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An Explicit Discontinuous Time Integration Method For
Dynamic-Contact/Impact Problems

Jin Yeon Cho1 and Seung Jo Kim2

Abstract: In this work, an explicit solution procedure
for the recently developed discontinuous time integration
method is proposed in order to reduce the computational
cost while maintaining the desirable numerical charac-
teristics of the discontinuous time integration method. In
the present explicit solution procedure, a two-stage cor-
rection algorithm is devised to obtain the solution at the
next time step without any matrix factorization. To ob-
serve the numerical characteristics of the proposed ex-
plicit solution procedure, stability and convergence anal-
yses are performed. From the stability analysis, it is ob-
served that the proposed algorithm gives a larger critical
time step than the central difference method. From the
convergence analysis, it is found that the present method
with linear approximation in time gives the third order
convergence that is higher than that of the central dif-
ference method. To check the performance of the pro-
posed method in simulating impact problems, several nu-
merical tests are carried out, and some of the results are
compared with those obtained from the central difference
method. Numerical tests show that the proposed explicit
algorithm gives a much more robust numerical solution
compared to the central difference method.

keyword: Dynamic-contact, Impact, Explicit Time In-
tegration, Discontinuous Time Integration.

1 Introduction

Dynamic-contact/impact phenomena induce stiffness
degradation and local failure of structural systems that
lead directly to safety-related problems or malfunctions
of high precision structures [Abrate (1991)]. For ex-
ample, the impact on composite structures, used in
aerospace applications, by a dropped tool or debris may
cause invisible internal damage and a substantial drop in
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structural strength [Goo and Kim (1997)]. Therefore, the
time dependent behavior of structures due to the impact
of foreign objects should be predicted accurately. To ana-
lyze the transient dynamic behavior of structures, various
numerical time integration methods have been suggested
over the past several decades. However, it has been also
reported in many studies that undesirable oscillations are
produced in dynamic solutions when the previously de-
veloped time integration method is directly applied to the
analysis of dynamic-contact/impact problems with im-
penetrability conditions alone. To alleviate the trouble,
several works were carried out. Hughes, Taylor, Sack-
man, Curnier, and Kanoknukulchai (1976) employed the
Newmark time integration method, and proposed the dis-
crete dynamic-contact/impact conditions for a lumped-
mass case to enforce the compatibility conditions of ve-
locity and acceleration. Taylor and Papadopoulos (1993)
assumed that the velocities and the accelerations on the
contact points are independent of the displacements in
the Newmark time integration method, and enforced the
velocity and the acceleration compatibility. Lee (1994)
proposed an iterative scheme to satisfy the velocity and
acceleration compatibility on the contact surface for the
constant average acceleration method, which is a special
case of the Newmark time integration method.

Recently, for the analysis of the dynamic-contact/ impact
problems, the discontinuous time integration method was
proposed by Cho and Kim (1999). In respect to the
fact that discontinuous function is utilized to approxi-
mate the dynamic filed variables, the discontinuous time
integration method is similar to the time discontinuous
Galerkin method [Hulbert and Hughes (1990); Chien
and Wu (2001)] or time discontinuous approximation
of weak Hamilton principle [Borri, Mello and Atluri
(1990); Borri and Bottaso (1993)], while the starting
point of the discontinuous time integration method is not
a weak statement of dynamic equilibrium but an approx-
imation of the relation between a function and its deriva-
tive like in conventional direct time integration. The dis-
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continuous time integration method shows several desir-
able characteristics for simulations of impact problems.
Since the algorithm allows jump discontinuity in field
variables, it is suitable to depict abrupt changes of dy-
namic field variables according to shock loading pro-
duced in impact problems. The discontinuous time in-
tegration method does not produce undesirable oscilla-
tion, although undesirable oscillation is invoked when the
constant average acceleration method or the central dif-
ference method is used as a time integration algorithm
[Hughes, Taylor, Sackman, Curnier, Kanoknukulchai
(1976); Taylor and Papadopoulos (1993); Zhong (1993);
Lee (1994)]. Moreover it has a third order accuracy,
while both the trapezoidal rule and the central differ-
ence method have only a second order accuracy [Hughes
(1987)]. However, since the discontinuous time integra-
tion method is an implicit algorithm, its computational
cost is more expensive than that of an explicit time inte-
gration method, such as the central difference method.

Thus, in this paper, an explicit solution procedure of
the discontinuous time integration method is proposed in
order to reduce the computational cost as well as pre-
serve the desirable numerical features of the discontinu-
ous time integration method. To avoid matrix factoriza-
tion in this explicit solution algorithm, two-stage correc-
tion procedure is designed through the modification of
the discontinuous time integration method. To observe
the algorithmic features of the proposed explicit solution
procedure, accuracy and stability analyses are carried out
and several numerical simulations of impact problems
are performed along with the exterior penalty method.

2 Discontinuous Time Integration Method

In this section, the recently proposed discontinuous time
integration method [Cho and Kim (1999)] is briefly re-
viewed. In dynamic-contact/impact phenomena, the dy-
namic field variables are suddenly changed due to shock
type loading. Therefore it is natural and reasonable to in-
corporate discontinuity in the time integration method. In
the discontinuous time integration method, the concept
of generalized derivative in distribution theory [Reddy
(1986)] and jump assumption are considered together in
order to depict the sudden change of dynamic field vari-
ables caused by the impact. The definition of a gener-
alized derivative can provide the meaning of a deriva-
tive even for a discontinuous distribution like Dirac delta.
The definition of a generalized derivative of distribution

[Reddy (1986)] is constructed through integration-by-
parts. By this procedure, the difficulty of differentiation
of a distribution is transferred to the differentiation of a
test function. Using the concept with jump assumption
at the initial time, the generalized relation between the
displacement vector u(t) and velocity vector v(t) is con-
structed by integration-by-parts, as shown below.

∫ t f

t0
wT vdt = −

∫ t f

t0
ẇT udt +wT u

∣∣∣t f

t0
for all w(t) (1)

where w denotes the test function. To describe the sudden
changes of dynamic field variables naturally, the jump
conditions at the initial time t 0 are assumed:

u(t0) �= u(t+0 ) and v(t0) �= v(t+0 ) (2)

where superscript (+) denotes the right limit of time t 0 as
shown in Fig. 1.
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Figure 1 : Description of time domain and jumps of vari-
ables.

As a result, the above relations incorporates the jump due
to shock loading condition. By the same method, the
acceleration-velocity relations are written as follows:

∫ t f

t0
wT adt = −

∫ t f

t0
ẇT vdt +wT v

∣∣∣t f

t0
for all w(t) (3)

v(t0) �= v(t+0 ) and a(t0) �= a(t+0 ) (4)

The acceleration vector is denoted by a. In contrast with
dynamic field variables ( i.e. u, v, and a), test function w
is assumed to be continuous at t0 to ensure the smooth-
ness of the test function.

For the temporal approximation, the time domain of the
investigation is restricted to [t n = t0, tn+1 = t f ] and the
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linear Lagrange interpolation functions are used to ap-
proximate displacement u, velocity v, acceleration a, and
test function w. The approximation vectors defined on an
interval tn < t ≤ tn+1 = t +∆t are written in the following
forms.

u(t) =
1

∑
i=0

ψi(t)ui
n, v(t) =

1

∑
i=0

ψi(t)vi
n

a(t) =
1

∑
i=0

ψi(t)ai
n, w(t) =

1

∑
i=0

ψi(t)wi
n

(5)

ψ0(t) = (tn+1 − t)
/
(tn+1− tn)

ψ1(t) = (t − tn)
/
(tn+1 − tn)

where (•)0
n and (•)1

n denote field values at time t+
n and

tn+1, respectively. They are shown in Fig. 1. For a
higher order approximation, higher order interpolation
functions can be used. [Kim, Cho, and Kim (1997), Kim
and Cho (1997)]. By substituting interpolating functions
(5) into equations (1) and (3), approximated relations for
the time derivative are obtained. The relations are written
as follows through reordering:

For all wi
n(i = 0,1),

1

∑
j=0

∫ tn+1

tn
ψ̇iψ jwiT

n u j
ndt −wT u

∣∣∣
tn+1

= −
1

∑
j=0

∫ tn+1

tn
ψiψ jwiT

n v j
ndt −wT u

∣∣∣
tn

1

∑
j=0

∫ tn+1

tn
ψ̇iψ jwiT

n v j
ndt −wT v

∣∣∣
tn+1

(6)

= −
1

∑
j=0

∫ tn+1

tn
ψiψ jwiT

n a j
ndt −wT v

∣∣∣
tn

where

u(tn) = u1
n−1, v(tn) = v1

n−1, a(tn) = a1
n−1, w(tn) = w0

n

u(tn+1) = u1
n, v(tn+1) = v1

n, a(tn+1) = a1
n, w(tn+1) = w1

n

In equation (6), the dynamic field variables u, v, and
a contain the discontinuities at the initial time t 0 ( =
tn). u1

n−1, v1
n−1, and a1

n−1 are the given initial vectors ob-
tained from the previous time step. The effect of the ini-
tial condition is weakly imposed via u 1

n−1,v
1
n−1, and a1

n−1.
Since equation (6) must hold for all w i

n, it can be written
in simplified matrix form as

Φ̂Un+1 = ΦVn+1 +ΘUn

Φ̂Vn+1 = ΦAn+1 +ΘVn
(7)

where,

Un+1 =
{

u0T

n ,u1T

n

}T
, Vn+1 =

{
v0T

n ,v1T

n

}T
,

An+1 =
{

a0T

n ,a1T

n

}T

The alternative forms for displacement-velocity and
velocity-acceleration relations are obtained by multiply-
ing the inverse matrix of Φ̂.

Un+1 = ΨVn+1 +Ψ0Vn +JUn

Vn+1 = ΨAn+1 +Ψ0An +JVn
(8)

where Ψ = Φ̂−1Φ, Ψ0 = 0, J = Φ̂−1Θ. Using the dis-
crete operators of equation (8), the numerical time inte-
gration algorithm is constructed along with the dynamic
equilibrium equation. The equilibrium equation of dy-
namic systems discretized in space domain is generally
given as follows:

ma+cv +ku = f (9)

where m, c, and k are the mass, damping, and stiffness
matrices, respectively. The external force vector is de-
noted by f. With the obtained discrete operator (8), the
dynamic equilibrium equations at the inner time steps
(i.e. t+n and tn+1) are considered to obtain a time inte-
gration algorithm:

mai
n +cvi

n +kui
n = fi

n, (i = 0,1) (10)

Using the matrix notation, it can be denoted as

MAn+1 +CVn+1 +KUn+1 = Fn+1 (11)

where M, C, and K are block diagonal matrices for mass,
damping, and stiffness, respectively, and F denotes the
forcing vector. To obtain the dynamic field variables
An+1, Vn+1, and Un+1, it is sufficient to solve the equa-
tions (8) and (11), simultaneously.

By substituting equation (8) into equation (11), equation
(11) can be rewritten in terms of acceleration as follows:

(M+CΨ +KΨ2
)An+1 = F−CṼ

(a)
n+1 −KŨ

(a)
n+1 (12)

where,

Ũ(a)
n+1 = ΨΨ0An +(ΨJ+Ψ0)Vn +JUn

Ṽ(a)
n+1 = Ψ0An +JVn
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where Ũ(a)
n+1 and Ṽ(a)

n+1 are predictors for displacement
and velocity, respectively. The predictor-corrector algo-
rithm that is based on the acceleration form can be writ-
ten as follows. The detail derivation procedure for the
algorithm is similar to that in the paper of [Kim, Cho and
Kim (1997)].

i) Calculate a0 such that ma0 +cv0 +ku0 = f0

Set A0 = {0T,aT
0 }T ,V0 = {0T,vT

0 }T ,U0 = {0T,uT
0 }T

ii) Calculate Meff = M+CΨ +KΨ2
and Meff −1

iii) Do n = 0

Predict

{
Ũ(a)

n+1 =ΨΨ0An +(ΨJ+Ψ0)Vn +JUn

Ṽ(a)
n+1 =Ψ0An +JVn

(13)

Calculate

{
R(a)

n+1 = Fn+1 −CṼ
(a)
n+1 −KŨ

(a)
n+1

An+1 = Meff−1
R(a)

n+1

(14)

Correct

{
Un+1 = Ũ(a)

n+1 +Ψ2
An+1

Vn+1 = Ṽ(a)
n+1 +ΨAn+1

(15)

Set n = n+1

Continue

After the initialization and predictor stages, the acceler-
ations are obtained through equation (14). The displace-
ment and velocity are corrected by the correction equa-
tion (15).

3 Explicit Solution Procedure

In the discontinuous time integration method, equilib-
rium conditions are considered at the next time step to
obtain a solution at the next time step as described in
equation (11). The stiffness matrix K and the damping
matrix C induce the coupling between the solutions at
time tn+1 even if a mass lumping technique is chosen in
the equation (12). The coupling can be eliminated only
when the second and the third terms on the left-hand side
of the equation (12) are evaluated by the given dynamic
field variables. Although it is impossible to evaluate the
terms exactly by only the given values at previous time
tn, we can approximate the terms by using the informa-
tion obtained at the previous time step. Towards the end,

the following procedure is devised to eliminate the cou-
pling between the unknown variables at time t n+1. At
first, the following intermediate equilibrium equation is
considered to find an approximated value A∗

n+1 for accel-
eration An+1.

MA∗
n+1 = Fn+1 − (CṼ

(a)
n+1 +KŨ

(a)
n+1) (16)

Because M is a diagonal matrix, A∗
n+1 in equation (16)

can be readily obtained. Secondly, the term (CΨ +
KΨ2)An+1 in implicit equation (12) is replaced by

(CΨ + KΨ2)A∗
n+1, and the following equation (17) is

solved for An+1.

MAn+1 = Fn+1−(CṼ
(a)
n+1+KŨ

(a)
n+1)−(CΨ+KΨ2

)A∗
n+1

(17)

And finally, the predicted displacement and velocity are
corrected by using equation (15).

It is noted again that the algorithm does not need any ma-
trix factorization process when a lumped mass matrix is
adopted. The explicit solution procedure of the discon-
tinuous time integration method can be summarized as
follows:

i) Calculate a0 such that ma0 +cv0 +ku0 = f0;
{a0}i = {f0 −cv0 −ku0}i/[m]ii
Set A0 = {0T,aT

0 }T ,V0 = {0T,vT
0 }T ,U0 = {0T,uT

0 }T

ii) Do n = 0

Predict

{
Ũ(a)

n+1 = ΨΨ0An +(ΨJ+Ψ0)Vn +JUn

Ṽ(a)
n+1 = Ψ0An +JVn

(18)

Calculate




R(explicit)

n+1 = Fn+1 − (CṼ(a)
n+1 +KŨ(a)

n+1)

{A∗
n+1}i =

{R(explicit)
n+1 }i

[M]ii
(19)

Correct

{
{An+1}i =

{R(explicit)

n+1 − (CΨ +KΨ2)A∗
n+1}i

[M]ii
(20)

Correct

{
Un+1 = Ũ(a)

n+1 +Ψ2
An+1

Vn+1 = Ṽ(a)
n+1 +ΨAn+1

(21)
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Set n = n+1

Continue

where {•}i means components of vector and [•]ii denotes
the diagonal elements of matrix.

The proposed algorithm is a two-stage correction
scheme. Through the first correction stage, the accelera-
tion is updated and the corrected acceleration is used in
the correction of displacement and velocity.

4 Stability

The stability analysis is carried out to identify whether
the proposed explicit solution procedure is stable or not.
In the stability analysis, all of the acceleration, velocity,
and displacements are used as a system state vector χ.

The equilibrium condition, which is used in the proposed
explicit algorithm, is represented by equations (16) and
(17). Substituting equation (16) into equation (17) yields
the following equilibrium condition.

MAn+1+(CΨ+KΨ2)M−1(Fn+1− (CṼ
(a)
n+1+KŨ

(a)
n+1))

= Fn+1 − (CṼ
(a)
n+1 +KŨ

(a)
n+1))

(22)

Consider a system with no damping and no external load-
ing for the stability analysis. Then equation (22) is re-
duced to

MAn+1 = −(K−KΨ2
M−1K)Ũ(a)

n+1 (23)

If the predictor for displacement Ũ(a)
n+1 in equation (23)

is expressed in terms of the variables Un, Vn, and An at
time tn by using equation (18), equation (23) results in
the form of

MAn+1 = −YΨΨ0An −Y(ΨJ+Ψ0)Vn−YJUn (24)

where Y = (K−KΨ2
M−1K). In order to construct a sys-

tem evolution equation, the equilibrium condition (24)
is used together with the velocity-displacement and the
acceleration-velocity relations shown in equation (8). (It
is noted that equation (8) is an alternative form of correc-
tion equation (21).) The system evolution equation can
be written as the following matrix form.


 M 0 0
−Ψ I 0

0 −Ψ I







An+1

Vn+1

Un+1




=


 −YΨΨ0 −Y(ΨJ+Ψ0) −YJ

Ψ0 J 0
0 Ψ0 J







An

Vn

Un




(25)

It is denoted in simplified form as

T̂χ(tn+1) = T̂0χ(tn) (26)

where the system state vector χ consists of the accelera-
tion, velocity, and displacement. To observe the stability
characteristics of the proposed method, a single degree of
freedom system is adopted and the corresponding gener-
alized eigenvalue problem is solved to find the amplifica-
tion factor [Cho and Kim (1999)]. Stability is guaranteed
when the amplification factor (magnitude of eigenvalue
of the system evolution equation) is less than or equal
to 1.

The calculated amplification factors for the proposed ex-
plicit solution procedure are shown in Fig. 2. From the
results of Fig. 2, it is observed that the amplification fac-
tors are less than or equal to unity in the region of
∆t ≤ 0.353T . The scissors in Fig. 2 denotes the bound-
ary between the stable and unstable regions. Therefore,
stability is ensured for that region of ∆t. It means that the
conditional stability is guaranteed for the present explicit
method.
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Figure 2 : Amplification factor of the present explicit
method (using linear approximation in time domain)
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The critical time step for the present explicit method is
about 0.353 times that of the period (i.e. ∆t cr ≈ 0.353T).
To ensure the stability for a system having multi-degrees
of freedom, the stability condition should be satisfied for
all dynamic modes of the system. Therefore, the critical
time step should satisfy the following condition.

The present explicit method (Linear Approximation in
Time)

∆tcr ≤ 0.353Tmin = 0.353× 2π
ωmax

(27)

The central difference method

∆tcr ≤ 0.318Tmin = 0.318× 2π
ωmax

(28)

where Tmin and ωmax mean the minimum period and the
maximum frequency of the considered dynamic system,
respectively.

The result shows that the critical time step of the pro-
posed method is relatively large compared with critical
time step T

/
π ≈ 0.318Tof the central difference method

[Bathe (1996)]. Therefore, a time step larger than the
central difference method can be adopted in the present
method without loss of stability.

To observe the accuracy of the present explicit algorithm,
a free-oscillation problem having unit mass and unit stiff-
ness is solved using the present explicit solution proce-
dure. Two cases of initial conditions are imposed. One is
u(0) = 1,v(0) = 0, the other is u(0) = 0,v(0) = 1. The
displacement convergence rate of the present explicit al-
gorithm is shown in Fig. 3 for each case. The slope of
the curve denotes the order of convergence. The dis-
placement error edisp is calculated by the difference of
numerically calculated displacement unum(2π) and exact
solution u(2π) at t =2π as

edisp = ‖unum(2π)−u(2π)‖ (29)

The results in Fig. 3 show that the present explicit time
integration algorithm (linear approximation in time do-
main) has a third order convergence in the first case (im-
position of the initial displacement) and a fourth order
convergence in the second case (imposition of the initial
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Figure 3 : Log-scale plot of error norm vs. normalized
time step (The present explicit time intergration method
– using linear approximation in time domain)

1E-4 1E-3 1E-2 1E-1 1E+0

Normalized Time Step (dt/T)

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+0

1E+1

1E+2

E
rr

o
r 

N
o

rm

2

4

Central Difference Method

Error at t=T (Initial Disp.)

Error at t=T (Initial Vel.)

Figure 4 : Log-scale plot of error norm vs. normalized
time step (The central difference method)

velocity). Therefore the present method has the third or-
der convergence at least in combined cases.

From the results, it is confirmed that the proposed ex-
plicit time integration algorithm with linear approxima-
tion in time domain preserves the third order convergence
of the discontinuous time integration method [Cho and
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Kim (1999)], and it is more accurate than the central dif-
ference method which has a second order convergence as
shown in Fig. 4.

5 Dynamic-Contact/Impact Problems

In this section, the way to implement the proposed
explicit procedure in analyzing dynamic-contact/impact
problems is briefly described, and numerical tests are car-
ried out to identify the validity of the proposed explicit
solution procedure.

Algorithm

Through the finite element approximation along with the
exterior penalty method, dynamic-contact/ impact prob-
lems result in the following dynamic equilibrium equa-
tion (30) at the inner time steps. Detailed derivation can
be found in a Cho and Kim (1999).

mai
n+(k+

1
εp

kN(ui
n))u

i
n =f i

n −
1
εp

fN(ui
n), (i = 0,1) (30)

where εp denotes the penalty parameter, and subscript N
means that the term comes from the contact effect. Using
the matrix notation, it can be rewritten as follows.

MAn+1=Fn+1+FN(Un+1)−(K+KN(Un+1))Un+1 (31)

As described before, the intermediate acceleration A∗
n+1

can be obtained from the following equation.

MA∗
n+1=Fn+1 +FN(Ũ(a)

n+1)−(K+KN(Ũ(a)
n+1))Ũ

(a)
n+1 (32)

After the intermediate acceleration A∗
n+1 is obtained by

solving equation (32), it is used for the correction of ac-
celeration. The correction equation (35) for acceleration
is constructed by the same procedure described in the
previous section. The algorithm is summarized below.

i) Calculate a0 such that
ma0 +(k+ 1

εp
kN(u0))u0 = f0 − 1

εp
fN(u0)

Set A0 = {0T,aT
0 }T ,V0 = {0T,vT

0 }T ,

U0 = {0T,uT
0 }T

ii) Do n=0
Predict{

Ũ(a)
n+1 = ΨΨ0An +(ΨJ+Ψ0)Vn +JUn

Ṽ(a)
n+1 = Ψ0An +JVn

(33)

Calculate


R(explicit)
n+1 =Fn+1 +FN(Ũ(a)

n+1)− (K+KN(Ũ(a)
n+1))Ũ(a)

n+1{
A∗

n+1

}
i =

{
R(explicit)

n+1

}
i

[M]ii

(34)

Correct
{An+1}i =

{
R(explicit)

n+1 − (K+KN(Ũ(a)
n+1))Ψ2

A∗
n+1

}
i

[M]ii

(35)

Correct{
Un+1 = Ũ(a)

n+1 +Ψ2
An+1

Vn+1 = Ṽ(a)
n+1 +ΨAn+1

(36)

Set n = n+1
Continue

If a lumped mass matrix is chosen, the above proce-
dure produces the next time solution directly without any
factorization and iteration. It is noted that the nonlin-
ear stiffness matrix KN in (35) may also be evaluated at

U∗
n+1(≡ Ũ(a)

n+1+Ψ2
A∗

n+1), but it needs additional compu-
tational efforts. Therefore, the nonlinear stiffness matrix
KN evaluated at Ũ(a)

n+1 is used in the current examples.

Bar Impact Problem

By using the proposed explicit algorithm, the bar impact
problem in Fig. 5 was analyzed. The predicted results
were compared with the results obtained by the central
difference method because the central difference method
is widely used in explicit dynamic analysis. The mate-
rial properties and the dimensions of model are shown in
table 1.

Figure 5 : Impact of two identical bars

The contact force obtained by the analytical method is
2×106N in 0 µsec ≤ t ≤ 60 µsec and zero in t > 60µsec.
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Table 1 : Material properties and dimensions of bar
E = 100 GPa A = 2 cm g = 0 cm

ρ = 1000 kg/m3 L = 30 cm v0= 10 m/sec

For a finite element discretization of bar, two hundred
linear bar elements were used. The row-sum technique
[Hughes (1987)] was used to construct a lumped mass
matrix.
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Figure 6 : Contact force histories according to penalty
parameters (by the central difference method)

The results shown in Fig. 6 and Fig. 7 were computed
with several penalty parameters by the central difference
method and the proposed algorithm, respectively. In all
the simulations presented in Fig. 6 and 7, time step size
of 0.13 µsec was used. The selected penalty parame-
ters are 7.5×10−12, (7.5×10−12)/6, (7.5×10−12)/9, and
(7.5×10−13)/12. As the penalty parameter is decreased,
the central difference method produces an undesirable
oscillation; however, the proposed explicit algorithm
gives a relatively stable solution for small penalty param-
eters compared to the central difference method. More-
over, by comparing the contact force histories, which
have no undesirable oscillation, it is observed that the
proposed method gives more accurate contact durations
than the central difference method.

In Fig. 8, the displacement of contact node is plotted. For
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Figure 7 : Contact force histories according to penalty
parameters (by the present explicit method)

the central difference method, the result of penalty pa-
rameter 7.5×10−12 is presented, since the contact force
of that is not oscillatory. For the proposed explicit al-
gorithm, the result of penalty parameter (7.5×10−12)/6
is presented due to the same reason. From the results,
it is observed that the result of the proposed algorithm
has less penetration than that of the central difference
method.

The contact force history in Fig. 9 is predicted with
time step 0.15 µsec and penalty parameter (7.5×10−12)/3
through the proposed method. The contact force history,
predicted by the central difference method with the same
time step and the same penalty parameter, is shown in
Fig. 10. The figure shows that the solution from the cen-
tral difference method is increased without bound, while
the solution obtained by the proposed explicit method is
stable and accurate as shown in Fig. 9. The results show
that a larger time step size can be adopted in the proposed
explicit algorithm than in the central difference method
without loss of stability.

From the simulation results, it was confirmed that the
proposed explicit algorithm gives more reliable solutions
than the central difference method. Moreover, a larger
time step size can be used in the proposed algorithm than
in the central difference method.
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Figure 8 : Displacement history of contact node

Impact between Isotropic Solid and Rigid Cylinder

To confirm the validity of the proposed explicit method,
two-dimensional impact behaviors between isotropic
solid and rigid cylinders were visited. Since the analyt-
ical solution is not available, the computed results were
compared with those obtained by the implicit discontinu-
ous time integration method. The material properties and
the dimensions for the model problem are presented in
Table 2.

In Table 2, L is length, A is thickness, m is the mass of
impactor, v0 is the initial velocity of impactor, and R is
the radius of impactor. Due to the symmetric nature of
model problem, half of the model is discretized as shown
in Fig. 11. A four-node plane strain element was adopted
for discretization, and the row-sum technique was used to
obtain a lumped mass matrix. The total number of ele-

Table 2 : Material properties and dimensions of a solid
block and rigid cylinder

E=70Gpa ν = 0.3 ρ = 2710 kg/m3 L = 2 cm
A=1 cm R = 1 cm m = 65.8 g v0= 10 m/s

ments used in the finite element model was 1600, and the
total number of nodes was 1681. For time integration,
0.035 µsec of time step was chosen. As boundary con-
ditions, it was assumed that the bottom is fixed in the
y-direction and both sides are fixed in the x-direction.

0E+0 2E-5 4E-5 6E-5 8E-5

Time (sec)

0E+0

1E+6

2E+6

3E+6

C
o

n
ta

c
t 

F
o

rc
e

 (
N

)

Explicit Ver. II of Discontinuous Method
(dt=0.15e-6 sec)

Penalty parameter = (7.5e-12)/3

Figure 9 : Contact force history by the proposed algo-
rithm with the time step ∆t = 0.15µsec
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Figure 10 : Contact force history by the central differ-
ence method with the time step ∆t = 0.15µsec



696 Copyright c© 2002 Tech Science Press CMES, vol.3, no.6, pp.687-698, 2002

Figure 11 : Finite Element Model

To impose the contact condition, a penalty parameter of
0.15×10−14 was selected, based on the penalty param-
eter study. Solution convergence according to penalty
parameter is shown in Fig. 12.
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Figure 12 : Solution convergence according to penalty
parameter

Fig. 13 shows contact force histories obtained by the
present explicit solution procedure and the implicit
discontinuous time integration method [Cho and Kim
(1999)]. Comparing the results, it was found that the
present explicit solution procedure which is a modifica-
tion of the discontinuous method, gives a reasonable so-
lution while saving of computational costs.

In Fig. 14, the displacement histories of the contact node
and impactor are presented. The results show that a slight
penetration occurs in the explicit method. It is a short-
coming of explicit method that should be paid for lower
computing cost than the implicit method. Fig. 15 shows
the velocity histories of the contact node and impactor.
If the explicit method is used, there is a little undesirable
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Figure 13 : Comparison of contact force histories from
implicit method and explicit method
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Figure 14 : Displacement histories of contact node and
impactor
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Figure 15 : Velocity histories of contact node and im-
pactor

oscillation at the initial impact stage. However, the spu-
rious oscillation decays rapidly and a stable solution is
obtained.

From the numerical tests, it is confirmed that the pro-
posed explicit solution procedure of the discontinuous
time integration method is enough to simulate dynamic-
contact/impact problems.

6 Conclusions

By modifying the recently developed discontinuous time
integration method, a new explicit solution procedure is
proposed. In the present explicit discontinuous time in-
tegration method, a two-stage correction algorithm was
used to avoid any matrix factorization. In this correction
routine, an intermediate acceleration is obtained by us-
ing an intermediate equilibrium equation, and it is also
utilized for obtaining further modified equilibrium con-
dition. After the correction routine, dynamic field vari-
ables at the next time step are obtained without any ma-
trix factorization. To observe the stability and accuracy
of the proposed explicit solution procedure, stability and
accuracy analyses were carried out. The analysis results

show that the proposed method gives a larger critical
time step and higher order accuracy than the central dif-
ference method. During the several numerical tests for
dynamic-contact/impact problems, it was observed that
the proposed explicit time integration method gives more
stable and accurate solutions than the central difference
method, which is widely adopted in explicit computa-
tions of impact analysis.

Consequently, it is confirmed that the proposed explicit
discontinuous time integration method can be efficiently
utilized without matrix factorization and iteration in an-
alyzing transient dynamic problems which have shock-
type loading conditions such as dynamic-contact/impact
problems.
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