
support have recently been developed [Sankey (1989)],
and, together with specific energy minimization schemes,
these new basis sets result in computational costs which
increase linearly with the number of atoms in the system
without much accuracy degradation [Ordejon, Drabold,
Grumbach Martin (1993),Ordejon, Galli, Car (1993)].
However, even with such methods, only a few thousand
atoms can be described with present day computational
resources. NEMO 3-D uses an empirical tight-binding
method [Vogl Hjalmarson, Dow (1983); Jancu, Scholz,
Beltram, Bassani (1998)] that is conceptually related to
the local orbital method and that combines the advan-
tages of an atomic level description with the intrinsic ac-
curacy of empirical methods. It has already demonstrated
considerable success [Bowen, et al. (1997a); Klimeck, et
al. (1997); Bowen, et al. (1997b)] in quantum mechan-
ical modeling of electron transport as well as the elec-
tronic structure modeling of small quantum dots [Lee,
Joensson, Klimeck (2001)].

The underlying idea of the empirical tight-binding
method is the selection of a basis consisting of atomic
orbitals (such as s, p, and d) which create a single elec-
tron Hamiltonian that represents the bulk electronic prop-
erties of the material. Interactions between different
orbitals within an atom and between nearest neighbor
atoms are treated as empirical fitting parameters. A vari-
ety of parameterizations of nearest neighbor and second-
nearest neighbor tight-binding models have been pub-
lished, including different orbital configurations [Vogl
Hjalmarson, Dow; (1983); Boykin, Klimeck, Bowen,
Lake (1997); Boykin (1997); Boykin, Gamble, Klimeck,
Bowen (1999); Jancu, Scholz, Beltram, Bassani (1998);

Klimeck, et al. (2000); Klimeck, Bowen, Boykin,
Cwik (2000)]. NEMO 3-D typically uses an sp3s∗ or
sp3d5s∗ model that consists of five or ten spin degener-
ate basis states, respectively.

For the modeling of quantum dots, three main methods
have been used in recent years:k·p [Pryor (1998); Stier,
Grundmann, Bimberg (1999)], pseudopotentials [Can-
ning, Wang, Williamson, Zunger (2000)], and empirical
tight-binding [Lee, Joensson, Klimeck (2001)]. It is fair
to note that each of these methods grapples with the same
intrinsic difficulty: the full description of about a million
interacting atoms and all of their electrons. It should also
be emphasized that for most semiconductor compounds,
only fragmentary experimental data exists for the band
gaps and effective masses and their dependence on stress
and strain. While ab-initio pseudopotential calculations
beyond density functional theory do in principle predict
such properties, the computational cost is high for even
simple properties such as the electronic band gap [Hy-
bertsen, Louie (1993)]. It should also be noted that effec-
tive masses, which are a crucial element in the determi-
nation of correct electronic state quantization, are rarely
listed as a result of first principles calculations. On the
other hand, more empirical approaches such ask·p and
tight-binding use “quality” bulk parameterizations and
can achieve good experimental comparisons in quantum
dot simulations. The question, however, remains whether
these parameterizations are valid in presence of varia-
tions at the atomic scale. These on-going efforts can be
viewed as complementary rather than mutually exclusive
competitors, and each method can greatly benefit from
insightful cross-fertilization.

The perspective taken in this work is that empirical tight-
binding models link the physical content of the atomic
level wave functions of the pseudopotential calculations
to the jellium approach ofk · p, and are the method of
choice for realistic modeling of transport in quantum dot
structures. Finally, as will be discussed in further detail,
it should be emphasized that the quality of the empirical
tight-binding results depends strongly on a good param-
eterization of the bulk material properties.

2.4 Nanoelectronics with Transport

Nanoelectronic device simulation must ultimately in-
clude both, the sophisticated physics oriented electronic
structure calculations and the engineering oriented trans-
port simulations. Extensive scientific arguments have re-
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cently ensued regarding transport theory, basis represen-
tation, and practical implementation of a simulator capa-
ble describing a realistic device.

Starting from the field of molecular chemistry, Mujica,
Kemp, Roitberg, Ratner (1996) applied tight-binding
based approaches to the modeling of transport in molec-
ular wires. Later, Derosa and Seminario (2001) modeled
molecular charge transport using density functional the-
ory and Green functions. Further significant advances in
the understanding of the electronic structure in techno-
logically relevant devices were recently achieved through
ab initio simulation of MOS devices by Demkov and
Sankey (1999). Ballistic transport through a thin di-
electric barrier was evaluated using standard Green func-
tion techniques [Demkov, Liu, Zhang, Loechelt (2000)],
Demkov, Zhang, Drabold (2001)] without scattering
mechanisms.

Conversely, starting from the field of semiconductor de-
vice simulation, various efforts have been undertaken
over the past eight years to develop quantum mechanics-
based device simulators that incorporate scattering mech-
anisms at a fundamental level. The Nanoelectronic Mod-
eling tool (NEMO 1-D ) built at Texas Instruments /
Raytheon from 1993-1997 is possibly the first large-scale
device simulator based on the non-equilibrium Green
function technique (NEGF) to meet the challenge. Its
initial objective was to achieve a comprehensive simula-
tion of the electron transport in resonant tunneling diodes
(RTDs). NEGF is a powerful formalism capable of
combining tight-binding band structure, self-consistent
charging effects, electron-phonon interactions, and dis-
order effects with the important concept of charge trans-
port from one electron reservoir to another. The concept
of electron transport between reservoirs was pioneered
in a simpler approach by Landauer (1970) and B¨uttiker
(1986), and later expanded for the NEGF formalism by
Caroli, Combescot, Nozieres, Saint-James (1971) Tun-
neling through silicon dioxide barriers, which is a clas-
sical problem of great technological interest for the de-
velopment of thin dielectrics, was studied using tight-
binding models within NEMO [Bowen, et al. (1997b)]
as well as in a large 3-D cell model by St¨adele, Tuttle,
Hess (2001). Other research groups [Ren (2000); Ren et
al. (2000); Ren, Venugopal, Datta, Lundstrom (2001)]
have since then started to develop NEGF-based simula-
tors to model MOSFET devices in a 2-D simulation do-
main. These simulations are computationally extremely

intensive, and fully exploit the computing power of re-
alistically available parallel supercomputers and cluster
computers.

Quantum mechanical simulations of electron transport
through 3-D confined structures such as quantum dots
have not yet reached the maturity of the 1-D and 2-
D simulation capabilities mentioned above. Early ef-
forts were rate equation based [Klimeck, Lake, Datta,
Bryant (1994); Klimeck, Chen, Datta (1994); Chen et
al. (1994)], where a simplified electronic structure was
assumed. In the related area of molecular structures, de-
tailed studies of charge transport have recently become
a hot research topic where simulations are providing an
improved understanding of experimental data [Damle,
Ghosh, Datta (2001); Anantram, Govindan (1998)].

NEMO 3-D focuses on the atomistic electronic structure
calculation of realistically sized quantum dots at this de-
velopment stage. This work is a complement to quan-
tum dot simulations [Williamson, Wang, Zunger (2000);
Wang, Kim, Zunger (1999); Stopa (1996); Pryor (1998);
Stier, Grundmann, Bimberg (1999), Sheng, Leburton
(2001)] performed with other methods discussed in this
section. NEMO 3-D currently doesnot include carrier
transport. However, the Lanczos algorithm (see Sec-
tion 3.6) has been tested successfully already for non-
Hermitian matrices, introduced by open boundary con-
ditions (see Section 3.3) and the code is structured such
that transport simulations can be incorporated in the fu-
ture without major re-writes of the software.

3 Theoretical, Numerical, and Software Methods

3.1 Tight Binding Formulation Without Strain

Quantum dots are characterized by confinement in all
three spatial dimensions so that the Hamiltonian no
longer commutes withany of the discrete translation op-
erators. The wave vector is hencenot a good quantum
number inany direction. The most natural basis for rep-
resenting such a highly confined wave function is, there-
fore, one consisting of atomic-like orbitals centered on
each atom of the crystal. Solving for the electronic struc-
ture of a quantum dot requires detailed modeling of the
local environment on an atomic scale, and, therefore, in-
troduces material considerations into the calculation.

While quantum dots may be fabricated in any num-
ber of materials systems, from an electronic struc-
ture point of view, the treatment employed mainly
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depends on whether the bulk lattice constants of all
materials are the same. When the bulk lattice con-
stants are the same the system is said to be lattice-
matched; when they are not, the system is said to
be lattice-mismatched. Lattice-matched examples in-
clude GaAs/AlAs and its alloys GaxAl 1−xAs, as well as
In0.53Ga0.47As/In0.52Al 0.47As. An InAs quantum dot sur-
rounded by AlxGa1−xAs and an InAs or AlAs layer in
a high performance In0.53Ga0.47As/InP resonant tunnel-
ing diode are examples of lattice-mismatched devices.
The treatment of the two cases is necessarily somewhat
different, since a matrix element of the Hamiltonian be-
tween two orbitals centered on different atoms depends,
in general, on the position of the atoms. In this work
the two-center approximation is made, so that only the
relative position of neighboring atoms is important. In
a lattice-matched system, the atoms constitute a perfect
crystal with uniform unit cells; in a lattice-mismatched
system, the atomic positions vary and are only semi reg-
ular. In other words, in such a system one can roughly
discern unit cells, but these cells vary somewhat in size,
and the atomic positions within them vary. The Keat-
ing [Keating (1966)] valence force field model described
later is employed in NEMO 3-D to determine the atomic
positions.

For both types of materials systems, the atomic-like or-
bitals are assumed to be orthonormal, following Slater
and Koster (1954). Bravais lattice points can describe a
crystal in a lattice-matched system:

Rn1,n2,n3 = n1a1+n2a2 +n3a3 (1)

whereai are primitive direct lattice translation vectors
andni are integers. If there is more than one atom per
cell, as is the case with, for example, GaAs or Si, the
atoms within a cell are indexed byµ, and the location
of theµth atom within the cell located at Eq.(1) is given
by Rn1,n2,n3+vµ, wherevµ is the displacement relative to
the cell origin. The wavefunction is normalized over a
volume consisting ofNi cells in theai (i = 1,2,3) direc-
tion, and the state is represented as a general expansion
in terms of localized atomic-like orbitals:

|Ψ> =
1√

N1N2N3
(2)

N1

∑
n1=1

N2

∑
n2=1

N3

∑
n3=1

∑
α

∑
µ

C(αµ)
n1n2n3|αµ;Rn1,n2,n3+vµ>

In Eq.(2),α indexes the atomic-like orbitals centered on
theµ atoms within each cell(n1,n2,n3). The Schr¨odinger
equation thus appears as a system of simultaneous equa-
tions given by:

<αµ;Rn1,n2,n3+vµ|H −E |Ψ> = 0 (3)

In Eq.(3) the matrix elements between localized orbitals
are expressed as tight-binding parameters with the ad-
ditional limitation of interactions to nearest neighbors.
The sp3s∗ model of Vogl et al. (1983), as well as the
sp3d5s∗ model of Jancu et. al.(1998), are employed
within the two-center approximation, in which the ma-
trix elements depend only upon the relative positions of
the orbitals. The expressions for the matrix elements be-
tween these types of orbitals in the two-center approxi-
mation are given by Slater and Koster (1954) as functions
of the relative atomic positions.

3.2 Tight Binding Formulation With Strain

In a lattice-mismatched system several additional com-
plications arise. First, the “cells” are no longer regularly
placed so that theRn1,n2,n3 are no longer representable in
a form given by Eq.(1). In a lattice-mismatched quan-
tum dot fabricated from zincblende crystal materials, the
Rn1,n2,n3 are best considered as giving the location of an
anion-cation pair. Likewise, in Eq.(3), the displacements
now depend on both the specific “cell” and atom type,
and are more correctly written asvn1n2n3

µ . These compli-
cations, though important, are rather minor and are auto-
matically accommodated since there is no assumption of
a wave-vector in any dimension in Eq.(2).

The second complication affects the nearest neighbor pa-
rameters. As mentioned above, in the two-center approx-
imation these nearest neighbor parameters depend upon
the relative atomic positions. For example, the Hamilto-
nian matrix element between ans-orbital centered about
an atom at the origin and apx-orbital centered about an
atom located atd = �x̂ + mŷ + nẑ, whered is the dis-
tance between the atoms and�, m, andn are the direction
cosines is:

Esx = �Vspσ (4)

Since the bond angle between atoms is no longer uniform
in a lattice-mismatched system, the direction cosines
vary in magnitude for different pairs of nearest neighbor
atoms, even in nominally zincblende or diamond struc-
ture materials. Furthermore, the two-center parameters
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such asVspσ no longer take on their ideal values as dis-
tanced between the atoms in each pair is in general dif-
ferent from its ideal (bulk crystal) value. The two-center
parameters are assumed to scale as:

Vαβγ =
(d0

d

)ηαβγ
V (0)

αβγ (5)

where for the given pair of atomsd0 is the ideal sepa-
ration, d is the actual separation, andV (0)

αβγ is the ideal
parameter for the orbitals involved. The exponents are
chosen to reproduce known bulk behavior under condi-
tions such as hydrostatic pressure. ¿From the work of
Harrison (1999)], it is expected that most of these expo-
nents should be approximately 2.

Also the same-site parameters are, generally, changed
from their bulk values. In a lattice-matched system, how-
ever, the changes are usually small. In the sp3d5s∗ model,
there may be no change at all, since in this model it is of-
ten possible to use a single set of onsite parameters for
a given atom type, independent of the material. For ex-
ample, As has the same parameters in GaAs, AlAs, and
InAs (see Table 3).

In a lattice-mismatched system, atom displacements af-
fect the same-site parameters more strongly. To under-
stand the reason for this shift, recall that the atomic-like
orbitals are assumed to be orthogonal. They are, thus,
not true atomic orbitals, but are more properly L¨owdin
functions [Loewdin (1950)], which are orthogonal yet
transform under symmetry operations of the crystal, as
would the atomic orbital whose label they bear. When
atoms are displaced in a lattice-mismatched system, not
only do the tight-binding parameters of Eq.(4) change,
so, too, do the overlaps of the true atomic orbitals from
which the Löwdin functions are constructed. While the
overlaps do not appear in an orthogonal, empirical tight-
binding approach such as the one employed here, a rea-
sonable approximation is to assume that the overlap be-
tween two nearest neighbor orbitals is proportional to
their Hamiltonian matrix element divided by the sum
of the vacuum-referenced onsite energies of the orbitals
[Harrison (1999)] With this approximation L¨owdin’s for-
mula is used to first order in the orbital overlaps to obtain
an onsite Hamiltonian matrix element, which includes
the effect of the displacement of the nearest neighbor

atoms:

Eiα ≈ E(0)
iα +∑

jβ
Ciα, jβ

(
E(0)

(iα, jβ)

)2
−

(
E(iα, jβ)

)2

E(0)
iα +E(0)

jβ

(6)

where E(0)
iα is the vacuum-referenced ideal same-site

Löwdin orbital parameter for anα-orbital on theith atom,
Eiα is the shifted vacuum-referenced corresponding

same-site L¨owdin orbital parameter,E (0)
(iα, jβ)

(
E(iα, jβ)

)

the ideal (lattice-mismatched) nearest neighbor parame-
ter between anα-orbital on theith atom and aβ-orbital
on thejth atom, andCi,α, jβ is a proportionality constant
fit to properly reproduce bulk strain behavior. The sum
covers all orbitalsβ and atomsj that are nearest neigh-
bors of the atomi. The difference in squared matrix ele-
ments effectively removes the onsite shift implicit in the
ideal onsite parameter, and replaces it with the lattice-
mismatched shift. Parameterizations of InAs and GaAs,
including the strain-induced shift of the on-site elements,
are discussed in Section 5.2.

3.3 Electronic Structure Boundary Conditions

The finite simulation domain that is represented in the
electronic structure calculation as a sparse matrix must
be terminated by physically meaningful boundary condi-
tions. There are currently 2 kinds of boundary conditions
implemented in NEMO 3-D: periodic and closed sys-
tem. Periodic boundary conditions which satisfy Bloch’s
theorem allow for a study of the bulk properties of alloys
as long as the periodicity of the domain is much larger
than the largest feature size within the domain. Closed
system boundary conditions terminate the bonds of the
surface atoms abruptly. The dangling bonds are “passi-
vated” with fixed potentials to avoid the inclusion of sur-
face states in the energy range of interest. The thickness
of an isolating GaAs buffer around a InAs quantum dot
does influence the energy of the confined states, and the
buffer size must be chosen adequately large.

Another desirable boundary condition developed in the
NEMO 1-D code is the open boundary through which
particles can be injected from reservoirs and through
which particles can escape to reservoirs. The bound-
ary conditions developed [Klimeck, et al. (1995); Lake,
Klimeck, Bowen, Jovanovic(1997)] for NEMO 1-D were
the key to the success in the transport simulations through
realistically sized resonant tunneling diodes [Bowen, et
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al. (1997a); Klimeck, et al. (1997)] and MOS devices
[Bowen, et al. (1997b)]. These boundary conditions
change the character of the Hamiltonian matrix from
Hermitian to non-Hermitian, and the imaginary part of
the quasi-bound state eigen-energies now corresponds to
the lifetime of the state in the confinement. To enable the
simulation of charge transport in NEMO 3-D, an open
boundary condition for the 3-D system is currently under
development.

3.4 Atomistic Strain Calculation

An accurate calculation of the electronic structure within
the tight-binding model necessitates an accurate repre-
sentation of the positions of each atom. The atom posi-
tions in strained materials are shifted from the ideal bulk
positions to minimize the overall strain energy of the sys-
tem. NEMO 3-D uses a valence force field (VFF) model
[Keating (1966); Pryor, Kim, Wang (1998)] in which the
total strain energy, expressed as a local nearest neighbor
functional of atomic positions, is minimized. The local
strain energy at atomi is given by:

Ei =
3
16∑

j

[ αi j

2d2
i j

·
(

R2
i j −d2

i j

)2

+
n

∑
k> j

√
βi jβik

di jdik

(
Ri j ·Rik −di j ·dik

)2]
(7)

where the sum is over neighborsj of atom i. Here,d i j

andRi j are the equilibrium and actual distances between
atomsi and j, respectively. Eq. 7 is included as Eq. 14
in reference [] except for some corrected coefficients.
The local parametersα i j andβi j represent the force con-
stants for bond-length and bond-angle distortions in bulk
zinc-blende materials, respectively, and, in the absence
of Coulomb corrections, are related to the bulk elastic
moduli by:

C11+2C12 =
√

3
4di j

(
3α i j +βi j

)
(8)

C11−C12 =
√

3
di j

βi j

C44 =
√

3
4di j

4α i jβi j

αi j +βi j

In zinc-blende materials, however, these relations are
modified by the inclusion of Coulomb effects due to the
unequal charge distribution between the anion and cation

sublattices. In this paper,α’s andβ’s obtained by Martin
(1970) to account for the Coulomb correction are used.
The total strain energy is computed as the sum of the lo-
cal strain energies over all atoms.

3.5 Atomistic Strain Boundary Conditions

Several boundary conditions for the strain calculation are
currently implemented in NEMO 3-D. To model systems
of finite extent, three boundary conditions are available:
1) the hard wall condition in which all outer shell atoms
are fixed to user determined lattice constants, 2) the soft
wall condition in which no atom position is fixed, and
3) the softwall boundary condition in which one atom
position in the system is fixed.

To enable the simulation of bulk systems, periodic
boundary conditions have been implemented. In this
case the dimensions of the fundamental domain and,
therefore, the separations between neighboring boundary
atoms are not known a priori. Thus, the crystal is allowed
to “breathe” such that the strain energy is also minimized
with respect to the period in each direction in which pe-
riodic boundary conditions are applied.

3.6 Eigenvalue Solution

One simulation objective is to solve the eigenvalue prob-
lem for low lying electron and hole states near the band-
edge. The nearest neighbor tight-binding Hamiltonian
can be represented in a sparse matrix. A one million
atom system represented in the sp3d5s∗ basis establishes
a matrix size of 20 million× 20 million. A “direct
solver”, in which the entire column space is worked on
is completely unfeasible for a variety of reasons, es-
pecially due to the full matrix storage requirement of
(20×106)2×16 bytes=6400TB. A variety of sparse ma-
trix eigenvalue and eigenvector algorithms have been de-
veloped, some of which are available publicly12. Most
of these eigenvalue/vector algorithms are some form of a
Krylov/Lanczos/Arnoldi subspace approach [Gloub, Van
Loan (1989)]. These methods approximate the solution
on a small subspace which is increased until a desired
tolerance is achieved. One the major advantage is that
only require memory of the order of the length of sev-
eral eigenvectors is required. At the lowest level of the
algorithm, trial vectors are repeatedly multiplied by the

12See ARPACK at http://www.caam.rice.edu/ software/ ARPACK/
index.html
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matrix of interest. Storage of the matrix is not manda-
tory if the matrix can be reconstructed on the fly dur-
ing the matrix-vector multiply process. The performance
of these algorithms operating on large systems, there-
fore, strongly depends on the efficient implementation
of a matrix-vector multiply algorithm for the problem at
hand.

The Lanczos-based solver technology of non-Hermitian
matrices developed [Bowen, Frensley Klimeck, Lake
(1995)] for NEMO 1-D was applied for NEMO 3-D as
well. Early in the development of NEMO 3-D, the
Lanczos-eigenvalue solver prototype with was compared
ARPACK. For a system of about 100,000 atoms it was
found that our custom solver was significantly faster13

than ARPACK. Therefore, parallelization of our custom
solver was implemented to attack large-scale problems.

The folded-spectrum method [Wang, Zunger (1994)],
which is based on a minimization of the squared tar-
get matrix, has been proposed, implemented, and heavily
used by Zunger et al. Before the matrix is squared it is
shifted to the energy range of interest, i.e. close to the ex-
pected eigenenergies. The overall algorithm is then based
on a conjugate gradient minimization of a trial vector.
This method also relies heavily on a matrix-vector mul-
tiply algorithm and it has been implemented in NEMO
3-D.

3.7 Software Methods

The NEMO 3-D project leverages some of the software
technology developed in the original NEMO 1-D project
[Blanks, et al. (1997); Klimeck et al. (1997)] as well
as improvements of NEMO 1-D undertaken at JPL14

[Klimeck (2002)]. NEMO 1-D contains roughly 250,000
lines of C, FORTRAN and F90 code. Data management
is performed in an object oriented fashion in C, with-
out using C++. On the lowest level, FORTRAN and
F90 are used to perform small matrix operations such as
matrix inversions and matrix-vector multiplication. The
language hybrid structure was introduced to utilize fast
FORTRAN and F90 compilers that were available on
the SGI, HP, and Sun development machines in the early
stages of NEMO 1-D. At that time identical algorithms

13We speculate that this is in part due to our utilization of the Her-
miticity of H.

14JPL Technical Report, ”NEMO Benchmarks on SUN, HP, SGI,
and Intel Pentium II”. http://hpc.jpl.nasa.gov/ PEP/ gekco/ parallel/
benchmark.html

written in FORTRAN and C showed that FORTRAN
could outperform C by about a factor of 4. On today’s
Intel cluster based computers such a speed discrepancy
may not really exist anymore in part due to the advance-
ments in C compilers and the lack of competition for fast
FORTRAN compilers.

One major software component in NEMO 1-D is the
representation of materials in a tight-binding basis in-
cluding various orbitals and nearest neighbor counts.
Adding a new tight-binding model amounts to adding a
new Hamiltonian constructor. Bulk band structure and
charge transport calculations are almost independent of
the underlying Hamiltonian details and form a higher
level building block by themselves. This modular de-
sign enables the introduction of more advanced tight-
binding models as they become available, without inter-
fering with higher level algorithms. The sp3d5s∗ model
has been added at JPL recently within this architecture.

A hierarchically higher software block in NEMO 1-D ac-
cesses the bulk bandstructure routines through a script-
based database module. The ASCII database can be
modified outside the NEMO 1-D core to contain arbi-
trary tight-binding input parameters as well as a vari-
ety of different database entries. The relatively sim-
ple database access to bulk bandstructure has enabled
a straight-forward integration of NEMO into a genetic
algorithm based optimization tool. This tool is used
for tight-binding parameter optimization as discussed on
Section 5.1. The material parameter database is also ac-
cessed in the new NEMO 3-D code.

Most research oriented simulators must be fed a wash
list of parameters, some of which are dependent on oth-
ers, some of which may be superfluous, or some of which
may cause crashes unless some other options have been
set. Often these dependencies require an expert user
increasing the initial barrier to simulator usage. The
NEMO 1-D input has been structured hierarchically such
that the user can provide information in automated de-
pendent blocks. Information is, therefore, requested from
the user as a progressively dependent input. Such input
presentation is customary in a properly implemented in a
graphical user interface (GUI).

Such well organized user input presentation is relatively
simply incorporated with a static GUI in software whose
input is well specified. Research software under rapid
development, however, tends to change its requirements
frequently. Rapid changes force a static GUI to always
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lag behind the actual theory software that it operates.
Such static design also creates a maintenance nightmare,
since new options must be added at two places indepen-
dently, in the theory code and the GUI. Such issues are
addressed in NEMO 1-D and NEMO 3-D in a way that is
at least novel in the electronic device simulator and elec-
tronic structure simulator field. The input groups are for-
mulated as hierarchical C data structures that are used by
the theory code as well as the GUI. The input structures
are formatted by translator functions into user-friendly
and storage-friendly representations, such as windows
and html-like text, respectively. With the translators in
place GUI options are generated dynamically from the
data structures that are determined by the requirements of
the theory code. The theory programmer can add more
options and data structures as needed, without concern
for the representation of that information to the user or
the transfer of it in and out the simulator. With the de-
sign of the data structure translators the development of
the GUI and the theory code are essentially decoupled,
and GUI, theory, and numerical developers can work on
their respective blocks of code independently.

The input/output design has been presented in some de-
tail in reference []. In NEMO 3-D this approach has been
generalized significantly. The architecture of the thread-
ing of the various input/output options and data struc-
tures has been implemented in NEMO 3-D as an object
oriented, table-based inheritance. Options that require
more input are associated with the creation function of
that child data structure. As the user input is translated
into the content of the data structure, new creation func-
tions are put on the stack of non-entered user input. User
input is requested until the stack of required user input is
empty. This object-oriented input completely precludes
“if ... then ... else” input parsing in NEMO 3-D.

To tackle the data management on the various cluster
computers in the High Performance Computing (HPC)
group at JPL a Tcl/Tk client-server based interface
was built. This interface works with NEMO 3-D and
other completely independent simulators such as genetic
algorithm-based optimization tools entitled GENES (Ge-
netically Engineered Nanostructured Devices)[Klimeck,
Salazar-Lazaro, Stoica, Cwik (1999) and EHWPack
(Evolvable Hardware Package) [Keymeulen et al.
(2000)]. To improve the generality of this approach and
to enable a web-based treatment of the overall device
simulation on a remote computing cluster a JAVA / XML

based approach15 is currently developed.

4 Numerical Implementations and Parallel Perfor-
mance

4.1 Hardware and Software Specifications

The performance of the parallelized eigenvalue solver
and strain minimization algorithm implemented in
NEMO 3-D is benchmarked on four different parallel
computers. Three of these computers are commodity PC
clusters (Beowulf) of various generations, and the fourth
one is a shared memory SGI Origin 2000. The three Be-
owulf clusters (P450, P800, and P933) are based on In-
tel Pentium III processors running at 450MHz, 800MHz,
and 933 MHz in various memory, CPU, and network con-
figurations. Details are shown in Table 1. The P800 has
two networking systems that can operate simultaneously:
1) the standard 100Mbps Ethernet, and 2) the advanced,
low latency, high bandwidth (and high breakdown expe-
rience) 1.8Gbps Myricon network16. Most of the bench-
marks discussed here are based on the P800 performance.
The other machines are used to analyze issues of mem-
ory latency and speed increase with increased clock and
communication speed.Hyglac, the grandfather of Be-
owulf clusters was built in the High Performance Com-
puting (HPC) Group at JPL by Thomas Sterling et al.
in 1997 and it won the the Gordon Bell prize for lowest
Cost/Performance at Supercomputing 1997.Hyglac is
based on a cluster of 16 200MHz Pentium Pro processors
with 128MB RAM each. JPL’s HPC group continued to
push on Beowulf computers and is currently focused on
the use of high-speed networks with real world MPI ap-
plications and large memory usage.

All of the parallel algorithms discussed in this paper are
implemented with the message passing interface (MPI)
[Gropp, Lusk, Skjellum (1997); Gropp, Lusk (1997)].
The SGI has its own proprietary implementation of MPI
which utilizes the fast SGI interconnect as well as the
shared memory within one 4-CPU board.

Various MPI/MPICH [Groupp, Lusk, Skjellum (1997);
Gropp Lusk (1997)] releases have been installed on the
hardware in Table 1 throughout the last three years. On
the dual CPU Beowulf, the shared memory versus dis-
tributed memory configurations of MPICH have been

15See WIGLAF at http://ess.jpl.nasa.gov/ subpages/ reports/ 01re-
port/ WIGLAF/ WIGLAF-01.htm

16See Myricom, in http://www.myricom.com
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Table 1 : Specifications of the parallel computers used in this work.
Name CPU Clock

MHz
RAM

node GB
Bus
MHz

CPUs
node Nodes CPUs RAM

GB Network Purchase Motherboard
SGI R12000 300 2 4 32 128 64 1998 SGI Origin

2000
P450 PIII 450 0.512 100 1 32 32 16 100Mbps 1999 Shuttle Intel

440BX
chipset

P800 PIII 800 2 133 2 32 64 64 100Mbps,
1.8Gbps

2000 Supermicro
370DLE,
Intel LE
chipset

P933 PIII 933 1 133 2 32 64 32 100Mbps 2001 Supermicro
370DL3,
Intel LE
chipset

examined for their relative performance. Small perfor-
mance increases due to the shared memory / reduced
communication cost have been found in the electronic
structure calculation. Even if the shared memory option
is turned off, the communication from one CPU to the
other on the same board is faster than to a CPU off-board.
Apparently the network card relays the communication
back to the on-board CPU without actually sending the
message to the switch. A disadvantage of the shared
memory implementation is the a priori determination of
a maximum message buffer size as an environment vari-
able before the software is executed. The simulation will
fail if the simulation exceeds that maximum communi-
cation buffer size. Due to this static handicap and the
minimal performance increase, the non-shared memory
model is typically chosen.

Parallelization efficiency using OpenMP has been ex-
plored in the early stages of the development process as
an enhancement to MPI. The objective is to communicate
from CPU board to CPU board with MPI and within a
board with OpenMP and shared memory. In the example
algorithms that have been explored the creation and de-
struction of threads using OpenMP were found to cause
a significantly large overhead such that the parallel effi-
ciency was unsatisfactory. For that reason the combined
MPI and OpenMP approach was abandoned. OpenMP
was not pursued as an overall parallel communication
scheme across the cluster, since no reliable cluster-based
OpenMP compilers were available.

4.2 Parallel Implementation of Sparse Matrix-Vector
Multiplication

The numerically most intensive step in the iterative
eigenvalue solution discussed in Section 3.6 is the sparse
matrix-vector multiplication of the matrixH and the
trial vector |Ψn>. For example, the matrix-vector mul-
tiplication of the tight-binding Hamiltonian in a 1 mil-
lion atom system with 4 neighbors per atom in a 10 or-
bital, explicit spin basis (sp3d5s∗ ) requires roughly 5
million full 20×20 complex matrix-vector multiplica-
tions. This corresponds to 5×106×400=2×109 com-
plex multiplications or roughly 8×109 double precision
multiplications and 4×109 additions. The single matrix-
vector multiplication step can, therefore, be estimated as
8×109+4×109=12 Gflop. In the sp3s∗ basis used in the
benchmarks shown in Section 4.4 the operation count is
reduced by a factor of 4 to about 3 Gflop. These estimates
exclude overhead for the sparse matrix reconstruction,
memory alignment, and construction of the fully assem-
bled target vector|Ψn+1>. With an expected iteration
count in the Lanczos algorithm of 2×5000, a total num-
ber of operations of 30 Tflop and 120 Tflop are antici-
pated for the sp3s∗ and sp3d5s∗ model, respectively. With
a single CPU operating at 0.5 Gflops, such computations
continue through 0.7 and 2.8 days, respectively. Actually,
0.5 Gflops appears to be a high estimate for sustained
computational throughput on the latest 2 GHz Pentium 4
chips. Three years ago, when this project was initiated,
peak performance was about a factor of 5 slower. The
reduction in wall clock time for the completion of such a
computation is highly desirable. This is particularly true
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for systems in excess of ten million atoms.

The 3 to 12 Gflop needed to perform a single matrix-
vector multiplication correspond to 3 or 12 seconds on
a single 0.5 Gflop machine. This load is large enough to
warrant parallelization on multiple CPUs. For implemen-
tation on a distributed memory platform, data must be
partitioned across processors to facilitate this fundamen-
tal operation. For good load balance, the device is par-
titioned into approximately equally sized sets of atoms,
which are mapped to individual processors. Because
only nearest neighbor interactions are modeled, a naive
partition of the device by parallel slices creates a map-
ping such that any atom must communicate with neigh-
bors that are, at most, one processor away.

This scheme, shown in Figure 2a), lends itself to a
1D chain network topology, and results in a block-
tridiagonal Hamiltonian for non-periodic boundary con-
ditions in which where each block corresponds to a
pair of processors, and each processor holds the column
of blocks associated with its atoms (Figure 2b). The
gray squares in the corners symbolize fill-in regions due
to periodic boundary conditions. Communication cost,
roughly proportional to the boundary separating these
sets, scales only with surface area (O(n2/3)) rather than
with volume (O(n)), wheren is the number of atoms. In
a matrix-vector multiplication, both the sparse Hamilto-
nian and the dense vector are partitioned among proces-
sors in an intuitive way; each processorp, holds unique
copies of both the nonzero matrix elements of the sparse
Hamiltonian associated with the orbitals of the atoms
mapped to processorp and also the components of the
dense vector associated with atomic orbitals mapped to
p. The matrix-vector multiplication is performed in a
column-wise fashion as shown in Fig. 2b). That is, pro-
cessorj computes:

yi, j = Hi, jx j (i = j, j±1) (9)

whereHi, j is the block of the Hamiltonian associated
with nodesi and j, andx j are the components ofx stored
locally on nodej. There are three results generated by the
multiplication on processorj: the diagonal components
y j, j, which are needed locally by processorj; and two
off-diagonal componentsy j−1, j andy j+1, j, which need
to be communicated to processorsj−1 and j+1, respec-
tively. Within the same scheme processorsj−1 and j+1
share one of their off-diagonal results with processorj.

This scheme lends itself to a two-step communication
process.

In the first step or the two-step process all even numbered
CPUs, 2n, communicate to the CPU “to the right”, 2n+1.
All odd numbered CPUs, 2n+1, issue a communication
command to CPUs, 2n. This communication is issued
with the MPI commandMPI_SendReceive, which can
be implemented in the underlying MPI library as a full
duplexing operation. That means that once the commu-
nication channel is established, which can take a signif-
icant time on a standard 100 Mbps Ethernet, the infor-
mation packages can be exchanged in both directions si-
multaneously. In the second communication step all even
numbered CPUs, 2n, communicate to the “left”, 2n−1.
Simultaneously all odd CPUs 2n−1 communicate to the
even CPUs 2n. Within this communication scheme col-
lisions between messages do not occur and messages do
not accumulate on one CPU while other CPUs wait for
the completion of the communication17.

The message size can be reduced by a compression
scheme, since most of the off-diagonal blocks are zero.
The sparse structure of the blocks depends on the par-
ticular crystal structure in question. In practice a suf-
ficient fraction of zero rows exists such that compress-
ing the matrix-vector multiplication by removing struc-
turally guaranteed zeros is worthwhile despite the addi-
tional level of indirection required to track the non-zero
structure.

The 1-D decomposition scheme performs well when the
ratio of the number of atoms on the surface of the slab
to the total number of atoms in the slab is small. As the
number of CPUs in the parallel computation increases,
for a given problem size, the surface to volume atom ra-
tio increases to a limit of one, and the communication to
computation ratio increases as well. Spatial decomposi-
tion schemes more elaborate than the 1-D scheme pre-
sented here can be implemented. One example is the 3-
D decomposition in small cubes. Such schemes would
probably enable the efficient participation of more CPUs
in the computation; however such schemes come with
immediately increased communication overhead, as six,
since each CPU must exchange data with six rather then
two ”surrounding” CPUs. Sections 4.4-4.8 explore the
scaling of the simple 1-D topology parallel algorithms

17Only if periodic boundary conditions are applied with an odd num-
ber of CPUs in the MPI run one needs three communication cycles
due to a conflict at the first and the last CPU communication.
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processors. The gray blocks in the corner indicate the optional filling due to periodic boundary conditions. (b)
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column and sectionx j are stored on processorj. The nearest neighbor model with non-periodic boundary conditions
guarantees that the Hamiltonian is block-tridiagonal, so that communication is performed only with nearest neighbor
processors.

and show reasonable scaling for the mid-size clusters that
are available at the High Performance Computing Group
at JPL.

4.3 Hamiltonian Storage and Memory Usage Reduc-
tion

The first NEMO 3-D prototypes were focused on the
generality of the tight-binding orbitals and explored
the reduction of the memory requirements to simulate
realistically sized structures of several million atoms.
The memory requirement for storing the sparse ma-
trix tight-binding Hamiltonian for a 1 million atom sys-
tem in a 10 spin-degenerate orbital basis can be esti-
mated as 106 atoms× 5 diagonals× (20× 20 basis)×
16bytes/2( f orHermiticity) = 16 GB. Additional mem-
ory storage is needed for atom positions, eigenvectors,
etc; therefore the 16 GB available in the P450 is inade-
quate.

If the system of interest is unstrained, as is the case
for free standing quantum dots [Lee, Joensson, Klimeck
(2001)], the memory requirement is reduced dramati-
cally, since only a few uniquely different neighbor inter-
actions need to be stored. The overall Hamiltonian can
be generated from the replication of the few unique el-
ements. Since immediate interest was focused on solid-
state implementations on a bulk substrate, such simpli-
fications were not in the immediate development path
and they have not yet been implemented in NEMO 3-D

. However, such a scheme was pursued in the NEMO 1-
D transport code where the memory storage was arranged
such that the Hamiltonian matrix elements fit completely
into cache memory. This scheme allowed the rapid com-
putation of the transport kernel [Bowen et al. (1997)] us-
ing the recursive Green function algorithm which scales
linearly with the order N of lattice sites. The resulting
computation time for a single energy pass through the
whole Hamiltonian is so small, that the parallelization of
the computation of a single transport kernel element can-
not be parallelized efficiently [Klimeck (2002)].

The individual tight-binding Hamiltonian construction
can be formulated as a table look-up operation, which is
not, in principle, time consuming, except for the scaling
of the nearest neighbor coupling elements due to strain
(Eqs. 5 and 6). Therefore, the first implementation of the
matrix-vector multiplication does not store the Hamilto-
nian, but re-computes the Hamiltonian on the fly in each
multiplication step.

Hamiltonian storage became more feasible for million
atom size systems when P800 with its 64 GB of total
memory came on-line in the year 2000. The first Hamil-
tonian storage implementation stores the entire block of
sizebasis×basis for each atom and its neighbor interac-
tions. This storage scheme preserves the generality of the
code and the independent choice of number of orbitals.
Timing experiments similar to those presented in Sec-
tion 4.4 show that the speed increase due to Hamiltonian
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storage is surprisingly small on the Beowulf systems, but
is significant on the SGI. The low speed increase on the
Beowulf may be associated with memory latency issues
of the Pentium architecture. A further reduction in mem-
ory usage is, therefore, desirable.

A more detailed analysis of the sp3s∗ and
sp3d5s∗ Hamiltonian blocks provides insight into
the memory allocation actually needed to store the
Hamiltonian. The diagonal blocks are only filled on
their diagonal and on a small number of off-diagonal
sites. These off-diagonals are in general complex and
describe the spin-orbit coupling of the spin-up and the
spin-down Hamiltonian blocks. The off-diagonal blocks
of the Hamiltonian can be separated into a smaller
spin-up and spin-down components which are identical
and real. This symmetry can be exploited to reduce
the Hamiltonian storage requirement by a factor of 8
for both the sp3s∗ and the sp3d5s∗ models. A priori
knowledge on which matrix elements are real and
which are complex can be utilized to increase the speed
of the custom matrix-vector multiplication. A speed
increase due to the compact storage scheme of slightly
over 5 compared to the original storage scheme has
been observed. This custom storage and matrix-vector
multiplication scheme is used in the benchmarks in this
paper when the Hamiltonian is stored. The utilization
of C data management and the simple explicit access
to real and imaginary elements of complex numbers
leads to significantly faster small matrix-vector multiply
algorithms in C compared to FROTRAN or F90.

4.4 Lanczos Scaling with CPU Number

This section describes the performance analysis of 30
Lanczos iterations on P800 in a variety of load distri-
bution and memory storage schemes as a function of
utilized CPUs. The execution time for seven differ-
ent systems consisting of 1/4 to 16 million atoms for a
Hamiltonian matrix that is reconstructed at each matrix-
vector-multiplication step is shown in Figure 3a). The
sp3s∗ model is used in these simulations, resulting in
10×10 Hamiltonian matrix sub-blocks. In the 1 million
atom system case, the problem is equivalent to a matrix
of 107×107, and the myricom communication path is uti-
lized. The nearest neighbor CPU communication limita-
tion (discussed in Section 4.2) limits the 1/4, 1/2, 1, and
2 million atom systems to a maximum number of par-
allel processes to 32, 40, 51, and 63, respectively. The

4, 8, and 16 million atom systems cannot run on a sin-
gle CPU, because the single CPU RAM on P800 would
be exceeded. Even without Hamiltonian storage, these
larger systems require at least 2, 10, and 16 CPUs, re-
spectively, to avoid swapping.

Since P800 consists of 32 dual CPU nodes, a variety of
loading schemes are possible in the distribution of MPI
processes to the various CPUs. Figure 3a) explores two
schemes: 1) dashed lines with crosses - one process per
node (1 CPU idle), and 2) solid lines with circles - two
processes per node (both CPUs active). Although the sin-
gle process per node distribution incurs an increased cost
in communication off the node, the overall computation
time is slightly less when compared to the 2 processes per
node case, for system sizes 1/4 - 4 million atoms. Larger
systems (8 and 16 million atoms) produce a significantly
better performance with the 1 process per node configu-
ration. It appears more efficient to leave one CPU idle
and utilize all the memory on board, rather than use all
the CPUs and share the memory between two CPUs on
the same board. This behavior can be associated with a
memory latency / competition problem, and it is exam-
ined further below.

The green dashed lines in Figure 3a) indicate perfect
scaling for the 1 and 4 million atom system sizes. An
increasing deviation from ideal scaling is observed with
an increased number of CPUs. However, the computa-
tion time is still reduced when the number of CPUs is
increased. Figure 3b) shows the efficiency computed as
the ratio of ideal time and actual time (1 and 4 million
atom systems in red and blue, respectively). A serial to
parallel code ratio of 1.6% can be extracted if the 1 mil-
lion atom, two processes per node efficiency curve is fit-
ted to Amdahl’s law. This ratio indicates a high degree
of parallelism in the code.

The reconstruction of the Hamiltonian matrix at each
matrix-vector-multiplication step saves memory, but
does require additional computation time. The perfor-
mance of the matrix-vector-multiplication step can be
improved through Hamiltonian matrix storage and the
utilization of the sp3s∗ and sp3d5s∗ Hamiltonian sub-
matrix symmetries (see Section 4.3). Analogous to Fig-
ure 3a), Figure 3c) shows the parallel performance in the
case of Hamiltonian storage similar.

With the increased storage requirements, the minimum
number of CPUs required for the swap-free matrix-vector
multiplication for systems containing 1, 2, 4, and 8 mil-
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lion atoms increases to 2, 4, 6, and 16 CPUs from 1, 1, 2,
and 10 CPUs. The 16 million atom system no longer fits
onto P800. With the increased memory requirement, the
distribution of processes onto different compute nodes
becomes much more critical, even for smaller problem
sizes. This result indicates clearly that the 2 CPUs on
each motherboard compete for memory access at a sig-
nificant performance cost. It appears to be more effi-
cient to place a single process on each node for system
sizes that are larger than about 4 million atoms when the
Hamiltonian is stored, compared to 8 million atoms when
the Hamiltonian is reconstructed. The 8 million atom
simulation incurs dramatic performance losses if run on
2 processes per node, similar to the 16 million atom case
without Hamiltonian storage shown in Figure 3a).

Figure 3d) shows a greater parallel efficiency of the
stored Hamiltonian algorithm versus the recomputed
Hamiltonian algorithm of Figure 3b). However, the point
of ideal performance increases from 1 CPU since the
problems no longer fit onto a single CPU. Comparing
the ideal scaling indicated by the green lines in Fig-
ure 3a) and (c) shows that the stored Hamiltonian algo-
rithm scales better with an increasing number of CPUs.
This observation contradicts the expectation that a more
CPU intensive calculation such as the slower recomputed
Hamiltonian algorithm should scale better than a lower
intensity job such as the faster stored Hamiltonian al-
gorithm. At this time an explanation why the stored
Hamiltonian algorithm scales better than the recomputed
Hamiltonian algorithm is not available.

Figure 3e) shows the speed increase due to Hamiltonian
storage for a system of 1 and 4 million atoms derived
from the data shown in Figure 3a) and (c). Both system
sizes show a greater speed increase when one process
rather than two resides on a node. The speed increase
due to storage is not constant, but increases with an in-
creasing number of CPUs. The total memory used per
CPU decreases with an increasing number of participat-
ing CPUs. This memory reduction reduces the compe-
tition for memory access and the speed increase curves
increase with increasing number of CPUs. Competition
for memory between the 2 processes on a single node
with 2 CPUs is again visible.

With an estimate of 3 Gflop for a single matrix-vector
multiplication in a 1 million atom system (see Sec-
tion 4.2), the execution time of about 1247 seconds for
30 iterations in Figure 3a) on a single CPU, a operation

rate of 0.07 Gflops is obtained. Using 24 CPUs and 81
seconds the operation count is 1.1 Gflops. For the largest
achievable 16 million atom system running on 20 CPUs
for 2355 seconds a 0.61 Gflops rating can be achieved.
These operation counts exclude the operations needed to
reconstruct the Hamiltonian on the fly. Hamiltonian stor-
age roughly triples or quadruples these Gflops ratings.
Figure 3 shows that the Lanczos algorithm performs well
enough to enable the simulation of 8 and 16 million atom
systems on reasonably sized Beowulf clusters. The sus-
tained Gflop results are well within the expectations of a
realistic application.

4.5 Lanczos Scaling With System Size

The preceding Section 4.4 presented the scaling of the
Lanczos algorithm as a function of employed number of
CPUs for different system sizes on the P800 cluster. This
section discusses a subset of the same data as a function
of system size for a fixed number of 24 CPUs. Four dif-
ferent data sets are considered based on the cross-product
combination of 1 or 2 processes per node (symbol 1Px
and 2Px, respectively) and stored or recomputed Hamil-
tonian (x=s and x=r, respectively).

Figure 3f) shows a plot of wall clock time as a function
of the number of atoms in the simulation domain,N. The
curves appear to be almost linear inN. Through linear
regression the curves can be fitted to:

T (2Pr) = 18.568+59.825N 1.3661, R = 0.99976

T (1Pr) = 1.064+20.342N 0.99821, R = 0.99997

T (2Ps) = 1.5484+26.139N 1.0264, R = 0.99997

T (1Ps) = 5.8046+73.154N 1.1898, R = 0.99999

The fitted exponentials range fromN 0.998 to N1.366 with
a high regression valueR>0.999.

The total computation time not only depends on the time
consumed on matrix-vector multiplication, but also on
the number of iterations needed for convergence within
the Lanczos algorithm. Experience shows that the num-
ber of iteration needed to obtain a certain number of
bound eigen-states in a quantum dot system depends
weakly on the system size. Typical iteration counts are of
the order of 1000 to 5000. The Lanczos solver presented
in this work, therefore, scales roughly linearly with the
system size.
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4.6 Lanczos Performance with different Network
Speeds

The Myricom 1.8 Gbps networking system isutilized in
the simulations shown in Figure 3. The Myricom net-
work can be directly compared to a standard 100 Mbps
Ethernet on P800, since both networks are installed in-
dependently. For the benchmarks shown in Figure 3 vir-
tually identical results are obtained, if the simulation is
performed on the significantly slower Ethernet network.
This result indicates that the algorithm is not communi-
cation limited.

4.7 Examination of Memory Latency by Comparison
of Different Machines

Section 4.4 showed that the dual CPU P800 machine suf-
fers from performance degradation due to memory access
in the computation of large systems or a stored Hamil-
tonian. This section examines this performance bottle-
neck further by comparing the Pentium-based cluster ma-
chines with the SGI machine (see Table 1 for the machine
specifications). Figure 4a) compares execution times of
30 Lanczos iterations on P800 (red), P450 (blue), and
SGI (black) with (dashed line) and without (solid line)
storage of a 2 million atom Hamiltonian. The P450 out-
performs the SGI without Hamiltonian storage by a fac-
tor of 1.6 to 1.9. The fast, yet expensive memory of the
SGI produces a more dramatic speed increase compared
to P450 and the two machines have roughly the same
performance on this problem. Figure 4b) shows that the
speed increase for SGI reaches a factor of about 9 while
it reaches a factor of 5.5 on P450. P800 only achieves
speed increase factors of about 3 to 4 due to Hamiltonian
storage, depending on the node load configuration; how-
ever, P800 still outperforms the significantly more expen-
sive (and 2 years older) SGI by a factor of approximately
2.

The memory latency problem can also be examined by
comparison of execution times of the same executable
and the same communication network type (100Mbps)
on the P450, P800, and P933 machine when the number
of CPU cycles is plotted as a function of employed num-
ber of parallel CPUs. The number of cycles is estimated
as the total wall time multiplied by the frequency rating
of the CPU in MHz. Figure 4c) shows such a plot for
a system of 1 million atoms. If the Hamiltonian is re-
computed on the fly and the required memory is small all
three machines require almost identical number of cycles

to compute the 30 Lanczos iterations and the curves lay
on top of each other. By contrast, if the memory usage is
increased due to the Hamiltonian storage, P450 requires
fewer CPU cycles to compute the same problem as the
machines with a high frequency rating. The additional
cycles are spent waiting for the memory to arrive at the
fast CPUs, which perform the computation faster than the
memory delivery takes place.

4.8 Parallel Strain Algorithm Performance

The minimization of the total strain energy is numeri-
cally significantly less taxing than the electronic struc-
ture calculation. The strain computation was therefore
not immediately parallelized. However, simulating sys-
tem sizes of 1 million atoms or more, shows that the se-
rial strain computation becomes computationally as tax-
ing as the parallel electronic structure calculation that it
precedes. The mechanical strain calculation has there-
fore been parallelized as well. This strain parallelization
combined with the parallel electronic structure calcula-
tion enabled some of the alloy simulations shown in this
paper as well as the bulk alloy simulations shown previ-
ously [Oyafuso, Klimeck, Bowen, Boykin (2002)].

Data are distributed in the same manner as in the elec-
tronic calculation: the simulation domain is decomposed
into slabs such that atomic information associated with
atoms within a slab is held by only one processor (see
Figure 2a)). Message passing then takes place only be-
tween neighboring processors and the message size is
proportional to the surface area of each slab, since the
locality of the strain energy requires only that positions
of atoms on the boundary be passed. Since the gradi-
ent of the strain energy in Eq.(7) is just as computation-
ally inexpensive to determine as the total strain itself,
a conjugate-gradient-based method that uses the deriva-
tive with respect to atomic configuration and periodic-
ity to perform the line search18 is used to minimize the
strain energy. The parallelization of the algorithm occurs
on two levels. First, the conjugate-gradient-based min-
imization involves computation of various inner prod-
ucts through a sum reduction and broadcast. Second,
the function (and gradient) call to determine the local
strain energy at an atomic site requires information about
neighboring atoms that may lie on neighboring proces-
sors. Only position information of atoms on neighboring

18See the for example macopt in http://wol.ra.phy.cam.ac.uk/
mackay/c/ macopt.html
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Figure 4 : (a) Execution time of 30 Lanczos iterations on three different machines: P800 (red), P450 (blue), and
SGI (black) with (dashed line) and without (solid line) storage of a 2 million atom Hamiltonian. (b) Corresponding
speed increase due to Hamiltonian storage (solid lines). Dashed line corresponds to P800 with 1 process per node.
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stored Hamiltonian.

processors that are on the boundary is sent.

Figure 5 shows scaling results for the wall time required
to achieve convergence for a system of size 32×30×32
nm consisting of approximately one million atoms. The
simulation was run on two different hardware configura-
tions P800 connected by the 2 Gbps Myrinet (solid line
with stars) and P933 connected by standard 100 Mbps
ethernet (dashed line with circles). No shared memory
was used in either case. On a single processor, there
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Figure 5 : Wall clock time to compute the strain in a 1
million atom system on P933 with its 100Mbps network
(dashed line with circles) and on P800 with its 1.8Gbps
network (solid line with stars).

are no communication costs, and P933 outperforms P800
by about a ratio of the clock cycles of 800/933. As the

number of processors is increased, however, the ratio
of communication cost to computational cost increases;
the communication expense is proportional to the surface
area of the slabs which remains fixed while the compu-
tational cost is proportional to the slab volumes and thus
inversely proportional to the number of processors. This
reduction in efficiency with processor number is most ev-
ident for the slow 100 Mbps network. Using Ethernet the
execution time is more than a factor of two greater than
using Myricom 1.8 Gbps network.

For the mechanical strain calculation a significant im-
provement of the scaling with increasing number of
CPUs with the usage of a faster, low latency network is
observed. This result differs from the electronic struc-
ture calculation discussed in Section 4.4. In that case no
speed increase of improved performance with increasing
number of CPUs was observed (and therefore not shown
in a graph). This discrepancy is a result of the larger com-
putational demand in the electronic structure calculation.
The mechanical strain calculation deals only with three
real numbers (the displacements from some ideal posi-
tion) for each atom and with the relative distance to its
surrounding four neighbors. The electronic structure cal-
culation by contrast deals with 10×10 and 20×20 com-
plex matrices for each atom and its four neighbors.

5 Bulk Material Parameterizations and Properties

5.1 Genetic Algorithm-Based Fitting

Electronic structure calculations in the lowest conduc-
tion and the highest valence band require a good pa-
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rameterization of the band gaps, effective masses and
band-anisotropies (for the holes). One of the drawbacks
of the empirical tight-binding models is that there is no
simple relation between these physical observables and
the orbital energies. The analytical formulas that have
been developed in the past [Boykin, Klimeck, Bowen,
Lake (1997); Boykin (1997); Boykin, Gamble, Klimeck,
Bowen (1999)] serve as a guide for the general capabil-
ity of a particular model and show that the optimization
space is not smooth. The fitting of the parameters us-
ing these formulas has led to dramatic improvements in
the simulation capabilities of high performance resonant
tunneling diodes [Bowen, et al. (1997a); Klimeck, et al.
(1997)], although the process remained tedious at best.

A very nice and diligent parameterization of the
sp3d5s∗ model has been published by Jancu Scholz, Bel-
tram, Bassani (1998)]. A large number of the technically
relevant III-V materials as well as elemental semiconduc-
tors have been parameterized in their work. They have
also optimized orbital-dependent distance scaling expo-
nentsη to fit strain-dependent quantities such as defor-
mation potentials. To enhance the performance of the
model with strain in a layered superlattice configuration
Jancu etal. have developed a method where the d orbital
on-site energy is shifted as a function of strain. For the
general 3-D electronic structure case that is subject to this
work, a more general treatment of the on-site energies as
a function of strain must be included. In the NEMO 3-
D implementation of the tight-binding model, all on-site
energies can be shifted due to strain in an arbitrary 3-D
configuration.

To automate the fitting of the orbital tight-bindingparam-
eters to the desired bulk material properties [Madelung
(1996); Landolt-Bornstein (1982), Jancu, Scholz, Bel-
tram, Bassani (1998)] a genetic algorithm (GA) based
software package. The details of this algorithm and sev-
eral improved material parameterizations are described
elsewhere [Klimeck et al. (2000); Klimeck, Bowen,
Boykin, Cwik (2000)] was developed. The general idea
of the GA is the stochastic exploration of a parame-
ter space with a large set of individuals, which repre-
sent different parameter configurations. The individu-
als are measured against a certain desired fitness func-
tion and ranked. Some of the individuals (for exam-
ple 10% of the worst performers) are thrown out of
the gene pool and replaced by new individuals that are
derived from better performers by cross-over and mu-

tation operations. The parameterizations used in this
work have been obtained using this GA approach, start-
ing from earlier parameterizations [Boykin, Klimeck,
Bowen, Lake (1997); Boykin (1997); Boykin, Gamble,
Klimeck, Bowen (1999); Jancu, Scholz, Beltram, Bas-
sani (1998)].

The following sections present the parameterization data,
and the resulting unstrained and strained bulk-properties.

5.2 Parameter Tables and Bulk Properties

Table 2 lists the parameters that enter the sp3s∗ model
used in this paper. The parameterization for InAs was
obtained from a GA, while the GaAs data was originally
delivered by Boykin to the NEMO 1-D project. No ef-
fort has been made in this parameterization to fit the off-
diagonal or the diagonal matrix element strain correc-
tions. All off-diagonal matrix elements are scaled with
the ideal exponent [Harrison (1999)] ofη=2 and the di-
agonal correction is set to zero.

An explicit InAs valence band offset vs. GaAs
of 0.22795 is used in this parameterization. The
sp3d5s∗ parameterization in contrast is based on common
atom potentials and has the valence band offset built into
the parameter set.

Table 3 shows the complete parameterization of GaAs
and InAs in our sp3d5s∗ tight-binding model including
the off-diagonal and diagonal strain scaling parameters.
In this model a good fit based on common atomic po-
tentials of the As in the GaAs and InAs has been ob-
tained. A valence band offset of the unstrained mate-
rials of 0.2259eV is built into the parameter set. The
sp3d5s∗ model is rich enough in its physical content to
enable the fitting of GaAs, InAs, and AlAs with comon
As potentials and built-in valence band offsets. Common
atom potentials and built-in valence band offsets cannot
be achieved in the sp3s∗ model, unless some of the fitting
requirements are severely relaxed.

Table 4 summarizes the major unstrained bulk mate-
rial properties that have been targeted in the sp3s∗ and
sp3d5s∗ parameterization for GaAs and InAs. The target
parameters are taken from various experimental and the-
oretical references [Madelung (1996); Landolt-Bornstein
(1982), Jancu, Scholz, Beltram, Bassani (1998)]. The
major parameters of interest are associated with the low-
est conduction and the two highest valence bands. In Ta-
ble 4 these properties are separated by a horizontal line
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Table 3 : sp3d5s∗ tight-binding model parameters for GaAs and InAs. All energies are in units of eV, the lattice
constant is in units of nm and the strain parametersη andC are unitless.

TB Parameter GaAs InAs ηstrain GaAs InAs Cstrain GaAs InAs
lattice 0.56532 0.60583
E(sa) -5.50042 -5.50042
E(pa) 4.15107 4.15107
E(sc) -0.24119 -0.58193
E(pc) 6.70776 6.97163
E(s∗a) 19.71059 19.71059
E(s∗c) 22.66352 19.94138
E(da) 13.03169 13.03169
E(dc) 12.74846 13.30709
∆a/3.0 0.17234 0.17234
∆c/3.0 0.02179 0.13120 Eshi f t 27.0000 27.0000
V(s, s) -1.64508 -1.69435 ss∗σ 0.00000 0.06080 C(s, s) 0.58696 0.53699
V(s∗, s∗) -3.67720 -4.21045 s∗s∗σ 0.21266 0.00081 C(s∗, s∗) 0.48609 1.05899
V(s∗a, sc) -2.20777 -2.42674 ssσ 2.06001 1.92494 C(s ∗a, sc) 0.88921 0.46356
V(sa, s∗c) -1.31491 -1.15987 spσ 1.38498 1.57003 C(s a, s∗c) 0.77095 1.94509
V(sa, pc) 2.66493 2.59823 ppσ 2.68497 2.06151 C(s a, pc) 0.75979 1.86392
V(sc, pa) 2.96032 2.80936 ppπ 1.31405 1.60247 C(s c, pa) 1.45891 3.00000
V(s∗a, pc) 1.97650 2.06766 sdσ 1.89889 1.76566 C(s ∗a, pc) 0.81079 0.40772
V(s∗c, pa) 1.02755 0.93734 s∗pσ 1.39930 1.79877 C(s∗c, pa) 1.21202 2.99993
V(sa,dc) -2.58357 -2.26837 pdσ 1.81235 2.38382 C(s a,dc) 1.07015 0.00000
V(sc,da) -2.32059 -2.29309 pdπ 2.37964 2.45560 C(s c,da) 0.38053 0.07982
V(s∗a,dc) -0.62820 -0.89937 Cdiag 2.93686 2.34322 C(s∗a,dc) 1.03256 0.00000
V(s∗c,da) 0.13324 -0.48899 ddσ 1.72443 2.32291 C(s ∗c,da) 1.31726 0.75515
V(p, p,σ) 4.15080 4.31064 ddπ 1.97253 1.61589 C(p, p) 0.00000 1.97354
V(p, p,π) -1.42744 -1.28895 ddδ 1.89672 2.34131
V(pa,dc,σ) -1.87428 -1.73141 s∗dσ 1.78540 2.02387 C(pa,dc) 1.61350 0.00000
V(pc,da,σ) -1.88964 -1.97842 C(pc,da) 0.00000 0.00000
V(pa,dc,π) 2.52926 2.18886
V(pc,da,π) 2.54913 2.45602
V(d,d,σ) -1.26996 -1.58461 C(d,d) 1.26262 0.10541
V(d,d,π) 2.50536 2.71793
V(d,d,δ) -0.85174 -0.50509
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Table 2 : sp3s∗ tight-binding parameters for GaAs and
InAs. All energies are in units of eV and the lattice con-
stant is in units of nm. For this parameterization all rele-
vant off-diagonal stain scaling parameters are set toη=2
and all diagonal strain scaling parameters are set toC=0.

Parameter GaAs InAs
lattice/(nm) 0.56660 0.60583
E(sa) -8.51070 -9.60889
E(pa) 0.954046 0.739114
E(sc) -2.77475 -2.55269
E(pc) 3.43405 3.71931
E(s∗a) 8.45405 7.40911
E(s∗c) 6.58405 6.73931
V (s, s) -6.45130 -5.40520
V (x,x) 1.95460 1.83980
V (x,y) 4.77000 4.46930
V (sa, pc) 4.68000 3.03540
V (sc, pa) 7.70000 6.33890
V (s∗a, pc) 4.85000 3.37440
V (pa, s∗c) 7.01000 3.90970
∆a 0.42000 0.42000
∆c 0.17400 0.39300
Eo f f set

v 0.00000 0.22795

from parameters that are outside these central bands of
interest. The upper and lower band edges as well as
the minimum point in the [111] directionk L are included
in the optimization target with a relatively small weight.
These properties are included in the optimization to pre-
serve an ”overall” good shape of the bands outside the
major interest. If they are not included, upper and lower
bands will distort significantly to aid the desired perfect
properties of the central bands. This distortion can lead
to undesired band crossings on and off the zone center.

Also included (yet not shown in the table) is another re-
striction on the GaAs and InAs parameters to alloy “well”
within the virtual crystal approximation (VCA). It has
been found that parameter sets that represent the individ-
ual GaAs and InAs quite well can result in a InxGa1−xAs
alloy representation that has completely wrong behavior
of the bands as a function ofx (dramatic non-linear bow-
ing). Typically a target that linearly interpolates the cen-
tral conduction and valence band edges for InxGa1−xAs
from GaAs and InAs as a function ofx is included. Bow-
ing is not built into these VCA parameters, but estab-
lishes itself in the 3-D disordered system (see reference
[] for an AlxGa1−xAs example and Section 6.2 for a dis-
cussion on InxGa1−xAs).

Compared to the sp3s∗ model, the sp3d5s∗ model gener-
ally provides better fits to the hole effective masses and
the electron effective masses atΓ and L. The failure of
the sp3s∗ model to properly reproduce the transverse ef-
fective mass on the∆ line towards X is well understood
[Klimeck, et al. (2000)]. The sp3d5s∗ model does allow
the proper modeling of the effective masses in that part
of the Brillouin zone.

Figure 6 shows the bulk dispersion of GaAs (left column)
and InAs (right column) computed from the tight-binding
parameters listed in Tables 2 and 3 without strain. The
dispersion corresponding to the sp3s∗ model is plotted
in a dashed line and compared to the results from the
sp3d5s∗ model in a solid line. The first row in Figure 6
shows the bands in a relatively large energy range in-
cluding the lowest valence band in the models as well
as several excited conduction bands. The second row in
Figure 6 zooms in on the central bands of interest. The
sp3s∗ and sp3d5s∗ model agree reasonably well with each
other at the Gamma point in their energies as well as their
curvatures of the central bands of interest. Off the zone
center the deviation between the two models become sig-
nificant. Some of the band energies are hard to probe
experimentally and are only known from other theoreti-
cal models [Madelung (1996); Landolt-Bornstein (1982);
Jancu, Scholz Beltram, Bassani (1998)]. However the
conduction band energies at X and L and their corre-
sponding masses are well known, and the sp3s∗ model
does fail to deliver a good fit. The sp3s∗ model generally
appears to deviate strongly from the sp3d5s∗ model in the
[111] direction even for the central bands of interest.

5.3 Band Edges as a Function of Strain

The deformation of atomic positions from their ideal
values in a relaxed semiconductor crystal modifies the
interaction between atomic neighbors and therefore the
electronic bandstructure. The ability to form strained
structures without defects opens a new design space ex-
ploited by many commercially relevant devices, includ-
ing, for example, InGaAsP-based laser diodes operating
at 1.55µm. Although good qualitative results have been
obtained for the strain-dependence of the effects of inter-
est in these devices [Silver, Oreilly (1995)], very precise
measurements of all the empirical parameters that influ-
ence strain are still lacking. The baseline strain parame-
terization to which the calculation is compared and fitted
to has been presented by Van de Walle (1989). Van de
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Table 4 : Optimization targets and optimized results for the sp3s∗ and s3d5s* model for GaAs and InAs.

Property GaAs
Target

sps % dev spds % dev InAs
Target

sps % dev spds % dev

EΓ
g 1.4240 1.4173 0.4676 1.4242 0.0150 0.3700 0.3740 1.0679 0.3699 0.0232

EΓ
c 1.4240 1.4173 0.4675 1.4212 0.1996 0.5957 0.6019 1.0406 0.5942 0.2496

Vhh 0.0000 0.0000 0.0000 -0.0031 0.3055 0.2257 0.2279 0.2247 0.2243 0.1401
m∗

c [001] 0.0670 0.0679 1.3195 0.0662 1.1353 0.0239 0.0245 2.3030 0.0235 1.5417
m∗

lh[001] -0.087 -0.0699 19.7125 -0.0830 4.6849 -0.0273 -0.0282 3.2117 -0.0281 2.9541
m∗

lh[011] -0.080 -0.0661 17.7381 -0.0759 5.6414 -0.0264 -0.0275 4.3227 -0.0273 3.3575
m∗

lh[111] -0.078 -0.0498 36.6755 -0.0740 5.8547 -0.0261 -0.0207 20.7535 -0.0270 3.5783
m∗

hh[001] -0.403 -0.4436 10.0710 -0.3751 6.9198 -0.3448 -0.4410 27.9049 -0.3516 1.9617
m∗

hh[011] -0.660 -0.7103 7.6270 -0.6538 0.9421 -0.6391 -0.7159 12.0144 -0.5634 11.8389
m∗

hh[111] -0.813 -0.8726 7.3332 -0.8352 2.7329 -0.8764 -0.8972 2.3757 -0.6982 20.3385
m∗

so[001] -0.150 -0.1447 3.5239 -0.1629 8.6134
EX

c −EΓ
c 0.4760 0.4742 0.3753 0.4760 0.0099 1.9100 1.9008 0.4829 1.9131 0.1626

m∗
X [long] 1.3000 1.2552 3.4436 1.3138 1.0596

m∗
X [trans] 0.2300 4.1920 1722.61 0.1740 24.3358

kX 0.9000 0.8550 5.0000 0.8860 1.5556
EL

c −EΓ
c 0.2840 0.5339 88.0001 0.2825 0.5201 1.1600 1.3394 15.4628 1.1589 0.0915

m∗
L[long] 1.9000 2.9849 57.0979 1.7125 9.8685

m∗
L[trans] 0.0754 1.1972 1487.74 0.0971 28.7342

kL 1.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 0.0000
∆so 0.3400 0.3636 6.9545 0.3265 3.9792 0.3800 0.4150 9.2117 0.3932 3.4644
EΓ

6v -13.10 -12.703 3.0321 -12.370 5.5723 -12.300 -12.535 1.9149 -13.417 9.0847
E∆

so -0.340 -0.3636 6.9545 -0.3265 3.9792 -0.3800 -0.4150 9.2117 -0.3932 3.4644
EΓ

6c 1.4240 1.4173 0.4676 1.4242 0.0150 0.3700 0.3740 1.0679 0.3699 0.0232
EΓ

7c 4.5300 4.3557 3.8468 3.4544 23.7449 4.3900 4.3314 1.3342 3.7402 14.8027
EΓ

8c 4.7160 4.5861 2.7546 3.5785 24.1198 4.6300 4.7294 2.1474 4.0466 12.6013
EX

6v -2.880 -2.8013 2.7321 -2.2302 22.5631 -2.4000 -2.5311 5.4607 -2.3486 2.1434
EX

7v -2.800 -2.6699 4.6481 -2.0470 26.8927 -2.4000 -2.4383 1.5958 -2.2525 6.1441
EX

6c 1.9800 1.9278 2.6376 1.9199 3.0363 2.5000 3.2599 30.3955 2.6286 5.1458
EX

7c 2.3200 2.1101 9.0469 2.1298 8.1972
EL

4v -10.920 -11.111 1.7551 -10.580 3.1117
EL

5v -6.2300 -6.9272 11.1903 -5.8611 5.9221
EL

6v -1.420 -1.5793 11.2172 -1.1169 21.3432 -1.2000 -1.4897 24.1448 -1.3048 8.7339
EL

7v -1.200 -1.2766 6.3866 -0.8975 25.2051 -0.9000 -1.1221 24.6830 -1.0129 12.5407
EL

6c 1.8500 1.9513 5.4736 1.7067 7.7440 1.5000 1.7133 14.2213 1.5289 1.9235
EL

7c 5.4700 3.1464 42.4786 3.9357 28.0501 5.4000 4.3284 19.8452 4.1758 22.6708
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Figure 6 : E(k) dispersion for GaAs (left column) and InAs (right column) computed with the sp3s∗ (dashed line)
and sp3d5s∗ (solid line model).

Walle’s parameterization is not purely empirically based,
but partially dependent on ak·p expansion followingPol-
lak and Cardona (1968). For this work, Van de Walle’s
parameters have been slightlymodified to represent room
temperature bandgaps.

Figure 7 shows the conduction and valence band edges
for GaAs (left column) and InAs (right column) as a
function of hydrostatic strain (top row) and bi-axial strain
(bottom row). Three parameterizations are compared in
each graph: 1) reference data by Van de Walle (dashed
line), 2) data computed from the sp3d5s∗ model (circles),
and 3) data computed from the sp3s∗ model (solid line).
The test application in this paper is the modeling of a
strained InGaAs system grown on top of a GaAs sub-
strate. Since InAs has a larger lattice constant than GaAs
one needs to model effects on InAs as it is compressed
towards the GaAs lattice constant (7% negative strain).
GaAs bonds, by contrast, are expected to be stretched to-
wards the InAs bondlength at interfaces (positive strain).
Since the InGaAs quantum dots grown on GaAs which
are considered in the next two sectins 6 and 7 are signifi-
cantly larger in their width than their height, one can ex-
pect the strain in the dot to be mostly bi-axial. However

some hydrostatic strain distributions can be expected as
well, due to the finite extent of the InAs quantum dots in-
side the GaAs buffer. The z-directional strain component
in the bi-axial strain case is computed asε zz =2c12

c11
εxx and

εyy =εxx.

Both tight-binding models follow the trends set by the
Van de Walle reference reasonably well. Generally
speaking the sp3d5s∗ model performs better than the
sp3s∗ model (which actually was not optimized for its
strain performance). It has been particularly hard to im-
prove the under-prediction of the InAs band gap (Fig-
ure 7d)) for large compressive bi-axial strain. The rea-
sonably good fit has been obtained by compromising the
fit of the conduction band under hydrostatic compressive
strain. In contrast, the InAs valence bands has not not
posed any problem at all to be fit to the Van de Walle
data.

5.4 Effective Masses as a Function of Strain

Previous nanoelectronic transport simulations have
shown that it is essential [Bowen, et al. (1997a);
Klimeck, et al. (1997); Bowen, et al. (1997b)] to prop-
erly model the band edges and effective masses in the
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heterostructure. In a single band model the dependence
of eigen-energy of a confined state is inversely propor-
tional to the effective mass. With the strong dependence
of the band-edges on the strain shown in Figure 7 one can
also expect a strong dependence of the effective masses
on the strain. Figure 8 shows the electron (first row),
light hole (second row), and heavy hole (third row) ef-
fective masses for GaAs (first column) and InAs (sec-
ond column) as a function of hydrostatic strain (lines
with circles) and bi-axial strain (lines without symbols)
for the sp3s∗ (dashed line) and the sp3d5s∗ model (solid
line) computed in the [001] direction. Negative strain
values correspond to compressive strain. For the elec-
tron mass the sp3s∗ and the sp3d5s∗ model show roughly
the same trends for GaAs as well as InAs. The GaAs
mass drops towards the smaller InAs mass as GaAs is
stretched towards InAs. In InAs the electron mass is in-
creased towards the heavier GaAs mass as the material
is compressed towards GaAs. The sp3d5s∗ model shows
a larger difference between the effect of hydrostatic and
bi-axial strain than the sp3s∗ model.

The change in the effective mass in InAs under compres-
sive bi-axial strain is quite important. Under 7% bi-axial
strain the effective mass approximately doubles. This in-
crease in the effective mass lowers the confinement en-
ergies in the the quantum dots, effectively increasing the
confinement. The spacing between the confined electron
states will also be significantly reduced.

The light hole masses (Fig 8c,d)) show a similar linear
dependence tohydrostatic strain as the electron masses
for both band structure models. Under bi-axial com-
pressive strain, however, the light hole mass increases
dramatically towards the heavy hole mass. Both tight-
binding models predict roughly the same behavior. In the
case of thin InGaAs quantum dots strained on GaAs this
implies that the light hole confinement is much stronger
and the light hole state separation is much smaller than
the unstrained LH effective mass would indicate. Note
however that the LH band is significantly separated from
the HH band due to strain as indicated in Figure 7d).

While the two tight-binding models show similar trends
for the electron and light hole effective masses for GaAs
and InAs under both pressure types, the two models show
different trends for the heavy hole masses. In the case
of GaAs under hydrostatic pressure the two models still
predict the same trends for the HH mass. However, with
increasing bi-axial strain the sp3s∗ model predicts an in-

crease in the GaAs HH mass, while the sp3d5s∗ model
shows the opposite trend. In the case of InAs the two
models predict conflicting trends in both strain regimes.
Note that both models have slightly different zero-strain
origins as indicated in Table 4. The difference in the
strain dependence trends for the HH mass in the two
tight-binding models may result in different hole con-
finements and hole state separations predicted by the two
models. Although the conflicting trends are somewhat
disturbing and warrant further examination on their ef-
fects on confined hole masses, it is also important to note
that the overall variation due to strain is small to within
about 15%. Variations with strain in the electron and
light hole masses are much more significant on the or-
der of 100% and both models predict the same trend.

6 Application of NEMO 3-D to InGaAs Alloyed Sys-
tems

The previous Section 5 discusses the parameterization
of GaAs and InAs in the sp3s∗ and sp3d5s∗ model. All
the material properties in that section were computed on
the basis of a single primitive fcc-based cell. This sec-
tion 6 and section 7 focus on the properties of the alloy
InxGa1−xAs modeled by the constituents of GaAs and
InAs in a 3-D chunk of material consisting of tens of
thousands to over 6 million atoms. Two different sys-
tems are considered in detail: 1) bulk InxGa1−xAs and
its properties as a function of In concentration x, and 2)
In0.6Ga0.4As dome shaped quantum dots embedded in
GaAs. Within each system the strain properties are ex-
amined first, followed by an analysis of the electronic
structure. Throughout this section the sp3d5s∗ model is
used for all the electronic structure calculations.

6.1 Strain Properties of Bulk InxGa1−xAs

The starting point of many atomistic electronic structure
calculations is a determination of the atomic configura-
tion through a minimization of the total strain energy.
The strain calculation discussed earlier is applied to a
small, periodic InxGa1−xAs system consisting of approx-
imately 13000 atoms. Figure 9 shows the mean bond
lengths for such a small system. The curve in red (blue)
corresponds to the mean In-As (Ga-As) bond length and
is bounded by dotted curves that delimit the range of
bond lengths that lie within one standard deviation of the
mean. Clearly, as the material in question becomes less
alloy-like (i.e more GaAs-like or InAs-like) the standard
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deviations approach zero.

The curve in green is the average of the Ga-As and In-
As bond lengths weighted by the concentration of each
cation and represents the mean bond length throughout
the crystal. Note that this mean is strongly linear with
a very slight upward bowing and is consistent with Ve-
gard’s law [Chen, Sher (1995)]. Also evident is the
bimodal nature of the bond length distribution which
demonstrates that on a local scale the crystalline struc-
ture around any particular cation retains to a large degree
the character of the binary bulk material. The computed
bond lengths show reasonable agreement with those de-
termined from experiment [Mikkelsen, Boyce (1982)]
(shown in black), but tend closer to the mean crystal
value.
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Figure 9 : In-As (red) and Ga-As (blue) bond length av-
erage (with an error margin of one standard deviation) as
a function of In concentration x. Black line corresponds
to experimental data reported by Mikkelsen and Boyce
(1982). Dot-dashed green line corresponds to a VCA re-
sult representing the mean bond length of the entire crys-
tal.

6.2 Electronic Properties of Bulk InxGa1−xAs

With the atomic configurations the electronic proper-
ties of the In0.6Ga0.4As system can be obtained. Fig-
ure 10 compares the experimentally measured [Landolt-
Bornstein (1982)] energy gap (shown in green) of
InxGa1−xAs as a function of In concentrationx with nu-
merical results, obtained in two different ways. The red
curve is the VCA result, obtained by diagonalizing the

tight-binding Hamiltonian on a single unit cell with peri-
odic boundary conditions, in which the cation-anion cou-
pling potentials are determined by a strict average of the
In-As and Ga-As coupling potentials. The lattice con-
stant of the single cubic unit cell is determined by Veg-
ard’s law [Chen, Sher (1995)]. The resulting energy gap
is mostly linear, but displays a very slight upward bow-
ing. The blue curve is obtained by diagonalizing the full
Hamiltonian of the alloyed system. The system size is
sufficiently large that variations of the energy gap due to
configurational noise (see analysis in Section 7) is not
visible on the energy scale shown in the figure. The de-
termined energy gap differs from the VCA result by a
maximum of 60 meV and displays a slight downward
bowing, although significantly less than that of the ex-
perimental result [Landolt-Bornstein (1982)]. The linear
behavior in the VCA computed bandgap is included in
the tight-binding parameter fitting as discussed in Sec-
tion 5.2. The random cation disorder in the 3-D bulk
system can, therefore, be attributed with the bowing.
In similar AlxGa1−xAs simulations [Oyafuso, Klimeck,
Bowen, Boykin (2002)] much better agreement between
the 3-D simulation and the experimental results has been
achieved. Some bowing might have to be built into the
VCA based parameterization of GaAs and InAs to ac-
commodate the larger bowing in the InxGa1−xAs system
compare to the AlxGa1−xAs.
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Bornstein (1982)] energy gap (solid line) of InxGa1−xAs
as a function of In concentrationx compared with results
based on the 3-D random alloy simulation (circles) and a
virtual crystal approximation (stars).
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6.3 Strain in an Alloyed Quantum Dot

This section demonstrates an example of the strain cal-
culation in an alloyed quantum dot using NEMO 3-D
. The model problem is a dome-shaped In0.6Ga0.4As
QD of diameter 30 nm and height 5 nm enclosed in a
GaAs box of size 74× 74× 28nm3. The entire struc-
ture, which contains roughly 6.3 million atoms, is al-
lowed to expand freely to minimize the total strain energy
(no fixed boundary conditions). The diagonal part of the
local strain tensor is examined along thex-axis, which
lies halfway between the top and bottom of the dome and
parallel to its base. Figures 11a) and 11b) show the
componentsεxx (blue), εyy (green),εzz (red), and Tr(ε)
(black) of the local strain tensor of the primitive cell cen-
tered about the Ga and In cations respectively. Within
the QD, the In-As bonds (see Figure 11b) are compres-
sively strained roughly equally in thex andy directions
(approximately 4.69% and 4.99% respectively). There is
a very slight tensile strain in thez direction (∼ 0.02 %).
There are three competing effects that determine the sign
and magnitude of this strain. First, there is a negative
hydrostatic component due to the smaller lattice constant
of the buffer. Second, the flatness of the dome means
that close to the center of the QD, the strain field should
approach that of quantum well in which the cubic cell
is compressively strained laterally (i.e. inx andy) and
stretched inz. Finally, the presence of nearby Ga cations
provides an additional negative hydrostatic component to
the strain. The combination of these three effects gives
rise to a large biaxial compressive strain and a nearly van-
ishing strain component normal to the flat dome.

The Ga cations within the dome (see Figure 11a) are sub-
ject to only one of these effects, that of the biaxial strain
of nearby In-As bonds. Interestingly, the Ga-As bond
lengths are reduced laterally (-1.98% (x) and -1.90% (y))
from their bulk values. This reduction is likely an ef-
fort to match the very largez-component of the In-As
bondlengths. The resulting average tension in thez di-
rection is 2.14%.

Just outside the dome, alongx, the Ga atoms suffer
tensile strain iny and in z (although more so inz) to
match the effective lattice constant on the boundary of
the dome. This stretching results in compressive strain
alongx as indicated in Figure 11(a) by the negative value
of εxx outside the QD.
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Figure 11 : Components of strain tensor for primitive
cells centered around (a) Ga and (b) In cations along an
axis midway from the top and bottom of the dome and
parallel to its base.
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6.4 Local Band Structure in an Alloyed Quantum Dot

Figure 12 shows the effect of the deformation of the
primitive cells under strain on the local electron and hole
band structure. Each point represents a “local” eigen-
energy obtained by constructing a bulk solid from the
primitive cell formed from the four As anions enclosing
each cation. One sees that outside the QD, the tensile
strain the GaAs cells experience reduces the conduction
band edge slightly from its bulk value and splits the de-
generate valence band (shown in black) into heavy hole
(HH) and light hole (LH) bands.
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Figure 12 : “Local” conduction (a) and valence (b) band
edges determined by imposing periodic boundary condi-
tions on a primitive cell constructed from the four anions
surrounding a given cation.

Within the QD, both GaAs and InAs cells are squeezed

laterally resulting in a increase in local electron eigen-
energies. The resulting mean electron band edge along
the x-axis and within the QD is indicated by the thin
solid line. Biaxial compressive strain also raises (low-
ers) the local HH (LH) eigen-energies within the QD for
both InAs and GaAs cells, and, again, the average HH
QD band edge is indicated by a thin solid line. Clearly,
the random distribution induces a large variation in local
potentials, which will shortly be seen to strongly affect
shallow hole states.

6.5 Wave Functions in an Alloyed Quantum Dot

This section examines the effect of disorder on electron
and hole eigenfunctions. Three different alloy configura-
tions are examined for the same quantum dot size, shape,
and number of included atoms – two different random al-
loy configurations that differ only by the random place-
ment of the In and Ga atoms in the In0.6Ga0.4As, and a
VCA-based configuration without spatial disorder. In the
VCA representation all cations within the QD are of a
fictitious type “In0.6Ga0.4” in which all tight-binding pa-
rameters (and the strain parameters) are linearly averaged
between InAs and GaAs parameters19. This case corre-
sponds most closely to a jellium description and is used
as our baseline reference. The disordered wave functions
are shown to be significantly different from each other
as well as from the homogeneous VCA system wave-
functions. A detailed statistical analysis of the computed
eigen energies as a result of the wave function variations
is deferred to Section 7. The quantum dot and compo-
sition is identical to the discussion above. However, to
reduce the computational expense, the GaAs buffer is re-
duced to a size of 74×74×15 nm3 and contains roughly
3.6 million atoms.

Figure 13 shows four different representations of the
ground state electron wave function obtained for three
different configurations. The first column shows results
for a VCA implementation. The other two columns dis-
play results for two separate random distributions of In
and Ga atoms within the QD. The first row depicts scatter
plots of the probabilitydensity, where the red points mark
atomic sites where the probability density exceeds one-
third of the maximum value, and green and blue points
mark higher values. Clearly there is not much differ-

19The anion As parameters are in general averaged as well in the
VCA approximation. However in the sp3d5s∗ parameterization
discussed in Section 5.2 all As parameters are already identical.
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Figure 13 : Electron ground state wave functions without disorder - VCA (first column), and two different random
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a constant z, respectively.
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ence between the three plots except that the VCA result
is somewhat smoother. Also, the VCA plot is slightly
larger indicating a slower decay as one moves away from
the central axis of the QD. The next two rows are contour
plots of a slice parallel to the base of the dome and mid-
way up in height. Here, the impact of the disorder on the
wave function is quite evident, although the s-like char-
acter of the wave function still closely resembles that of
the homogeneous QD. Also, the difference between the
two disordered QDs is not significant. The eigenenergies
differ by about 1.38meV. The last row depicts a surface
plot of the wave function (normalized to unity over the
entire simulation domain) and shows that the homoge-
nous result is a smoothed version of the disordered wave
function with a lower maximum.

Figure 14 shows a set of hole wave functions analogous
to the those shown in Figure 13 for the electron ground
state. First note that the VCA scatter plot looks similar
to the ground state VCA electron wavefunction, except
that it is flatter. The stronger localization in thez di-
rection reflects the greater confinement due to the larger
hole mass relative to that of the electron. The larger hole
mass also makes the wave function more susceptible to
perturbations in the local potential. This effect is demon-
strated in the three hole scatter plots, where the disorder
strongly changes the appearance of the wave function.
Note, also, that different placements of cations can pro-
duce noticeably different results as seen in the contour
plots where the location of the wave function peaks vary
by several nm. The greater localization in systems with
disorder also manifests itself by the much larger peaks in
the surface plots, where the probability density is, again,
normalized to unity over the entire simulation domain in
each of the three cases. The hole eigenvalues differ by
-3.44meV compared to a difference of +1.38meV for the
electrons. A more detailed statistical analysis of the dis-
tribution of eigenvalues is the topic of the following sec-
tion 7.

Figure 15 shows the six lowest electron (rows 1 and 2)
and hole (rows 3 and 4) states for a similar system with
the same dome dimensions, but enclosed in a buffer of
size 56×56×24 nm3. First, note that the electron states
more closely resemble the states one would expect from
a homogeneous QD. Also, the three lowest hole states
correspond well to their electron counterparts, but higher
energy states differ. There are two possible explana-
tions. First, the Lanczos algorithm might not have yet

converged on an intermediate eigenvalue. Second, the
disorder in the system may rearrange the ordering of the
eigenstates. Note that there exist several pairs of states
(electron 2 and 3; electron 5 and 6; and hole 2 and 3) that
stem from degenerate states in the homogeneous system,
yet the disorder splits their eigenenergies by up to 1.4
meV. Since this splitting due to disorder is roughly the
same order of magnitude as the separation of the excited
states, it is conceivable that the disorder can rearrange the
ordering of the eigenstates.

7 Statistical Analysis of Random Disorder in Al-
loyed Quantum Dots

7.1 Set-up of the Numerical Experiment

This section considers the same dome shaped
In0.6Ga0.4As quantum dot as the previous sections.
Since the In and Ga ions inside the alloyed dot are
randomly distributed, different alloy configurations
exist and optical transition energies from one dot to
the next may vary, even if the size and the shape of
the dot are assumed to be fixed. This section seeks
to answer the question: What is the minimal optical
line width that can be expected for such an alloyed dot
neglecting any experimental size variations? To enable
the simulation of about 1000 different configurations
the required simulation time was reduced by three
additional approximations / simplifications: 1) the
surrounding GaAs buffer is reduced to 5nm in each
direction around the quantum dot. This results in a total
simulation domain of approximately 1,000,000 atoms
with about 718,000 atoms in the quantum dot itself, 2)
the use of sp3s∗ model instead of the sp3d5s∗ model (a
reduction of the required compute time by about 4×),
and 3) the computation of the eigenvalues without the
corresponding eigenvectors (resulting in a reduction of
compute time by exactly a factor of two). With these
approximations and simplifications the wall clock time
to obtain one set of eigenvalues for one particular alloy
configuration took about 25 minutes on 31 processors of
P933. 1000 different alloy samples therefore required
approximately 420 hours or 17.4 days wall clock time
or about 13,000 hours or 538 days single processor
computing time. The mechanical strain is minimized
using a valence force field method [Keating (1966);
Pryor, Kim, Wang (1998)] as discussed in Section 3.4
for each alloy configuration. Changing the random seed
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alloy configurations (middle and right column). First row: scatter plot of wave function in 3-D. Second, third, and
fourth row: colored contour plot, outlined contour and surface plot sliced through the middle of the quantum dot at
a constant z, respectively.



Development of a nanoelectronic 3-D (NEMO 3-D ) Simulator for multimillion atom simulations 635

-10

-5

0

5

10

y 
(n

m
)

-10 10x (nm)

-10

-5

0

5

10

y 
(n

m
)

-10 10x (nm) -10 10x (nm)

-10

-5

0

5

10

y 
(n

m
)

-10

-5

0

5

10

y 
(n

m
)

(a)  electron 1 (b)  electron 2 (c)  electron 3

(d)  electron 4 (e)  electron 5 (f)  electron 6

(g)  hole 1 (h)  hole 2 (i)  hole 3

(j)  hole 4 (k)  hole 5 (l)  hole 6

E=1.3601eV
∆E=0.000meV

E=1.3832eV
∆E=+23.1meV

E=1.3843eV
∆E=+24.2meV

E=1.4038eV
∆E=+43.7meV

E=1.4059eV
∆E=+45.8meV

E=1.4063eV
∆E=+46.1meV

E=0.2089eV
∆E=-0.00meV

E=0.1942eV
∆E=-14.7meV

E=0.1928eV
∆E=-16.0meV

E=0.1811eV
∆E=-27.8meV

E=0.1780eV
∆E=-30.9meV

E=0.1765eV
∆E=-32.4meV

Figure 15 : Electron and hole wave functions with disorder.



636 Copyright c© 2002 Tech Science Press CMES, vol.3, no.5, pp.601-642, 2002

of the random number generator generates the random
alloy configurations. The reduced GaAs buffer size
tends to increase the optical band-to-band transition
energy by simultaneously raising the electron energy
and lowering the hole energy. The use of the sp3s∗ mode
compromises some of the accuracy of the electronic
structure due to strain (see discussions in Section 5). In
particular one can expect that the optical band gap will
be underpredicted since the bi-axially strained InAs band
gap is under predicted in bulk (see Figure 7d). While
the absolute energies are shifted from the experimental
data, one can, however, still expect that the distribution
and extent of the variations in the eigenvalues generated
by the alloy disorder around the mean energies are
independent of the mean, and therefore independent of
the buffer size20

NEMO 3-D currently supports two disorder models. The
first makes the simplifying assumption that neighboring
cations are completely uncorrelated so that the species at
a particular cation site is determined randomly accord-
ing to the expected concentrationx and independently of
the configuration of the remainder of the supercell. This
disorder is referred to as atomic granularity (AG) in this
paper. The second model of compositional disorder, in-
creases the granularity of the disorder from the atomic
level to that of the cubic cell, so that all four cations
within a unit cell are of the same species resulting in cell
granularity (CG). Within the AG model the cation con-
centrations can be allowed to vary statistically or they
can be pinned to a single value, enabling the simulation
of pure configuration noise.

Previous work [Oyafuso, Klimeck, Bowen, Boykin
(2002)] on an unstrained AlxGa1−xAs bulk system
showed that concentrational noise (concentration x varies
statistically) dominates over the configurational noise
(fixed concentration x) by at least one order of magnitude
in the standard deviations in the conduction and valence
band edge. The pure configurational noise is therefore
not considered here anymore, since there is experimen-
tally no exact control over the concentration x anyhow.
Instead the two granularity models are examined in more
detail.

20During the review process we have started to examine a possi-
ble GaAs buffer size dependence on the distribution function of
the eigenenergies and have found that the dependence is not negli-
gible. An increase in the GaAs buffer size decreases the spread in
energy due. We are still in the process of exploring these data more
carefully and plan to publish details of that study at a later time.

7.2 Statistical Analysis of State Distributions

560 and 490 samples were evaluated for the atomic gran-
ularity (AG) and cell granularity (CG), respectively. Fig-
ure 16 provides a graphical analysis of some of the data
obtained. The first row of Figure 16 shows histograms
of the valence band, conduction band, and band-gap en-
ergies for the 560 atomic granularity samples using 30
samples per bin. The standard deviation of the valence
band states (σAG

v = 0.9meV) is smaller than that of the
conduction band states (σAG

c =1.4meV ). This difference
arises from the heavier hole mass and the higher den-
sity of states as observed in bulk alloy simulations [Oya-
fuso, Klimeck, Bowen, Boykin (2002)]. The second row
of Figure 16 compares the histograms of the first row
(atomic granularity) to the corresponding histograms ob-
tained in the model of cell granularity. Similar to the pure
bulk alloy results [Oyafuso, Klimeck, Bowen, Boykin
(2002)] the cell granularity results in standard deviations
of the energies that are larger than the atomic granularity
deviations(σAG

c = 2.8meV ,σAG
v = 1.9meV ). For this par-

ticular dot size the difference between AG and CG is
about a factor of two. Similar to the bulk simulations
[Oyafuso, Klimeck, Bowen, Boykin (2002)] a change
in the valence band state state energy average that is
larger than the shift in the conduction band energy av-
erage can be observed (∆Ev = ECG

v −EAG
v =0.1938eV−

0.1862eV = 7.7meV ,∆Ec = ECG
c − EAG

c = 1.2291eV −
1.2298eV =−0.8meV ). Again an overall reduction in the
optical band gap is the result of the increased granularity
(∆EG =ECG

G −EAG
G =1.0352eV−1.0436eV =−8.4meV ).

The band-gap deviation is roughly additive from the va-
lence and conduction band deviations. This additive be-
havior indicates a correlation between the conduction
and valence state energies. This correlation can be ex-
plored with a scatter plot ofEc versusEc for all sam-
ples as shown in Figure 16g). A linear regression of the
two scatter plots result inEc = 1.4685− 1.2823Ev and
Ec =1.405−1.1939Ev, for the AG and CG distributions,
respectively, with a good regression quality ofR≈0.8. A
relation between these strongly correlated energy values
and the bulk band structure is discussed in the following
Section 7.3.

The data can also be analyzed with respect to its depen-
dence of the actual In concentration x in the InxGa1−xAs
alloy. Figure 16i) shows a histogram of the In distribution
in the CG model. The expectation value is the desired
0.6, the standard deviation of 0.0016. This deviation is
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purely determined by the statistical variation as a func-
tion of systems size [Oyafuso, Klimeck, Bowen, Boykin
(2002)] (about 718,000 atoms in the dot in this case) and
the random selection with expectation of 0.6. The statis-
tical variation is certainly smaller than the experimental
control on the alloy concentration and one can expect the
experimental uncertainty in the alloy concentration to be
significantly larger.

Figure 16h) shows a scatter plot of the conduction band
state energies computed in the CG model as a function
of their corresponding In concentration. The scatter plot
appears more like a round blob, indicating a weak corre-
lation, and indeed the linear regression toEc=1.4871−
0.43015x is characterized by a small regression quality
R=0.24. A similarly weak correlation can be found for
the valence band states:Ev = 0.04574+ 0.24682x with
R=0.21. This weak correlation ofEc andEv with x is in
contrast to a strong correlation we have seen in our bulk
simulations [Oyafuso, Klimeck, Bowen, Boykin (2002)].

7.3 Quantized Energy Comparison Against Bulk
Data

The quantized single particle energies in the quantum dot
are determined by a multitude of influences. The first
order effects are based on the underlying semiconductor
band structure, the confinement by the heterostructure in-
terfaces, the composition of the material and the size of
the dots. Effects due to disorder and electron-electron
interactions have to be considered second order effects.
The discussion in this section examines the correlation
between the quantizedEc andEv energies shown in Fig-
ure 16g) and verifies that the quantized eigen-energies
shown in Figure 16 fit within the underlying semiconduc-
tor band structure. This comparison serves as an overall
sanity check and as a characterization of the relative im-
portance of hydrostatic and bi-axial strain contributions
to the quantized states in the quantum dot.

Figure 17a) shows the bulk conduction and valence band
edge of InxGa1−xAs as a function of In concentration
x in a VCA approximation of a single unit cell. The
graphs are computed using the same GaAs and InAs
sp3s∗ parameter set that was used for the statistical quan-
tum dot analysis in the section above. Three differ-
ent strain conditions are evaluated: 1) unstrained bulk
(dashed line), 2) hydrostatically compressed (εxx =εyy =
εzz) to the GaAs lattice constant (dotted line), and 3) bi-
axially compressed (εxx=εyy �=εzz) to a GaAs substrate in

the x-y plane (solid line). It is interesting to see that the
hydrostatically compressed InGaAs has a very small de-
pendence on the In concentration. The same graph also
shows the scatter plot of the quantized conduction and
valence band energies as a function of actual alloy com-
position.

The single cross symbols indicate the average bottom of
the conduction and the average top of the valence band in
a small region of the center of the quantum dot (see the
discussion of the spatially varying local band structure in
section 6.4). The electron and valence band states show
confinement energies of roughly 96meV and 50meV, re-
spectively. The difference in the confinement energies
ie of course expected due to the difference in the heavy-
hole and electron masses. The placement in energy of
the local conduction and valence band edge as well as
the quantized state energies in the quantum dot indicate
that the states inside the quantum dot are influenced by
bi-axial as well as hydrostatic strain components com-
bined.

Similar to to Figure 16h) the linear regression is shown
as a red line running roughly parallel to the bulk bi-axial
strain line. Little trust can be given to the linear regres-
sion lines due to their small quality values ofR≈0.21.
However, the slopes do not conflict with the hypothesis
that the electronic state is dominated by the bi-axial strain
shifts with some hydro-static strain shift contributions.

Figure 17b) plots the data of (a) on aEc vs. Ev coordinate
system. Within this reference frame Figure 16g) already
show a strong correlation between the quantizedE v and
Ec energies with a trustworthy linear regression of slope
-1.1939. The unstrained, hydrostatically strained and bi-
axially strained bulk slopes are: -10.747, -3.5726, and
-1.3186, respectively. Again one can infer a strong in-
fluence on the confined states by the bi-axial strain. The
individual square symbols indicate the alloy composition
of 60% In and the cross indicates the average local band
structure value in the middle of the dot.

7.4 Comparison Against Experimental Data

The numerical experiment shows a mean optical transi-
tion energy of about 1.04eV and a standard deviation, or
associated linewidth of approximately 2 to 5meV assum-
ing a fixed quantum dot size and a narrow In concen-
tration distribution. This corresponds to an experimen-
tally reported [Leon, Fafard, Piva (1998)] linewidth of
34.6meV at an optical transition energy of about 1.09eV.
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The optical bandgap is underpredicted by about 50meV
in the sp3s∗ model used in the alloy disorder study of
Section 7. The sp3d5s∗ model used in Section 6 predicts
an optical band gap of about 1.151eV, about 60meV too
large compared to the experiment. Excitonic interactions
will reduce the optical bandgap by about 10 to 30meV.
With an experimentally observed optical line width of
34.6meV the sp3d5s∗ model is well within the experi-
mental and theoretical errors. The experimental data do
of course include quantum dot size variations, and the
actual alloy concentration and alloy distribution are un-
known. We plan to simulate larger sample space that
does include quantum dot size variations and different al-
loy profiles [Sheng, Leburton (2001)] in the future. The
major result of this simulation is the observation that
there will be a significant optical line width variation due
to alloy disorder alone, even if all the quantum dots were
perfectly identical in size with a well-known alloy con-
centration.

8 Conclusion and Future Outlook

8.1 Summary

This paper presents the major theoretical, numerical, and
software elements that have entered into the NEMO 3-
D development over the past three years. The atom-
istic valence-force field method is used for the determina-
tion of atom positions in conjunction with the atomistic

sp3s∗ and sp3d5s∗ tight-binding models to compute elec-
tronic structure in systems containing up to 16 million
atoms. An eigenvalue solver that scales linearly with the
number of atoms in the system has been demonstrated.
Beowulf cluster computers are shown to be efficient com-
puting engines for such electronic structure calculations.
The electronic structure calculations require a signifi-
cant RAM access by the CPU, and the Intel Pentium III
benchmarks presented in this work show that dual CPU
motherboards suffer from severe memory access prob-
lems. Faster computation completion can be obtained by
leaving one of the CPUs on each board idle. This sug-
gests that high memory use applications do not benefit at
all from a dual Pentium III motherboard. Genetic algo-
rithms are used to determine the empirical parameteriza-
tion of the atomistic tight-binding models. The details of
the new tight-binding model parameterizations for GaAs
and InAs are discussed with respect to their unstrained
and strained bulk properties. NEMO 3-D is used to study
the effects of disorder in InxGa1−xAs bulk material and
in In0.6Ga0.4As quantum dots. The bulk properties are
shown to be represented well within NEMO 3-D. The
quantum dot simulations show significant distortions in
the confined electron and hole wavefunctions introduced
by random cation disorder. The distortion is more pro-
nounced for the hole states than the electron states and
it is not visible within a smooth virtual crystal approx-
imation, which resembles non-atomistic methods. Over
a thousand different alloy distributed quantum dots are
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simulated and a variation of the optical transition energy
of several meV is observed.

8.2 Future Simulations

The strong variations in the electron and hole wavefunc-
tions introduced by the alloy disorder beg for the evalu-
ation of these effects on the optical matrix elements on
these transitions. This is an issue that is planned for ex-
amination in the near future. The computation of the
optical matrix elements in the incomplete tight-binding
basis will follow the prescription given in references [].

Other possible studies include the comparison of the al-
loy disorder effects with a constant quantum dot size and
shape with effects due to variations in size and shape.
Also effects of strain fields due to neighboring quantum
dots can now be simulated, since enough atoms can be
included in the simulation domain.

A needed extension to NEMO 3-D is the inclusion of
charge interactions in order to compute single electron
charging energies and exciton binding energies. The typ-
ical way to calculate charge interaction matrix elements
is based on the explicit usage of the wavefunction of the
interacting states. However this is not as simple in the
empirical tight-binding approach, since the actual orbital
wavefunctions are unknown. However the computation
of charging energies can be performed within two dif-
ferent frameworks: 1) projection of the tight-binding or-
bitals onto an explicit spatial orbital basis [Lee, Joensson,
Klimeck (2001)], and 2) a modification to the operator
representation in references.

8.3 Extension to Spintronic Simulations

In addition to charge transport and orbital wavefunc-
tion related relaxation times spin dependent transport and
spin related relaxation times have recently received con-
siderable attention. While important applications such
as MRAM memory modules have reached the level of
commercialization others such as spin based quantum
computing have achieved outstanding visibility in the re-
search community. It is therefore highly desirable to ex-
tend a nanoelectronic simulation tool such as NEMO 3-D
to systems where spin effects are important.

Part of the spin related effects are already included in the
tight-binding method described above through the spin-
orbit coupling term in the Hamiltonian. A further step
will be to include the direct coupling of the electron spin

with an external magnetic field, which can originate di-
rectly from a source external to the device or from mag-
netic impurities embedded in the semiconductor. This
interaction contributes aS ·H term to the Hamiltonian
and in a first approximation can be taken as an on-site
diagonal term in the tight-binding Hamiltonian, where
each spin band is now treated explicitly. Together with
the vector potential contribution to the kinetic energy this
addition should yield a Land´e factor in good agreement
with experiment and give a good description of charge
transport for example in MRAMs.

The other spin-induced contribution to the Hamiltonian
is the spin-spin interaction term proportional to∑Si ·Sj.
Since a scattering event mediated by this interaction
can change the spin of the electron, the self-energy and
hence the single particle Green’s function become non-
diagonal. Despite this complication the general formal-
ism of non-equilibrium Green’s function still applies and
transport properties including finite spin relaxation time
can be obtained. This extension is particularly relevant
for the simulation of devices probing the solid state im-
plementation of quantum computing logic gates.
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