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Analysis of Elastodynamic Deformations near a Crack/Notch Tip by the Meshless
Local Petrov-Galerkin (MLPG) Method

R. C. Batra1 and H.-K. Ching1

Abstract: The Meshless Local Petrov-Galerkin
(MLPG) method is used to analyze transient deforma-
tions near either a crack or a notch tip in a linear elastic
plate. The local weak formulation of equations govern-
ing elastodynamic deformations is derived. It results in a
system of coupled ordinary differential equations which
are integrated with respect to time by a Newmark family
of methods. Essential boundary conditions are imposed
by the penalty method. The accuracy of the MLPG so-
lution is established by comparing computed results for
one-dimensional wave propagation in a rod with the an-
alytical solution of the problem. Results are then com-
puted for the following two problems: a rectangular plate
with a central crack with plate edges parallel to the crack
axis loaded in tension, and a double edge-notched plate
with the edge between the notches loaded by compres-
sive tractions. Stresses at points near the crack/notch tip
computed from the MLPG solution are found to agree
well with those obtained from either the analytical or the
finite element solution of the same problem. The index of
stress singularity is ascertained from a plot of log (stress)
vs. log(r) where r is the distance from the crack tip.
It is found that, for the double-edge notched plate, the
mode-mixity of deformations near a notch-tip in an or-
thotropic plate can be adjusted by suitably varying the
in-plane moduli of the material of the plate. The varia-
tion of shear stress with r exhibits a boundary layer effect
near r = 0.

1 Introduction

The meshless method has attracted considerable atten-
tion in the past two decades due to the flexibility of
placing nodes in the domain of study. Atluri and Zhu
(1998) have proposed a meshless method which requires
no background mesh to evaluate numerically various in-
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tegrals appearing in the local weak formulation of the
problem. Atluri et al. (1999) have pointed out that the
Galerkin approximation can also be adopted that leads
to a symmetric stiffness matrix. Atluri and Zhu (2000)
solved elastostatic problems by the MLPG method, and
Lin and Atluri (2000) introduced the upwinding scheme
to analyze steady convection-diffusion problems. Ching
and Batra (2001) enriched the polynomial basis functions
with those appropriate to describe singular deformation
fields near a crack tip and used the diffraction criterion
to find stress intensity factors, the J-integrals and sin-
gular stress fields near a crack tip. Gu and Liu (2001)
used the Newmark family of methods to study forced vi-
brations of a beam. The problem of bending of a thin
plate has been studied by Long and Atluri (2002). War-
lock et al. (2002) have analyzed elastostatic deforma-
tions of a material compressed in a rough rectangular
cavity analytically by the Laplace transformation tech-
nique and numerically by the MLPG method. Atluri and
Shen (2002a,b) have demonstrated the use of different
weight functions and have compared their performance
with that of the Galerkin finite element method. By
choosing a Heaviside step function as the test function,
they eliminated the domain integration in the local weak
form. Thus only boundary integrals over local subdo-
mains remained in the local weak form. For elastostatic
problems, this was shown to be more efficient than both
the finite element and the boundary element methods.

The paper is organized as follows. Section 2 gives the
MLPG formulation including the local weak form, the
moving least squares approximation, the discrete gov-
erning equations and the time integration scheme. Cal-
culations of the dynamic stress intensity factors from the
near-tip stress fields are also described. Numerical ex-
amples are presented in Section 3. The MLPG results
are compared with either analytical or finite element so-
lutions. Section 4 summarizes the conclusions.
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2 Formulation of the Problem

2.1 Governing equations

For a plane linear elastodynamic problem on domain Ω
bounded by the boundary Γ, governing equations in rect-
angular Cartesian coordinates are

σi j, j +bi = ρüi, in Ω, (i, j = 1,2), (1)

σi j = λεkkδi j +2µεi j, in Ω, (2)

εi j = (ui, j +u j,i)/2, in Ω. (3)

Here ρ is the mass density, ui the displacement, t the
time, üi = ∂2ui/∂t2 the acceleration, σi j the stress ten-
sor, εi j the infinitesimal strain tensor, bi density of the
body force vector, λ and µ are Lame’ constants for the
material of the body, ui, j = ∂ui/∂x j, x gives the present
position of a material particle, and a repeated index im-
plies summation over the range of the index. Equations
(1)-(3) are supplemented with the following initial and
boundary conditions:

u(x, t0) = u0(x), x ∈ Ω, (4)

u̇(x, t0) = u̇0(x), x ∈ Ω, (5)

ui = ui, on Γu, (6)

ti ≡ σi jn j = t i, on Γt . (7)

Here ui, ti,u0 and u̇0 denote the prescribed displace-
ments, tractions, initial displacements and initial veloc-
ities, respectively, n j is the unit outward normal to Γ, and
Γu and Γt are complementary parts of Γ where essential
and natural boundary conditions are prescribed.

2.2 Implementation of the MLPG method

Taking the inner product of (1) with v and of (6) with αv,
and integrating the resulting equations over Ω s and Γsu

respectively, we obtain∫
Ωs

(σi j, j −ρüi +bi)νidΩ−
∫

Γsu

α(ui −ui)νidΓ = 0, (8)

where Γsu = Γs ∩ Γu, Γs is the boundary of the lo-
cal domain Ωs ⊂ Ω and α is a penalty parameter used
to satisfy the essential boundary conditions. For eqn.
(8) to be dimensionally correct, α must have units of
Force/(Length)3. The penalty parameter α may vary
from point to point but is usually taken to be a constant
with magnitude much larger than λ/L where L is a typi-
cal dimension of the body. Henceforth we take α to be a
constant.

Integrating the first term on the left side of (8) by parts,
and using natural boundary condition (7) we obtain∫

Ωs

ρνiüidΩ+
∫

Ωs

νi, jσi jdΩ+α
∫

Γsu

νiuidΓ−
∫

Γsu

νitidΓ

=
∫

Γst

νit idΓ +α
∫

Γsu

νiuidΓ +
∫

Ωs

νibidΩ, (9)

where Γst = Γs ∩Γt , and νi is taken to vanish on ∂Ωs −
Γsu −Γst .

In the MLPG method, the displacement field is approx-
imated by the moving least squares method (MLS). De-
tails about the MLS approximation are given in the pa-
per by Lancaster and Salkauskas (1981). For the sake
of completeness, the MLS approximation is briefly de-
scribed here. We consider the trial function uh(x, t) over
the domain Ω defined by

uh
k(x, t) =

m

∑
j=1

p j(x)a jk(x, t), k = 1,2, (10)

where the unknown coefficients a(x, t) are functions of
the space coordinates xT = [x1,x2] and time t, and p(x) is
a complete monomial in x having m terms. The complete
quadratic monomials basis functions in two-dimensions
are

pT (x) = [1,x1,x2, (x1)2,x1x2, (x2)2]; m = 6. (11)

For each component of u, the coefficients a(x, t) in (10)
are obtained by minimizing J defined by

J =
n

∑
i=1

w(x−xi)[pT (xi)a(x, t)− ûi(t)]2. (12)

Here ûi is the fictitious value of a component of uh at
x = xi, and n is the number of nodes in the domain of
influence of x for which the weight functions w(x−x i) �=
0. Several different weight functions are given in Atluri
and Shen (2002a,b); here, the following Gaussian weight
function is used.

w(x−xi) =




exp

[
−

( |x−xi |
ci

)2k
]
− exp

[
−

(
ri
ci

)2k
]

1− exp

[
−

(
ri
ci

)2k
] , 0 ≤ |x− xi| ≤ ri,

0 , |x− xi|> ri.

(13)

Here ri is the radius of the domain of influence for the
weight function w(x− x i), and empirically determined
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parameters ci and k control its shape. We set k = 1, ci =
distance to the third nearest neighboring node from the
node xi with nodes equidistant from x i counted once, and
ri = 3.5ci.

The support of w(x−xi) is also called the domain of in-
fluence of node i, since node i affects the approximation
within this domain but not outside of this domain. The
domain of influence is usually a circle, but it does not ex-
tend outside of the boundary of domain Ω. The effect of
a crack is represented by changes in the domains of in-
fluence of the nodes surrounding the crack. The diffrac-
tion criterion proposed by Organ et al. (1996) has been
used by Ching and Batra (2001) to account for changes
in the domain of influence caused by discontinuous fields
across a crack; it is also employed here.

The stationarity of J in (12) with respect to a(x, t) leads
to

a(x, t) = A−1(x)B(x)û(t), (14)

with matrices A(x) and B(x) defined by

A(x) =
n

∑
i=1

w(x−xi)p(xi)pT (xi), (15)

B(x) = (16)

[w(x−x1)p(x1),w(x−x2)p(x2), . . .,w(x−xn)p(xn)].

By substituting from (14) into (10), we obtain the MLS
approximant as

uh
k(x, t) = (17)

n

∑
i=1

m

∑
j=1

p j(x)[A−1(x)B(x)] jiûik(t) =
n

∑
i=1

φi(x)ûik(t).

φi(x) is usually called the MLS shape function corre-
sponding to node i. Substituting (17) into the local weak
form (9) for each node gives the following discrete equa-
tions:

M ¨̂u(t)+Kû(t) = f(t). (18)

The “mass” matrix M, the “stiffness” matrix K, and the

“load” vector f are given by

Mi j =
∫

Ωs

ρφjv(x,xi)dΩ, i, j = 1,2, . . .,n, (19)

Ki j =
∫

Ωs

εν(x,xi)DB jdΩ+α
∫

Γsu

v(x,xi)SφjdΩ

−
∫

Γsu

v(x,xi)NDB jSdΓ, (20)

fi =
∫

Γst

v(x,xi)tdΓ +α
∫

Γsu

v(x,xi)SudΓ

+
∫

Ωs

v(x,xi)bdΩ. (21)

The matrices εν, D, B j, S, and N are given below.

εv =


 ε(1)

11 ε(1)
22 2ε(1)

12

ε(2)
11 ε(2)

22 2ε(2)
12


 , (22)

B j =




φj,1 0

0 φj,2

φj,2 φj,1


 , (23)

N =
[

n1 0 n2

0 n2 n1

]
, (24)

D =
E

1−ν2


 1 ν 0

ν 1 0
0 0 (1−ν)/2


 , (25)

E =
{

E for plane stress deformations,
E/(1−ν2) for plane strain deformations,

(26)

ν =
{

ν for plane stress deformations,
ν/(1−ν) for plane strain deformations,

(27)

S =
[

S1 0
0 S2

]
, Si =

{
1 if x ∈ Γu,
0 if x /∈ Γu.

(28)

E = µ(3λ + 2µ)/(λ + µ) is Young’s modulus, and ν =
λ/2(λ + µ) is Poisson’s ratio. Superscripts (1) and (2)
signify, respectively, the quantity derived from two lin-
early independent test functions v (1) and v(2); a possibil-
ity is

v =
[

v 0
0 v

]
. (29)

Here we take v(x, xi) = w(x−xi). Note that the “mass”
matrix is not symmetric; the choice v(x, x i) = φi(x) will
result in symmetric M and K. The mass matrix can be
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diagonalized by the row-sum technique to obtain

Mii =
n

∑
j=1

∫
Ωs

ρφjv(x,xi)dΩ, (no sum on i),

Mi j = 0, i �= j.

(30)

For a 2-dimensional problem, M and K are 2n×2n matri-
ces, where n is the total number of nodes in the problem.

Initial values of ûi and ˙̂ui are derived from (4) and (5)
as follows. The function u(x, t0) is replaced by uh(x, t0),
the inner product of both sides is taken with the function
ρv(x,xi), and the resulting equations are integrated over
the local domain Ωs. The result is

Mû(0) = F0, (31)

M ˙̂u(0) = G0, (32)

where

F0
i =

∫
Ωs

ρu0(x) ·v(x,xi)dΩ, (33)

G0
i =

∫
Ωs

ρu̇0(x) ·v(x,xi)dΩ. (34)

For null initial conditions, i.e., u0 = 0 and u̇0 = 0, Eqs.
(31) and (32) give û(0) = 0, ˙̂u(0) = 0.

For every xi ∈ Ω the local domain Ωs is taken to be a cir-
cle, and equations (18), (31) and (32) are deduced. These
equations form a system of coupled ordinary second-
order differential equations for û and algebraic equations
for û(0) and ˙̂u(0). We choose a large number of local
domains Ωs so that their union contains Ω. Since local
domains for different nodes may overlap, the sum of all
elements of the global mass matrix will not, in general,
equal the total mass of the body.

2.3 The time integration scheme

We use the Newmark family of methods (Newmark
(1959)) to integrate the coupled second-order ordinary
differential equations like (18). The recursive relations
relating displacements and velocities at times t n and tn+1

are

ûn+1 = ûn +∆t ˙̂un +
(∆t)2

2
{(1−2β) ¨̂un +2β ¨̂un+1}, (35)

˙̂un+1 = ˙̂un +∆t{(1−γ) ¨̂un +γ¨̂un+1}, (36)

where ûn, ˙̂un, and ¨̂un denote the displacements, veloci-
ties and accelerations, respectively, at time tn = n∆t and

∆t is the uniform time interval between two time steps.
Parameters β and γ control the stability and the accuracy
of the time integration scheme. Values of β and γ for
different methods are listed below:

γ=
1
2
, β =

1
6
, Linear Acceleration Method; (37)

γ=
1
2
, β =

1
4
, Constant Avg. Accel. Method; (38)

γ=
3
2
, β = 1, Backward Difference Method; (39)

γ=
1
2
, β = 0, Central-Difference Method. (40)

The Newmark family of methods is unconditionally sta-
ble if

γ≥ 1
2

andβ ≥ 1
4

(
1
2

+γ
)

. (41)

Thus the linear acceleration and the central difference
methods are conditionally stable and the other two meth-
ods are unconditionally stable. The methods are second-
order accurate and nondissipative for γ = 1

2 and first-

order accurate and dissipative for γ �= 1
2

. For the con-

ditionally stable methods,

∆t ≤
(

1
4
−β

)−1/2

/ωmax (42)

where ωmax is the maximum frequency of free vibration
of the system. Thus for the central difference method,
∆t ≤ 2/ωmax. For a lumped mass matrix, the central dif-
ference method is explicit in the sense that the solution
at time tn+1 can be found from that at time tn without
solving a system of algebraic equations.

Writing Eq. (18) at time tn+1 = (n + 1)∆t, and substi-
tuting from (35) and (36) into (18) yield the following
system of algebraic equations:

K̂n+1ûn+1 = F̂n+1, (43)

where

K̂n+1 = Kn+1 +a1Mn+1, (44)

F̂n+1 = fn+1 +Mn+1{a1ûn +a2 ˙̂un +a3 ¨̂un}, (45)

a1 =
1

β(∆t)2 , a2 =
1

β∆t
, a3 =

1
2β

−1; β �= 0. (46)
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Once ûn+1 has been computed from (43), ¨̂un+1 and ˙̂un+1

can be obtained from

¨̂un+1 = a1{ûn+1 − ûn}−a2 ˙̂un −a3 ¨̂un, (47)
˙̂un+1 = ˙̂un +(1−γ)∆t ¨̂un +γ∆t ¨̂un+1. (48)

For β= 0, ûn+1 is first found from eqn. (35), ¨̂u from (18),
and then ˙̂un+1 from (36).

2.4 Determination of the stress intensity factors

It has been shown by Ching and Batra (2001) that the
stress intensity factors in linear elastic fracture mechan-
ics can be determined from the plots on logarithmic
scales of stresses near the crack tip computed from the
MLPG solution versus distance from the crack tip. We
determine here stress intensity factors for the transient
problem from the near-tip stress fields. For dynamic
deformations of an elastic body containing a stationary
crack, the mode-I and the mode-II stress intensity factors
can be determined from KI =

√
2πrσ22(r,0, t) and KII =√

2πrσ12(r,0, t) (Miannay, 2001) where r is the distance
straight ahead of the crack tip and should be taken within
the singular-deformations dominated zone. In our com-
putations, the distance r is taken within 2% of the crack
length. At each time step, we plot ln|σ22(r,0, t)| vs. lnr
and ln|σ12(r,0, t)| vs. lnr, fit straight lines through the
data by the least squares method, and compute KI and
KII from the intercepts of these lines with the ordinates.
Theoretically the slope of each line should equal −1/2,
signifying the 1/

√
r singularity of stress fields near the

crack tip.

3 Computation and Discussion of Results

3.1 One dimensional wave propagation

We have developed a computer code in Fortran based on
the aforestated equations. To demonstrate the validity
and accuracy of the code, the one-dimensional problem
of wave propagation in a rod is studied first. A schematic
sketch of the problem studied is shown in Fig. 1. The ax-
ial displacement u of a material point of the rod is given
by

u(x, t) =
8tL
Eπ2

[
∞

∑
n=0

1
(2n+1)2 cos

(
n+ 1

2

)
πct

L
·

cos

(
n+ 1

2

)
πx

L

]
+

t
E

x− tL
E

, (49)

Figure 1 : A bar subjected to an impact force

where c =
√

E/ρ is the wave speed.

When solving the problem by the MLPG method,
we took L = 20in, E = 30 × 106 psi, ρ = 7.4 ×
10−4 lbsec2/in4, A = 1in2, α = 109 lb/in3 and t(t) =
100H(t)psi where H(t) is the Heaviside step function.
The bar was divided into 41 equally spaced nodes. All
entries in the lumped mass matrix obtained from Eq. (30)
were found to be positive. The time step size, ∆t, equaled
0.5µs for the central difference method and 1µs for the
other three methods. The maximum frequency, ωmax,
was found to be 1.56 MH; thus ∆t can at most equal
1.28µs for the explicit conditionally stable central dif-
ference method. However, for this method the value of
∆t strongly depended upon the value of the penalty pa-
rameter. The maximum value of ∆t that could be used to
compute a stable solution rapidly decreased with an in-
crease in the value of the penalty parameter, α. Numeri-
cal experiments indicated that α close to 104 E/L for the
central difference method has a reasonable value of ∆t.

Figure 2 : Comparison with the analytical solution of the
time history of the axial stress at the midpoint (x = L/2)
obtained by the four different integration methods
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Figure 2 shows the comparison with the analytical solu-
tion of the time histories of the axial stress at the mid-
point (x = L/2) computed with different time integration
schemes. The analytical value of the wave speed for the
assumed material properties is 0.201 in/µs. It is clear that
for each one of the four integration methods, the wave
arrives at the midpoint prior to the theoretical value of
49.7µs. This is to be expected because of the coupling
among motions of different nodes induced by the stiff-
ness matrix. Here a diagonal mass matrix is used; oth-
erwise the mass matrix will also couple the motion of
different nodes. The average acceleration and the lin-
ear acceleration methods predict identical values of the
axial stress. Values of γ > 1/2 introduce damping into
the computed solution; this is evident from the absence
of oscillations in the solutions obtained with the back-
ward difference method for which γ = 3/2. Each in-
tegration scheme correctly predicts doubling of the ax-
ial compressive stress when the wave reflected from the
clamped end (x = L) arrives at the midpoint. In order to
see if decreasing the time step size will improve the ac-
curacy of the computed results, we have plotted in Fig. 3
time histories of the axial stress at the midpoint obtained
by taking ∆t = 0.4µs and 1.0µs and the backward differ-
ence method. These results indicate that, at least for the
backward difference method, ∆t = 1µs is adequate. In

Figure 3 : Comparison with the analytical solution of the
time history of the axial stress at the midpoint of the bar
computed with two different time steps and by using the
backward difference method

Fig. 4 we have compared at two locations time histories

of the axial velocity obtained from the analytical solu-
tion with those computed with the backward difference
method. The computed histories of the axial velocity ex-
hibit oscillations of smaller amplitude than the computed
histories of the axial stress. At x = 0.25L, oscillations
die out and the computed axial velocity matches with the
analytical value. It was found that the essential boundary
condition prescribed at x = L was very well satisfied.

Figure 4 : Comparison with the analytical solution of
the time history of the axial velocity at two different lo-
cations computed with the backward difference method

Time histories of the axial stress at x = L/2 computed
with the lumped and the consistent mass matrices and the
backward difference scheme were found to coincide with
each other. Also, the evolutions of the axial stress at x =
L/2 computed with two uniform arrangements of 41 and
101 nodes were identical suggesting that the nodal mesh
of 41 uniformly placed nodes is adequate for analyzing
this problem.

3.2 Rectangular plate with a central crack loaded in
tension

We now analyze deformations of a rectangular plate
with a centrally located crack, shown in Fig. 5, and
loaded by axial tensile tractions applied at the top and
the bottom surfaces. We set t = 0.4H(t)GPa, L = 52mm,
D = 20mm, a = 12mm, µ = 29.4GPa, ρ = 2450Kg/m3,
α = 107MPa/m and ν = 0.286. A plane strain state of
deformation is assumed to prevail in the plate and the
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Figure 5 : A schematic sketch of the centrally cracked
plate

diffraction criterion is used to account for discontinuous
fields across the crack surface. Due to symmetry of the
problem about the two centroidal axes, only a quadrant
of the plate is modeled and discretized using 2534 nodes
(see Fig. 6a) with a fine nodal mesh around the crack tip
(cf. Fig. 6b). We use the backward difference method
with ∆t = 4×10−2µs and compute results till t = 20µs.

Figure 7 displays, at three different instants of time, the
deformed crack surface obtained by both the MLPG and
the finite element (FE) methods. In computing the FE so-
lution with ABAQUS 6.11 the same nodal mesh as that
in the MLPG method is employed. The two sets of com-
puted results agree well with each other. Note that the
material point located at the crack tip moves horizontally
first to the right and then to the left while the upper and
the lower boundaries of the plate are being pulled axially
by the tensile tractions. The crack surfaces are comprised
of the same material points since no opening or closing of
the crack is considered. The time history of the stress in-
tensity factor KI(t) normalized by t

√
πa is shown in Fig.

8. The MLPG solution is compared with the analytical
solution of Baker (1962) for an infinite plate, the singu-
lar finite element solution of Nishioka and Atluri (1980)
and the dual boundary element solution of Fedelinski et
al. (1994) for a finite plate identical to the one studied
here. The stress intensity factor KI remains zero until
the dilatational wave reaches the crack tip at approxi-

Figure 7 : At three different instants of time, deformed
shape of the crack surface near the crack tip

mately t = 2.5µs. KI attains the maximum value of 2.375
at t = 11µs and decreases subsequently; for the corre-
sponding static problem, KI = 1.0361 (e.g. see Anderson
(1995)). It can be seen that there is a good agreement
between the MLPG result and other available solutions.
The time history of the order of singularity of the stress
field near the crack tip is found to equal −0.48 which is
close to the analytical value of −0.5. Figure 9 exhibits
contours of the maximum principal stress normalized by
t around the crack tip at t = 13µs for both the MLPG and
the FE solutions. The two sets of solutions agree well
with each other, and the maximum principal stress at the
crack tip equals 45t.

3.3 Double edge-notched plate with the edge between
the notches loaded in compression

3.3.1 Plate material isotropic

Kalthoff and Winkler (1987) proposed an experiment to
study transient mode-II dominated deformations. It in-
volves a double edge-notched plate with the edge be-
tween the two notches impacted by a fast moving cylin-
drical projectile of diameter equal to the distance be-
tween the notches. Here, we use the MLPG method
to analyze this problem and approximate the action of
the impactor by applying uniformly distributed compres-
sive tractions on the impacted surface. Figure 10 shows
a schematic sketch of the problem studied. We as-
sume that a plane strain state of deformation prevails
in the plate, and take Young’s modulus E = 210GPa,
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(a)

(b)
Figure 6 : (a) The nodal mesh for one quarter of the centrally cracked plate (b) The nodal mesh near the crack tip
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Figure 8 : The time history of the normalized stress in-
tensity factor KI(t)

Figure 9 : Contours of the normalized maximum princi-
pal stress around the crack tip at t = 13µs

Poisson’s ratio ν = 0.29, mass density ρ = 7833kg/m 3,
∆t = 0.0625µs, penalty parameter α = 108MPa/m, the
radius of the circular notch tip = 0.15mm, the applied
normal traction t = 200H(t)MPa, and tangential traction
on the impacted surface = 0. Because of symmetry of
the problem about the horizontal centroidal plane, defor-
mations of only the upper half of the plate are analyzed.

A nonuniform nodal mesh of 3632 nodes with 25 nodes
on the surface of the circular notch tip is employed. The
diffraction criterion is used to account for the discontin-
uous deformation fields across the notch. Coupled ordi-
nary differential equations obtained from the local sym-
metric weak formulation of the governing partial differ-

Figure 10 : A schematic sketch of the double edge-
notched plate

Figure 11 : Undeformed and deformed shapes of the cir-
cular notch surface
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ential equations are integrated by the backward differ-
ence method. The two approximate solutions obtained by
the MLPG and the FE methods are compared; the same
nodal mesh was used in the two analyses.

Figure 11 displays the undeformed and the deformed
shapes of the notch tip. Due to the compressive tractions
applied on the edge between the two notches, the notch
faces move upwards. It is clear that the two sets of results
agree well with each other. The time histories of normal
stresses σ11 and σ22 at the notch tip are plotted in Fig. 12.
The dilatational wave arrives at the notch tip at about 7µs.
Soon after the arrival of the wave, stresses at the notch

Figure 12 : Time histories of normalized σ11 and σ22 at
the notch tip

tip increase with σ22 being significantly larger in mag-
nitude than σ11. For time t = 14µs and 24µs, Figs. 13a
and 13b evince, respectively, the variations of σ22 and
σ12 at points directly ahead of the notch tip. We note that
the axial variation of |σ12| exhibits a boundary layer phe-
nomenon near the notch tip; the thickness of the bound-
ary layer equals 0.2% of the length of the notch. The trac-
tion free boundary condition at the notch tip requires that
σ12 = 0 there. The angular distributions of the principal
tensile stress and the maximum shear stress at t = 14µs
and 24µs are exhibited in Figs. 14a and 14b. The angu-
lar locations, θ, of points where these stresses attain their
maximum values are essentially the same at t = 14µs and
24µs. Whereas the maximum principal tensile stress oc-
curs at θ= 70◦, the maximum shear stress attains its peak
value at θ = −60◦. These angular positions are close to

(a)

(b)
Figure 13 : (a) Variations of normalized σ22 with the
distance directly ahead of the notch tip (b) Variations of
normalized σ12 with the distance directly ahead of the
notch tip
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(a)

(b)
Figure 14 : (a) Angular distribution of the normalized
maximum principal stress on the notch surface at two
different times (b) Angular distribution of the normal-
ized maximum shear stress on the notch surface at two
different times

those found by Batra and Gummalla (2000) in the tran-
sient FE analysis of the thermoviscoplastic problem. Ba-
tra and Ravisankar (2000) compared deformation fields
computed from the analysis of the 3-dimensional ther-
moviscoplastic problem with those from the plane strain
analysis of the problem. They found that the deformation
fields at the midsurface of the plate matched closely with
those computed from the plane strain analysis. However,
these differed considerably from those on the front and
the back surface of the plate where experimental obser-
vations are made. The angular distributions of the hoop
stress σθθ and the shear stress σrθ are plotted in Figs. 15a
and 15b respectively. Maximum values of σrθ occur at
the extremities of the circular surface of the notch tip, but
as noted above, the maximum shear stress is at θ=−60◦.

It is clear from the results plotted in Fig. 16a that indeed
KI and KII are proportional to

√
r during the time interval

considered herein. The time histories of the stress inten-
sity factors are depicted in Fig. 16b. Significantly larger
values of KII relative to those of KI imply that the mode-II
deformations near the notch tip are dominant. During the
time interval 0 ≤ t ≤ 24µs, KI is nearly constant but the
magnitude of KII increases montonically implying that
the mode-mixity parameter does not stay constant. Lee
and Freund (1990) modeled the notch as a sharp crack
and found that the mode-mixity parameter stays constant
till the waves reflected from the right free edge arrive at
the crack tip.

We note that the elastostatic analysis of the problem
with t = 200MPa

√
mm gave KI = −448MPa

√
mm and

KII = −878MPa
√

mm. For the elastodynamic prob-
lem, the maximum value of KI(t) during the time inter-
val 0 ≤ t ≤ 24µs equals −275MPa

√
mm but the magni-

tude of KII continues to increase to −1150MPa
√

mm at
t = 24µs. The unloading wave reflected from the free
right edge of the plate arrives at the notch tip at about
24µs. Thus the static analysis of the problem does not
provide a realistic description of the failure mode near a
notch tip in a dynamically loaded prenotched plate.

3.3.2 Plate material orthotropic

We now assume that the prenotched plate is made of an
orthotropic material with material axes of symmetry co-
incident with the coordinate axes. Two orthotropic ma-
terials, namely orthotropic (1) and orthotropic (2), are
considered with the following material properties: or-
thotropic (1), E11 = 210GPa, E22 = 0.5E11, ν12 = 0.29,
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(a)

(b)
Figure 15 : (a) Angular distribution of the normalized
hoop stress on the notch surface at two different times
(b) Angular distribution of the normalized shear stress
on the notch surface at two different times

(a)

(b)
Figure 16 : (a) The time history of the index of singu-
larity for mode I and mode II deformations (b) The time
history of the stress intensity factors KI and KII



Analysis of Elastodynamic Deformations near a Crack/Notch Tip by the MLPG Method 729

G12 = 0.4E11; orthotropic (2), E11 = 210GPa, E22 =
0.2E11, ν12 = 0.29, G12 = 0.4E11. As can be seen from
Fig. 17a, subsequent to the arrival of the dilatational wave
at the notch tip, the magnitude of the stress intensity fac-
tor KI(t) for orthotropic materials is less than that for
the isotropic material. The decrease in the magnitude

(a)

(b)
Figure 17 : (a) The time history of the stress intensity
factor KI for three materials (b) The time history of the
stress intensity factor KII for three materials

of KI(t) is due to the reduction of the Young’s moduli
of the orthotropic materials in the x2-direction. However,
the time histories of the stress intensity factor K II(t) for
isotropic and orthotropic materials in Fig. 17b are almost
coincident with each other since the shear modulus G 12

for these materials has the same value. Thus the mode
mixity of the deformation field near the notch tip in an

orthotropic plate can be adjusted by suitably modifying
the material moduli in the x1- and x2-directions.

4 Conclusions

We have used the MLPG method to analyze transient in-
finitesimal plane strain/stress deformations of an elastic
body. The MLPG solution is found to compare very well
with the analytical solutions for two problems, namely,
wave propagation in a bar, and a rectangular plate with
a central crack with plate edges parallel to the crack
axis loaded in tension. For the explicit central-difference
method, the time step needed to compute the stable so-
lution was found to be much smaller than that given by
the stability condition (42); it strongly depended upon
the value of the penalty parameter used to satisfy the es-
sential boundary conditions. The computed time histo-
ries of the stress intensity factors were found to agree
with those available in the literature for the same prob-
lem. The MLPG method is then used to analyze transient
deformations of a double edge prenotched plate with the
smooth edge between the two notches loaded by uni-
formly distributed compressive tractions. The deforma-
tions and stress fields near the notch tip computed by the
MLPG method agree well with those obtained from the
finite element solution. It is found that the variation of the
shear stress σ12 with the distance r ahead of the notch tip
exhibits a boundary layer effect. Outside of this bound-
ary layer region, stresses exhibit the 1/

√
r singularity.

The mode mixity of the deformation field near the notch
tip in an orthotropic plate can be adjusted by modifying
values of the in-plane material moduli.
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