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SGBEM (for Cracked Local Subdomain) – FEM (for uncracked global Structure)
Alternating Method for Analyzing 3D Surface Cracks and Their Fatigue-Growth

Z. D. Han1 and S. N. Atluri1

Abstract: As shown in an earlier work, the FEM-BEM
alternating method is an efficient and accurate method
for fracture analysis. In the present paper, a further im-
provement is formulated and implemented for the analy-
ses of three-dimensional arbitrary surface cracks by mod-
eling the cracks in a local finite-sized subdomain us-
ing the symmetric Galerkin boundary element method
(SGBEM). The finite element method is used to model
the uncracked global (built-up) structure for obtaining
the stresses in an otherwise uncracked body. The solu-
tion for the cracked structural component is obtained in
an iteration procedure, which alternates between FEM
solution for the uncracked body, and the SGBEM so-
lution for the crack in the local finite-sized subdomain.
The regularized version of the displacement and trac-
tion integral equations and their Galerkin weak forms
are used. Examples for surface cracks in a finite-sized
global structure demonstrate the accuracy and efficiency
of the method. Also, the problem of fatigue-growth of
an initially-semi-circular surface flaw, inclined to the di-
rection of tensile loading in a plate, is studied; and the
mixed-mode fatigue-crack-growth results are compared
with experimental data reported in literature.

keyword: SGBEM, FEM, alternating, surface crack.

1 Introduction

The calculation of fracture mechanics parameters (such
as the stress intensity factors of Modes I, II and III), for
arbitrary non-planar three-dimensional surface and inter-
nal cracks, remains an important task in the structural in-
tegrity assessment and damage tolerance analysis [Atluri
(1997)]. The three-dimensional stress analyses of crack
configurations have received a lot of attention in the last
two decades. Various methods have been investigated
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to obtain the stress-intensity factors for surface cracks:
the finite element method (FEM), the boundary element
method (BEM), the coupled FEM-BEM method and the
FEM-BEM alternating method, as summarized in [Atluri
(1986)]. They were used successfully for this purpose.

The finite element method is generally regarded as the
most powerful numerical method since it can handle
complicated geometries and loading conditions. The
fracture mechanics problems are solved by using singu-
larity elements [Tan, Newman and Bigelow (1996); Raju
and Newman (1979)] or displacement hybrid elements
[Atluri and Kathireasan (1975)], or by using certain path-
independent and domain-independent integrals based on
conservative laws of continuum mechanics [Nikishkov
and Atluri (1987); Shivakumar and Raju (1992)]. Unfor-
tunately, these methods require an explicit finite-element
modeling of cracks. They encounter a serious difficulty
in the mesh generation when they are applied to three-
dimensional problems, with the extremely high human
labor cost for creating appropriate meshes for cracks in
structural components of arbitrary geometry.

It is well known that boundary element methods (BEM)
have distinct advantages over domain approaches in solv-
ing of linear elastic fracture mechanics problems. In
BEM, the mesh should be generated only for the bound-
ary of the structure, and for the crack surface. Conse-
quently, it is simpler to create a boundary element mesh,
in comparison to a finite element mesh for a body with
a crack. The traditional (collocation) boundary element
method has certain features, which make it suitable for
the solution of crack problems. Recent publications on
the dual boundary element method [Cisilino and Ali-
abadi (1999)] can serve as an example of application
of traditional BEM to linear and non-linear fracture me-
chanics problems. The symmetric Galerkin boundary el-
ement method (SGBEM) has been recently developed,
based on a weakly singular weak-form of integral equa-
tions. It should be pointed out that the simple formula-
tion presented in Han and Atluri (2002, 2003) includes
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only the non-hypersingular kernel functions, which are
based on the original work reported in Okada, Rayiyah
and Atluri (1989a,1989b), in which the traction BIE in
terms of the non-hypersingular representations of the in-
tegral equations for the gradients of displacements were
first introduced, and then applied to the large deformation
elasto-plastic problems successfully. On the contrary,
the hypersingular kernel functions are encountered and
need the special treatment, when the displacement gradi-
ents are derived by directly differentiating displacement
BIE equations [Bonnet, Maier and Polizzotto (1998); Li,
Mear and Xiao (1998)]. In the SGBEM, the system ma-
trix shows symmetry and sign-definiteness. The SGBEM
overcomes some drawbacks of the traditional boundary
element methods, including the nonsymmetrical matrix
of the equation system, and the hypersingular kernels.
Another advantage of the SGBEM is that, after a spe-
cial transformation to remove the singularity from ker-
nels, the system matrices can be integrated with the use
of usual Gaussian quadrature rule [Andra (1998); Erich-
sen and Sauter (1998)]. But from the numerical point of
view, the SGBEM, like all BEM approaches, entails fully
populated coefficient matrices, which hinders their appli-
cation to large-scale problems with complex geometry.

The coupled FEM-BEM approaches are also proposed
for fracture analyses by limiting the employment of the
BEM to the fractured region [Keat, Annigeri and Cleary
(1988); Frangi and Novati (2002)]. The SGBEM shows
its special advantage in such a coupled approach, with
its symmetric system matrices and sign-definiteness. An
obvious disadvantage of this approach is that, both the
mesh of fractured region for BEM and the mesh for the
remaining part for FEM should be modified when it is
necessary to analyze cracks of different sizes and loca-
tions, including crack-growth.

The alternating method, known as the Schwartz-
Neumann alternating method, obtains the solution on a
domain that is the intersection of two other overlapping
domains [Kantorovich and Kriylov (1964)]. The proce-
dure has been applied to fracture mechanical analyses.
Normally the two domains are defined to be: one, a finite
body without the crack; and the second, an infinite body
with cracks. The solution is obtained by iterating be-
tween the solution for the uncracked finite body (usually
using FEM), and the cracks in an inifinite region obtained
with collocation BEM or SGBEM. Each solution can be
solved by various methods [Atluri (1997); Nishioka and

Atluri (1983); Vijaykumar and Atluri (1981); Wang and
Atluri (1996)]. For a complex geometry with the arbi-
trary cracks, the alternating procedure has been imple-
mented by iterating between the FEM and the SGBEM
[Nikishkov, Park and Atluri (2001)]. In [Nikishkov, Park
and Atluri (2001)], two solutions are employed itera-
tively: 1. The FEM solution for stresses in the uncracked
global structure; 2. The SGBEM solution for the crack in
an inifinite body – thus only the crack surfaces are mod-
eled in the SGBEM. This approach has been applied to
the embedded cracks with high accuracy. It also demon-
strated the flexibility in choosing the overlapping do-
mains for different crack configurations. From a compu-
tational point of view, it also shows its efficiency in sav-
ing both computational and human labor time, by lever-
aging the existing FE models. Despite these advantages
for some problems, the overlapping finite and infinite do-
mains necessitate the evaluation of a singular integral of
tractions in the alternating procedure, when the surface
cracks are to be analyzed.

The present work addresses the application of the FEM-
SGBEM alternating method in the context of 3D linear
elastic fracture mechanics for surface crack problems. It
shares the above features of the overlapping finite and in-
finite domains by alternating between the FEM and the
SGBEM. It extends the work of Nikishkov, Park and
Atluri (2001) in that, the solution is obtained by alter-
nating between two finite domains: the global uncracked
structure is solved by using the FEM, and a local cracked
subdomain is solved by using the SGBEM. It eliminates
the need for evaluating the singular integral of trac-
tions at the free surface, during the alternating proce-
dure when surface crack problems are considered. At
the same time, it limits the employment of the SGBEM
only for the local cracked subdomain, and reduces the
computational cost and memory requirements, since the
SGBEM entails the fully populated system matrix. This
approach also makes it possible to apply the alternating
method to any complex structural FEM models of built-
up structures, with solid elements mixed with the struc-
tural ones, i.e., beams and shells, because the alternat-
ing procedure is restricted to the local cracked subdo-
main only. Therefore, existing commercial FEM codes
can be used for solving the uncracked structure, and then
alternate with the solution from the SGBEM for the local
cracked subdomain, without making any changes to the
existing FEM codes. From the modeling point of view,
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this approach makes the full use of the existing FE mod-
els to avoid any model regeneration, which is extremely
high in human labor cost. The presently proposed proce-
dure is demonstrated by solving both the embedded and
surface cracks problems. The stress intensity factors are
calculated and compared with the earlier published solu-
tions. The good agreements show that the FEM-SGBEM
alternating method between two finite domains is very
efficient and highly accurate for 3D arbitrary crack prob-
lems. The present procedure is also applied to the prob-
lem of mixed-mode fatigue-growth of an initially-semi-
circular surface flaw which is inclined to the direction of
tensile loading in a thick plate.

2 Formulation of the symmetric Galerkin boundary
element method

The detailed explanation of the SGBEM can be found in
the published papers [Han and Atluri (2002)], in which,
much simpler derivation of the weakly singular integral
equations are presented. Here we present a brief sum-
mary. We consider a generic homogenous isotropic body
Ω, shown in Fig. 1. The prescribed tractions and dis-
placements are applied to the boundary surface St and
S u, respectively. Surface S c denotes all embedded and
surface breaking cracks. Consider the displacements at
a given location on the cracks as the displacement dis-
continuities w(x) = u+(x+)− u−(x−), where the super-
scripts + and – indicate that the variables associated
with the upper and lower crack faces, respectively. The
equal and opposite tractions applied on crack faces are
considered to be the prescribed ones on the crack surface
Sc. The weak-form integral equations for the SGBEM
are detailed below [Han and Atluri (2002)].

We apply the weak-form displacement integral equation
on the prescribed displacement boundary surfaces S u and
obtain the formulation as follows:

∫
Su

1
2

uk(x)p∗k(x)ds(x) = (1)

∫
Su

p∗j(x)
∫

Su+St

Guu
jk (ξ−x)pk(ξ)ds(ξ)ds(x)

+
∫
Su

p∗j(x)
∫

Su+St

Gup
jpq(ξ−x)Dpuq(ξ)ds(ξ)ds(x)

+
∫
Su

p∗j(x)
∫

Su+St

1
4πr2 r,ini(ξ)u j(ξ)ds(ξ)ds(x)

+
∫
Su

p∗j(x)
∫
Sc

Gup
jpq(ξ−x)Dpwq(ξ)ds(ξ)ds(x)

+
∫
Su

p∗j(x)
∫
Sc

1
4πr2 r,ini(ξ)wj(ξ)ds(ξ)ds(x)

in which G uu
jk(ζ) represents the Kelvin displacement fun-

damental function:

Guu
jk(ς) =

1
16π(1−υ)µr

[
(3−4υ)δ jk + r, jr,k

]
(2)

and G up
jpq(ζ) represents an auxiliary regularized kernel

function:

Gup
jpq(ς) =

1
8π(1−υ)r

[
(1−2υ)ep jq +epkqr,kr, j

]
(3)

Symbol D k is a tangential differential operator and ex-
pressed as

D k = niei jk
∂

∂ξ j
=

1
J

(
∂

∂η1

∂ζk

∂η2
− ∂

∂η2

∂ζk

∂η1

)
(4)

where η1 and η2 are surface coordinates on the boundary
surfaces, including cracks.

It should be pointed out that both G uu and G up are
weakly singular as well as terms 1

r 2 r,ini(ξ) in Eq. (1)
because the boundary is presumed smooth at z.

We apply the weak-form traction integral equation on the
prescribed traction boundary surfaces St and obtain the
similar formulation as:
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∫
St

1
2

u∗k(x)pk(x)ds(x) = (5)

−
∫
St

Dpu∗q(x)
∫

St+Su

Gpp
i jpq(ξ−x)Diu j(ξ)ds(ξ)ds(x)

−
∫
St

Dpu∗q(x)
∫

St+Su

Gpu
jpq(ξ−x)p j(ξ)ds(ξ)ds(x)

+
∫
St

u∗k(x)
∫

St+Su

1
4πr2 r,ini(x)pk(ξ)ds(ξ)ds(x)

−
∫
St

Dpu∗q(x)
∫
Sc

Gpp
i jpq(ξ−x)Diwj(ξ)ds(ξ)ds(x)

where

G pu
jpq(ζ) = G up

jpq(ζ) (6)

and G pp
i jpq(ς) represents another auxiliary kernel func-

tion, which is also weak singular:

Gpp
i jpq(ς) =

µ
8π(1−υ)r

(7)

[4υδiqδ jp −δipδ jq −2υδi jδpq

+δi jr,pr,q +δpqr,ir, j −2δipr, jr,q −δ jpr,ir,p]

We also apply the weak-form traction integral equation
on the crack Sc, which are conceived as a set of pre-
scribed traction boundary surfaces. We have

∫
Sc

w∗
k(x)pk(x)ds(x) = (8)

−
∫
Sc

Dpw∗
q(x)

∫
St+Su

Gpp
i jpq(ξ−x)Diu j(ξ)ds(ξ)ds(x)

−
∫
Sc

Dpw∗
q(x)

∫
St+Su

Gpu
jpq(ξ−x)p j(ξ)ds(ξ)ds(x)

+
∫
Sc

w∗
k(x)

∫
St+Su

1
4πr2 r,ini(x)pk(ξ)ds(ξ)ds(x)

−
∫
Sc

Dpw∗
q(x)

∫
Sc

Gpp
i jpq(ξ−x)Diwj(ξ)ds(ξ)ds(x)

The SGBEM requires the C0 continuous trial and testing
functions over the whole boundary surface S u ∪ St ∪ Sc.
This can be satisfied after discretization. Special atten-
tion should be paid to the crack surfaces. Recalling
the definition of the displacement discontinuities w(x) =
u+(x+) − u−(x−), they must be zero around the crack
fronts where u+(x+) = u−(x−). A special treatment is
also required to enforce the C0 continuities for the sur-
face cracks that intersect the normal boundary surface
Su ∪ St . In the present work, quarter-point singular el-
ements are adopted and the displacement discontinuities
are set to zero explicitly for the crack front.

3 Schwartz-Neumann Alternating Method

The Schwartz-Neumann alternating method is based on
the superposition principle. The solution on a given do-
main is the sum of the solutions on two other overlap-
ping domains. The alternating method converges uncon-
ditionally when there are only traction boundary condi-
tions specified on the body. In the present work, the over-
lapping domains are the given finite domain, but with-
out the cracks; a local portion of the original given do-
main as described below. The local subdomain can be
selected to include only the traction boundary conditions
so that the alternating procedure converges uncondition-
ally. To take advantages of both the FEM and SGEM,
the FEM, which is a robust method for large-scale elas-
tic problems, is used to solve the whole uncracked global
structure. The SGBEM, which is most suitable the crack

tS
p

uS

u

cS

Ω

Figure 1 : A linear elastic isotropic domain containing
cracks (Original problem)
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uS

uu
FEM =
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u
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Figure 2 : Superposition principle for FEM-SGBEM alternating method: (a) the uncracked body for FEM, (b) the
local SGBEM domain containing cracks, (c) FEMmodel subjected to residual loads, (d) alternating solution for the
original problem

analyses, is used for modeling a local finite-sized subdo-
main containing embedded or surface cracks. The size
of SGBEM domain is also limited in order to improve
the computational efficiency, by avoiding an overly-large
fully populated system matrix.

We consider a structure containing cracks, as shown in

Fig. 1. The crack surfaces are denoted collectively as Sc.
The alternating method uses the following two problems
to solver the original one. Let us define that the domain
for the FEM, denoted as Ω FEM in Fig. 2(a), is the same
as the original domain Ω but no cracks are included. All
the prescribed tractions p are applied to the FEM domain
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on S FEM
t , as well as all the prescribed displacement u

on S FEM
u . Another domain Ω SGBEM is defined for the

SGBEM as shown in Fig. 2(b), which is a local finite-
sized subdomain containing all the cracks.

It is clear that the same crack surfaces are inherited from
the original ones, as S SGBEM

c . We define the bound-
ary conditions in a way that the shared overall bound-
ary between these two domains is defined as the traction
free surface of the SGBEM domain, denoted as S SGBEM

t
with pSGBEM = 0. The intersection surface S I is treated
as the boundary of the SGBEM domain with the pre-
scribed displacements, denoted as S SGBEM

u . We can also
restrict all prescribed displacements, uSGBEM , to be zero
on S SGBEM

u . One obvious advantage of this approach is
that two overlapping domains are limited to the local por-
tion containing the cracks, without any restriction to the
remaining portion. This distinguishing feature makes it
possible that all other structure elements can be used in
the FEM domain, which are widely used in industry. It
also allows the present alternating approach to be imple-
mented within any commercial FEM solver without any
restriction. Another advantage is that the independence
of the crack model and finite element model of the body
allows one to easily change the crack model in order to
simulate crack growth or perform the parametric study.

To solve the original problem, the superposition of the
two alternate problems, FEM and SGBEM, yields the
original solution for the prescribed displacements u and
tractions p with cracks. The detailed procedures are de-
scribed as follows.

1. Using FEM, solve the problem on domain Ω FEM

with all externally prescribed displacements and trac-
tions, but without the cracks. The tractions on crack sur-
faces SSGBEM

c can be obtained as pSGBEM
c ≡−pFEM

c .

2. Using SGBEM, solve the local problem on domain
Ω SGBEM only with the tractions on the crack surface. The
prescribed displacements uSGBEMon S SGBEM

u are set to
zero as well as the zero prescribed tractions pSGBEMon
S SGBEM

t . The only loads are the non-zero tractions on the
crack surfaces, i.e., pSGBEM

c on S SGBEM
c . Then the trac-

tions on the intersection surface S I are obtained as a part
of the SGBEM solution explicitly, denoted as pSGBEM

u on
S SGBEM

u .

3. Applying the tractions on the intersection surface
as the residual forces to the FEM domain, denoted as
pFEM ≡ −pSGBEM

u on S I in Fig. 2(c), re-solve the FEM

problem and obtain the traction p SGBEM
c on crack sur-

faces S SGBEM
c .

4. Repeat steps 2 and 3 until the residual load p FEM is
small enough.

5. By adding the SGBEM solution to the FEM one, the
original one is obtained.

We now examine the solution with the given boundary
and loading conditions for the original problem (denoted
by superscript Org):

i) for the given traction on St , we have pFEM = p and
pSGBEM = 0 and get

pOrg = pFEM +pSGBEM = p on St (9)

ii) for the given displacement on S u, the SGBEM domain
does not contain any portion of S u and thus, we obtain

uOrg = uFEM = u on St (10)

iii) for the crack surface S c, we define that tractions for
SGBEM model pSGBEM

c equal to −pFEM
c from the FEM

solution, and thus the tractions on crack surfaces are zero
as in the original problem, i.e.,

pOrg
c = pFEM

c +pSGBEM
c = 0 on S c (11)

iv) for the intersection surface S I , we define that
the residual tractions on FEM model pFEM equals to
−pSGBEM from the SGBEM solution, and obtain

pOrg
c = pFEM

c +pSGBEM
c = 0 on S I (12)

We also specify that the zero displacements for the
SGBEM model, i.e. uSGBEM = 0 on S I , and thus, there no
displacement discontinuities along the intersection sur-
face,

uOrg = uFEM on S I (13)

As shown in Fig. 2(d), the solution obtained here satisfies
all the boundary and loading conditions for the original
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problem. From the uniqueness of the elastic linear prob-
lem, we obtain the solution for the original problem.

From a computational point of view, the present approach
is very efficient in saving the CPU time. This results
from two reasons. The first reason is that some terms
for SGBEM equations are ignored, and Eqs. (1), (5) and
(8) can be simplified as follows

For weak-form displacement integral on S SGBEM
u

0 =
∫
Su

p∗j(x)
∫
Su

Guu
jk(ξ−x)pk(ξ)ds(ξ)ds(x) (14)

+
∫
Su

p∗j(x)
∫
St

Gup
jpq(ξ−x)Dpuq(ξ)ds(ξ)ds(x)

+
∫
Su

p∗j(x)
∫
St

1
4πr2 r,ini(ξ)u j(ξ)ds(ξ)ds(x)

+
∫
Su

p∗j(x)
∫
Sc

Gup
jpq(ξ−x)Dpwq(ξ)ds(ξ)ds(x)

+
∫
Su

p∗j(x)
∫
Sc

1
4πr2 r,ini(ξ)wj(ξ)ds(ξ)ds(x)

For weak-form traction integral on S SGBEM
t

0 = −
∫
St

Dpu∗q(x)
∫
St

Gpp
i jpq(ξ−x)Diu j(ξ)ds(ξ)ds(x) (15)

−
∫
St

Dpu∗q(x)
∫
Su

Gpu
jpq(ξ−x)p j(ξ)ds(ξ)ds(x)

+
∫
St

u∗k(x)
∫
Su

1
4πr2 r,ini(x)pk(ξ)ds(ξ)ds(x)

−
∫
St

Dpu∗q(x)
∫
Sc

Gpp
i jpq(ξ−x)Diwj(ξ)ds(ξ)ds(x)

For weak-form traction integral on S SGBEM
c

∫
Sc

w∗
k(x)pk(x)ds(x) = (16)

−
∫
Sc

Dpw∗
q(x)

∫
St

Gpp
i jpq(ξ−x)Diu j(ξ)ds(ξ)ds(x)

−
∫
Sc

Dpw∗
q(x)

∫
Su

Gpu
jpq(ξ−x)p j(ξ)ds(ξ)ds(x)

+
∫
Sc

w∗
k(x)

∫
Su

1
4πr2 r,ini(x)pk(ξ)ds(ξ)ds(x)

−
∫
Sc

Dpw∗
q(x)

∫
Sc

Gpp
i jpq(ξ−x)Diwj(ξ)ds(ξ)ds(x)

The second reason is that the residual forces applied to
the FEM problem are obtained as a part the SGBEM
solution explicitly. There is no extra computer time to
determine the forces, which is normally needed when
the alternating procedure is performed between the solu-
tions for the uncracked finite body and the infinite body
containing cracks. The singular residual forces may be
encountered when the surface cracks are included the
later cases, which introduces the numerical errors dur-
ing the alternating procedures. Therefore the surface
crack solutions near the free surface are not accurate,
which is well known as the boundary-layer effect. In
some researches, the fictitious extended cracks are used
with imaginary tractions to reduce such errors [Nishioka
and Atluri (1983)]. Unfortunately, the fictitious extended
portion and the imaginary tractions are hard to be defined
when the arbitrary non-planar surface cracks are consid-
ered. In the present work, the original solution is ob-
tained accurately by using the non-singular alternating
method with the weak singular SGBEM.

4 Numerical Examples

4.1 Semi-circular surface cracks

In order to verify the accuracy of the present alternating
method for treating surface cracks in finite bodies, we

first consider a semi-circular surface crack in a plate as
shown in Fig. 3. Uniform tensile stresses σ0 are applied
at two opposite faces of the plate in the direction perpen-
dicular to the cracks. a is the radius of the semi circu-
lar crack. The plate configuration considered is charac-
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σ

σ

0

0

ϕ
2a

Figure 3 : a semi-circular crack in a plate under tension

Figure 4 : Mesh of a semi-circular crack in a plate for
the SGBEM

  

(b)

(a)

2a

4a

2
a

(c)

Figure 5 : Models of a semi-circular crack in a plate for
FEM-SGBEM alternating method: (a) local finite body
defined in the plate, (b) the FEM model without the crack
and (c) the local SGBEM model with the crack

terized by the geometric ratios h
a = 5 , w

a = 5 and
t
a = 2.5. The passion ratio ν = 0.3 is chosen.

We first use the SGBEM method to simulate the en-
tire problem with the mesh shown in Fig. 4. Then we
solve the problem with the alternating method. The FEM
model is created for the uncracked body, shown in Fig.
5(b), with the uniform tensile stresses being applied at
the top and bottom surfaces. The local SGBEM model is
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Figure 6 : Normalized stress intensity factors (KI / (2σ0
√

a/π)) for a semi-circular crack in a plate

also created in the plate, shown in Fig. 5(a). It is similar
to the model in Fig. 4 for pure SGBEM solution, so that
we create the mesh for this local finite body with similar
meshes for the boundary and crack surfaces. The front
and back surfaces are free and others are the prescribed
displacement ones.

This problem is a pure mode-I problem and has been
solved by using the FEM [Raju and Newman (1979)]
and the SGBEM [Frangi, Novati, Sprinthetti and Rovizzi
(2002)]. The analytical solution is available for the in-
finite plate. The ratios chosen for this prolem are large
enough to represent a crack in the infinite plate. As
shown in Fig. 6, a comparison of the normalized stress
intensity factors by using the SGBEM-FEM alternat-
ing method with the referenced solutions shows a good

agreement for all crack-front locations. It is well known
that that the stress intensity factors tend to zero in a
boundary layer where the crack front approaches free
surface of the body, when a surface crack breaks the outer
surface at a right angle. This effect is also confirmed by
using alternating method.

4.2 A quarter-circular crack in a square bar

The second example for the surface crack is a square
bar which contains a quarter-circular crack, as shown in
Fig. 7. Uniform tensile stresses σ0 are applied at the
two ends. Let a denote the radius of the quarter-circular
crack, and the other dimensions are defined as w

a = 2
and h

w = 4. The Poisson ratio ν = 0.3 is chosen here.
The dimensions are chosen to be the same as those used
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ϕ
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σ0
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Figure 7 : a quarter-circular crack in a square bar under
tension

Figure 8 : Mesh of a quarter-circular crack in a square
bar for the SGBEM

w

w

w

a

(a)

(c)(b)

Figure 9 : Models of a quarter-circular crack in a square
bar for FEM-SGBEM alternating method: (a) local finite
body defined in the plate, (b) the FEM model without the
crack and (c) the local SGBEM model with the crack

in Li, Mear and Xiao (1998) for comparison purpose.

Again, we use both the SGBEM for the entire domain;
and the FEM-SGBEM alternating method to solve this
problem with the meshes in Figs. 8 and 9, respectively.
The local SGBEM domain is created by truncating the
square bar as shown in Fig. 9(a). Then the top and
bottom surfaces are subjected to the zero prescribed dis-
placements and others are free.

Numerical results are displayed in Fig. 10 in terms of
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Figure 10 : Normalized stress intensity factors (KI / (σ0
√

πa) ) for a quarter-circular crack in a square bar

the normalized stress intensity factor contribution along
the crack front. A good agreement is observed, as well
as those points near the free surface. Again the boundary
effect is also evidenced by the alternating method.

4.3 Corner crack at a circular hole in a finite-
thickness plate

As the third example, the corner crack at a circular hole
in a plate is considered and shown in Fig. 11. This exam-
ple has been considered by many investigators for three
dimensional fracture analyses with various methods. The

geometry is characterized by the ratios: h
t = w

t = 8

, R
t = 1.5 and a

t = 0.5 . The passion ratio is taken
as ν = 0.3.

This problem is analyzed by using the alternating method

only. The meshes adopted are depicted in Fig. 12(b)-
(c), in which only half of the specimen was analyzed due
to symmetry. The FEM model has about 3300 degrees
of freedom (DOFs). In the contrast, the FEM models
used in Tan, Newman and Bigelow (1996) had more than
16000 DOFs in conjunction with special singularity el-
ements for the crack front. The local SGBEM model is
cut by three planar surfaces around the crack with zero
prescribed displacements, as shown in Fig. 12(a). All
boundary and crack surfaces are discretized with about
500 quadrilateral elements, and with 24 elements along
the crack front.

The normalized stress intensity factors along the crack
front are plotted in Fig. 13. The results are compared
to the available published solutions [Tan, Newman and
Bigelow (1996)]. The boundary effects are obtained for
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Figure 11 : a corner crack at a circular hole in a finite-
thickness plate under tension

two ends of the crack front near to the free surface, and
the boundary layer at the lateral free surface is thinner
than the FEM solution.

4.4 Nonplanar fatigue growth of an inclined semi-
circular surface crack in a plate

As the final example, fatigue-growth of an inclined sur-
face crack in a plate is considered. As shown in Fig. 14,
the modified ASTM E740 specimen has been tested for
the mixed-mode fatigue growth [Forth, Keat and Favrow

(2002)]. The specimens were taken from actual parts
made from 7075-T73 aluminum. The crack orientation
φ = 30◦ is used. Maximum tensile stresses σ0 = 15.88ksi
are applied with a load ratio R = 0.7. The Forman equa-
tion is chosen to advance the crack and front and deter-
mine the fatigue cycles:

   

2a

4
a

(a)

(c)(b)

Figure 12 : Models of a corner crack at a circular hole
in a finite-thickness plate for FEM-SGBEM alternating
method: (a) local finite body defined in the plate, (b) the
FEM model without the crack and (c) the local SGBEM
model with the crack

da
dN

= C
(

1− f
1−R

∆K
)n (1−∆Kth/∆K)p

(1−Kmax/Kcrit)
q (17)

where the growth rate da
dN is based on empirical material

constants C, n, p and q; f depends on the ratio R; ∆Kth
is the threshold value of ∆K; Kcrit is the critical stress
intensity factor. This model is details in the reference
manual of NASGARO 3.0 [NASA, NASGRO (2001)].
The material constants are taken as listed in Table. 1.

We model the uncracked specimen with the mesh as in
Fig. 15b for FEM. The local SGBEM model is located
in the central portion that contains the inclined surface
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Figure 13 : Normalized stress intensity factors (KI / (σ0
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πa) ) for a corner circular crack at a hole in a finite-
thickness plate

Table 1. Material Properties
C = 1.49×10−8 n = 3.321
p = 0.5 q = 1.0
KIe = 50ksi

√
in KIC = 28ksi

√
in

∆Kth = 3.0ksi
√

in Rcl = 0.7
C+

th = 2.0 C−
th = 1.0

α = 1.9 Smax/σ0 = 0.3
A k = 1.0 Bk = 1.0
σY S = 60ksi σUT S = 74ksi

1" 1.9"0.5"

0.1"

2
"

1.5"

φ

0.
01

"

σ0σ0

Figure 14 : Inclined semi-circular surface crack speci-
men
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(a)

Figure 15 : Models of an inclined surface crack in a tensile plate for FEM-SGBEM alternating method: (a) local
finite body defined in the specimen, (b) the FEM model for the specimen without the crack and (c) the local SGBEM
model with the crack
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Figure 16 : Normalized stress intensity factors KI, KII and KIII for an inclined semi-circular surface crack in a
tensile plate
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crack, as illustrated in Fig. 15a with the attendant mesh
being shown in Fig. 15c. The top and bottom surfaces
are cutting surfaces and subjected to the zero prescribed
displacements while others are free.

First, the initial crack is analyzed and stress intensity
factors are normalized by K0 = σ0

√
πa and shown in

Fig. 16. Good agreements are obtained in comparison
with other results [Shivakumar and Raju (1992); He and
Hutchinsen (2000); Nikishkov, Park and Atluri (2001)].

The crack growth is simulated by adding one layer of
elements along the crack front, in each increment. The
newly added points are determined through the K so-
lutions. 15 advancements are performed. The fatigue
load cycles are calculated and compared with the exper-
imental data [Forth, Keat and Favrow (2002)], shown in
Fig. 17. The normalized stress intensity factors during
the crack growing are given in Fig. 18, which are also
normalized by K0 = σ0

√
πa. KI keeps increasing while

KII and KIII are decreasing during the crack growth. It
confirms that this mixed-mode crack becomes the mode-
I dominated one while growing. The shape of the final
crack is very similar to the experimental photograph in
Fig. 19. It is clear that while the crack, in its initial
configuration, starts out as a mixed-mode crack, after a
substantial growth, the crack configuration is such that it
is in a pure mode-I state.

5 Conclusions

In this paper the Schwartz-Neumaan alternating method
has been extended to analyze surface cracks. It is shown
that the singular traction integral is avoided during the
alternating procedure between the FEM and SGBEM,
when both solutions are based on finite bodies. This ap-
proach shows a strong computational competitiveness, in
comparison to the normal alternating methods, by avoid-
ing the stress calculation on the boundary surfaces of
FEM models. Indeed, the alternating procedure con-
verges unconditionally by imposing the proposed pre-
scribed displacements and tractions in the present ap-
proach. The accuracy and efficiency of the proposed ap-
proach have been verified on some 3D problems with
published solutions by using other methods. The easy
extension to 2D problems is similar for edge cracks, by
applying the alternating method within two local finite
domains, to avoid the singularity during the alternation
procedure.

(a)

(b)

A B

D C

(c) (d)
Figure 19 : Final crack of an inclined surface crack in
a tensile plate: (a) the final crack after 15 increments
by using FEM-SGBEM alternating method, (b) the pho-
tograph of the final crack taken from the specimen, (c)
the final crack in the uncracked body, (d) the intersection
path of the final crack with the free surface of the speci-
men, ABCD



SGBEM – FEM Alternating Method for 3D Surface Cracks 715

Acknowledgement: This work was performed during
the course of investigations supported by the FAA, and
the U.S. Army Research Office.

6 References

Andra, H. (1998): Integration of singular integrals for
the Galerkin-type boundary element method in 3D elas-
ticity. Comp. Methods Appl. Mech. Engng, vol. 157, pp.
239-249.

Atluri, S. N. (1997): Structural Integrity and Durability,
Tech Science Press, Forsyth.

Atluri, S. N. (1986): Computational Methods in the
mechanics of fracture (North Holland, Amsterdam) also
translated into Russian, Mir Publishers, Moscow.

Atluri, S. N.; Kathireasan, K. (1975): An assumed
displacement hybrid finite element model for three-
dimensional linear elastic fracture mechanics analysis.
Presented at the 12th Annual Meeting of the Society of
Engineering Science, University of Texas, Austin.
Bonnet, M.; Maier, G.; Polizzotto, C. (1998) Symmet-
ric Galerkin boundary element methods. Appl. Mech.
Rev., vol. 51, pp. 669-704.

Cisilino, A.P.; Aliabadi, M.H. (1999): Threedimen-
sional boundary element analysis of fatigue crack growth
in linear and non-linear fracture problems. Eng. Fract.
Mech., vol. 63, pp. 713-733.

Forth, S. C.; Keat W. D.; Favrow L. H. (2002):
Experimental and computational investigation of three-
dimensional mixed-mode fatigue, Fatigue Fract. Engng.
Mater. Struct., vol. 25, pp 3-15.

Erichsen, S.; Sauter, S.A. (1998): Efficient automatic
quadrature in 3-d Galerkin BEM. Com. Methods Appl.
Mech. Engng, vol. 157, pp. 215-224.

Frangi, A.; Novati, G. (2002): Fracture mechanics in
3D by a coupled FE-BE approach, IABEM 2002, Inter-
national Association for Boundary Element Methods, UT
Austin, Texas, May 28-30.

Frangi, A; Novati, G.; Springhetti, R.; Rovizzi, M.
(2002): 3D fracture analysis by the symmetric Galerkin
BEM, Computational Mechanics, vol. 28, pp. 220-232.

Han, Z. D.; Atluri, S. N. (2002): On Simple formula-
tion of weakly singular displacement & traction BIE and
their solutions through Petrov-Galerkin Approaches, An-
nals of the European Academy of Sciences (Brassells),
Invited Paper, (In press).

Han, Z. D.; Atluri, S. N. (2003): On Simple formu-
lation of weakly singular traction & displacement BIE,
and their solutions through Petrov-Galerkin Approaches,
CMES: Computer Modeling in Engineering & Sciences,
vol.4, no.1. (accepted)

He, M. Y.; Hutchinson, J. W. (2000) Surface crack sub-
ject to mixed mode loading. Engng. Fract. Mech. 65,
pp. 1-14.

Kantorovich, L. V.; Krylov, V. I. (1964): Approximate
methods of higher analysis (translated by Curtis D. Ben-
ster) (John Wiley & Sons, Inc., New York &London).

Keat, W.D.; Annigeri, B.S.; Cleary, M.P. (1988): Sur-
face integral and finite element hybrid method for twoand
three-dimensional fracture mechanics analysis. Int. J.
Fracture, vol. 36, pp. 35-53.

Li, S.; Mear, M.E.; Xiao, L. (1998): Symmetric weak-
form integral equation method for three-dimensional
fracture analysis. Comput. Meth. Appl. Mech. Engng,
vol. 151, pp. 435-459.

Murakami, Y. (1987): Stress Intensity Factors Hand-
book, Pergamon Press.

NASA (2001), The reference manual of fatigue crack
growth computer program “NASGRO” version 3.0, JSC-
22267B, Nov. 2001.

Nikishkov, G.P.; Atluri, S.N. (1987): Calculation of
fracture mechanics parameters for an arbitrary three-
dimensional crack by the ‘equivalent domain integral’
method. Int. J. Numer Meth. Engng, vol. 24, pp. 851-
867.

Nikishkov, G.P.; Park, J.H.; Atluri, S. N. (2001):
SGBEM-FEM alternating method for analyzing 3D non-
planar cracks and their growth in structural components,
CMES: Computer Modeling in Engineering & Sciences,
vol.2, no.3, pp.401-422.

Nishioka, T.; Atluri, S.N. (1983): Analytical solution
for embedded elliptical cracks and finite element alter-
nating method for elliptical surface cracks, subjected to
arbitrary loadings.Eng. Fract. Mech., vol. 17, pp. 247-
268.

Okada, H.; Rajiyah, H.; Atluri, S. N. (1989): A Novel
Displacement Gradient Boundary Element Method for
Elastic Stress Analysis with High Accuracy, J. Applied
Mech., April 1989, pp. 1-9.

Okada, H.; Rajiyah, H.; Atluri, S. N. (1989): Non-
hyper-singular integral-representations for velocity (dis-



716 Copyright c© 2002 Tech Science Press CMES, vol.3, no.6, pp.699-716, 2002

placement) gradients in elastic/plastic solids (small or fi-
nite deformations), Comp. Mech., vol. 4, pp. 165-175.

Raju, I. S.; Newman, J. C. Jr (1979): Stress-intensity
factors for a wide range of semi-elliptical surface cracks
in finite-thickness plates, Engineering Fracture Mechan-
ics, vol. 11, pp. 817-829.

Shivakumar, K.N.; Raju, I.S. (1992): An equivalent do-
main integral method for three-dimensional mixed-mode
fracture problems. Eng. Fract. Mech., vol. 42, pp. 935-
959.

Tan, P. W.; Newman, J. C. Jr.; Bigelow, C. A.
(1996): Three-dimensional finite-element analyses of
corner cracks at stress concentrations, Engineering Frac-
ture Mechanics, vol. 55, no. 3, pp. 505-512.
Vijaykumar, K.; Atluri, S.N. (1981): An embedded
elliptical crack, in an in nite solid, subject to arbitrary
crack-face tractions, J. Appl. Mech., vol. 103(1), pp. 88-
96.

Wang, L.; Atluri, S.N. (1996): Recent Advances in the
alternating methods for elastic and inelastic fracture anal-
yses, Com. methods in Appl. Mech. and Engng, vol. 137,
pp. 1-57.


