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A Two-dimensional Finite Element Implementation of a Special Form of Gradient
Elasticity

L. Teneketzis Tenek1 and E.C. Aifantis1,2,3

Abstract: A two-dimensional finite element imple-
mentation of a special form of gradient elasticity is de-
veloped and a connection between classical and the pro-
posed gradient elasticity theory is established. A higher-
order constitutive equation is adopted which involves a
gradient term of a special form; the higher-order term
is precisely the second gradient of the lower-order term.
A weak form of the equilibrium equations, based on the
principle of virtual work, is formulated for the classical
problem. The problem in hand, is solved by means of the
finite element method in two steps. First, the displace-
ment field of classical elasticity is computed. Then, the
gradient equation is solved using the displacement field
extracted from the solution of the classical problem. In
concert with the natural-mode finite element method, sets
of rigid-body and straining modes are assigned to plane
triangular elements for the classical problem. All ele-
mental matrices are integrated explicitly. The theory is
applied to two tensile notch specimens including a rel-
atively large and a smaller notch, respectively. Numer-
ical results reveal that the gradient theory yields more
closely spaced deformation bands and a stiffer structural
response. Strains for both theories are computed. The
higher strain concentrations are localized at the notch tip
for both specimens while the difference in strain patterns
as obtained from both theories are more pronounced for
the specimen with the smaller notch. The effect of the
specimen size on the structural response and the corre-
sponding size effect is also assessed.

1 Introduction

The inability of classical elasticity and plasticity theo-
ries to model stress-strain behavior adequately at small
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scales, to model strain gradient effects that may be im-
portant in linear elastic materials that contain micro-
structures, and their inability to predict the size effect ob-
served at the micron scale in ductile materials since their
constitutive models posses no internal length parameters,
provided the motivation for the development of gradi-
ent elasticity and plasticity theories (Tenek and Aifan-
tis (2001), Fleck and Hutchinson (1993, 1997), Fleck
et al. (1994), Gao et al., (1999), Arharya and Bassani
(2000), Huang et al. (2000b), Shi et al. (2000), Hutchin-
son and Hwang (1999)). Several finite elements for gen-
eral strain gradient plasticity exist. (Wei and Hutchin-
son (1997), Shu et al., (1999), Svendberg and Runes-
son (2000), Xikui and Cescotto (1996), Ramaswamy and
Aravas (1998)). The present study introduces a two-
dimensional finite element implementation of a special
form of gradient elasticity.

The need for higher order gradients in the theory of
deformation for softening solids and heterogeneous mi-
crostructures was first pointed out by Aifantis (1983-84-
89) in relation to the problems of shear band thickness
and persistent slip band spacing. The idea was further
elaborated by Aifantis (1984-87-92) and by Triantafyl-
lidis and Aifantis (1986), and in more detail in a series
of papers dealing with localization and stability of defor-
mation in metals and soils. As a result, a higher-order
strain gradient theory has been proposed by Aifantis and
co-workers to address the heterogeneity and pattern de-
velopment in elastic deformation and plastic flow.

A simple approach to solve boundary-value problems in
gradient elasticity was introduced by Ru and Aifantis
(1993). In general, one has to solve a fourth-order par-
tial differential equation subjected to appropriate bound-
ary conditions. Of course, the solution of a 4 th order
problem directly, using classical finite elements, is rather
cumbersome. The recent developments in Meshless Lo-
cal Petrov-Galerkin (MPLG) methods, which very eas-
ily lead to C1 or C2 type of interpolations, appear to
be preferable in solving problems involving gradient-
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theories Atluri and Shen (2002), Kim and Atluri (2000),
Atluri and Zhu. As pointed out by Ru and Aifantis (1993)
the complexity of this task can be reduced when the orig-
inal fourth-order problem is reduced into a second-order
problem. Thus, a connection between the gradient and
classical solutions are established. Henceforth, it turns
out that the problem in hand can be solved in two stages.
Firstly, the classical elasticity problem is formulated and
solved and the classical displacement field is acquired.
There follows the solution of the gradient second order
problem which has the classical displacement vector as a
right-hand side. The gradient parameter is introduced on
the second stage.

In the present paper we attempt a finite element solution
of the gradient elasticity boundary-value problem. The
problem is solved in two stages. Firstly, the principle of
virtual work is formed in classical elasticity which yields
the classical displacement field. Then, the solution of
the gradient equation is attempted using the displacement
field extracted from the solution of the classical problem
according to the Galerkin methodology. All elemental
matrices are explicitly integrated.

2 Mathematical model

A higher-order strain gradient theory developed by Ru
and Aifantis (1993) adopts a simple constitutive equation
of the form

σσσ = λ(tr εεε)I+2µεεε−c∇ 2 [λ(tr εεε)I+2µεεε] , (1)

where (σσσ, εεε) are the stress and strain, (λ, µ) the Lame
constants, ∇ 2 the Laplacian and c a constant gradient co-
efficient. On introducing (1) with c ≡ 0 into the equi-
librium equations (divσσσ = 0), we obtain the following
differential equation for the displacement vector u (2ε =
∇ u+[∇ u]T ):

Lu0 = 0, L ≡ µ∇ 2 +(λ +µ)grad div. (2)

On introducing (1) with c �= 0 into the equilibrium equa-
tions we arrive at

(1−c∇ 2)Lu = 0. (3)

In general, one has to solve the fourth-order partial dif-
ferential equation (3) subjected to appropriate boundary
conditions. However, due to the fact that the operators
L and ∇ 2commute, the original problem (3) is reduced
into a second-order problem, namely (Ru and Aifantis
(1993))

(1−c∇ 2)u = u0, (4)

Equation (4) establishes a connection between classical
and gradient elasticity.

Now the expression of the stress in classical elasticity is

σσσ0 = Hεεε0 = HDu0, (5)

or by using (5)

σσσ0 = Hεεε0 = HDu0 = HD(1−c∇ 2)u = σσσ (6)

which implies that the stress field of classical elasticity
in cartesian coordinates coincides with that of gradient
elasticity.

3 Computational model

The problem in hand is solved in two steps. First, equa-
tion (2) is solved by adopting classical finite element pro-
cedures, and more specifically the natural-mode finite el-
ement method (Argyris and Tenek (1996), Tenek and Ar-
gyris (1997-98)). In so doing, the displacement vector
uo is estimated. The classical solution, is based on the
principle of virtual work which reads (Tenek and Argyris
(1998))

∫
V

σσσt δεεε dV =

∫
S

pt
S δuo dS+

∫
V

pt
V δuo dV+ Rt δuo + Mt δϑϑϑ , (7)

where, (σσσ,εεε) are the vectors of stress and strain respec-
tively; (pS, pV ) the applied surface and volume forces,
respectively; (R, M) the concentrated nodal forces and
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moments, respectively; and (uo, θθθ) the nodal displace-
ment and rotations, respectively. Then, equation (7) is
applied on an elemental basis, i.e. on a triangular finite
element. In concert with the natural-mode finite element
method, the structure is discretized with a set of trian-
gular finite elements. The elements are assigned sets of
rigid-body and straining modes. The later are equal to
the number of total nodal degrees of freedom minus the
number of rigid-body modes. In so doing, and by follow-
ing classical finite element procedures, a linear system of
equations is formed and the classical displacement field
uo is computed. We focus now on the solution of the
gradient equation (4).

We seek the weak form of (4). Adopting the Galerkin
methodology, we multiply (4) by a test function ũ and
integrate over a volume V, viz.

∫
V

uũ dV −
∫
V

c∇ 2uũ dV =
∫
V

uoũ dV. (8)

Integrating the second term by parts

∫
V

u ũ dV −
∫
S

c ∇ uũ dS +
∫
V

c ∇ u ∇ ũ dV =
∫
V

uoũ dV,

(9)

where S denotes the surface (boundary) of the domain.
Equation (9) will now be solved in two-dimensions x, y,
for displacements u, v. Expanding terms in (9)

∫
V

u ũ dV +c
∫
V

[
∂u
∂x

∂ũ
∂x

+
∂u
∂y

∂ũ
∂y

]
dV

−c
∫
S

(
∂u
∂x

n1 +
∂u
∂y

n2

)
ũdS =

∫
V

uoũ dV, (10)

∫
V

v ṽ dV +c
∫
V

[
∂v
∂x

∂ṽ
∂x

+
∂v
∂y

∂ṽ
∂y

]
dV

−c
∫
S

(
∂v
∂x

n1 +
∂v
∂y

n2

)
ṽdS =

∫
V

voṽ dV. (11)

In equations (10), (11), n1, n2 are components of the unit
vector outward to the surface S in the x and y directions,

respectively. The above equations represent two uncou-
pled integral equations in x and y. We seek now a finite
element solution of (10), (11). We will focus solely on
(10). Equation(11) yields similar elemental matrices.

We consider a three-node triangular element with ver-
tices 1,2,3, and a local cartesian coordinate system x’,
y’ placed at the element barycenter. Usually, coordinate
x’ is considered parallel to edge 23. We shall use the
triangular homogeneous coordinates ζ 1ζ2ζ3 for which it
holds (Tenek and Argyris (1998))

ς1 +ς2 +ς3 = 0. (12)

Then, the displacement and test functions are interpo-
lated from the nodal displacements u1, u2, u3 via

u = u1ς1 +u2ς2 +u3ς3, ũ = ũ1ς1 + ũ2ς2 + ũ3ς3.

(13)

For the derivatives

∂u
∂x

= u1
∂ς1

∂x
+u2

∂ς2

∂x
+u3

∂ς3

∂x
,

∂u
∂y

= u1
∂ς1

∂y
+u2

∂ς2

∂y
+u3

∂ς3

∂y

. (14)

In the above, all derivatives are referred to a global com-
mon cartesian coordinate x, y. We aim at deriving explic-
itly integrated elemental matrices and to this purpose we
bring in the local cartesian coordinates x’, y’. Explicitly
for x

∂u
∂x

= u1
∂ς1

∂x′
∂x′

∂x
+u2

∂ς2

∂x′
∂x′

∂x
+u3

∂ς3

∂x′
∂x′

∂x
. (15)

But

∂x′

∂x
= cx′x,

∂y′

∂y
= cy′y, (16)

where cx′x , cy′y are the direction cosines of the local ele-
mental axes with respect to the global axes, respectively.
On account of (16), equation (15) becomes
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∂u
∂x

= u1
∂ς1

∂x′
cx′x +u2

∂ς2

∂x′
cx′x +u3

∂ς3

∂x′
cx′x,

∂u
∂y

= u1
∂ς1

∂y′
cy′y +u2

∂ς2

∂y′
cy′y +u3

∂ς3

∂y′
cy′y

. (17)

For a triangle (Tenek and Argyris (1998))

∂ς1

∂x′
= − yα

2 Ω
,

∂ς2

∂x′
= − yβ

2 Ω
,

∂ς3

∂x′
= − yγ

2 Ω
,

∂ς1

∂y′
=

xα

2 Ω
,

∂ς2

∂y′
=

xβ

2 Ω
,

∂ς3

∂y′
= − xγ

2 Ω
,

(18)

with

xα = x23 = x3 −x2, xβ = x31 = x1 −x3,
yα = y23 = y3 −y2, yβ = y31 = y1 −y3,

xγ = x12 = x2 −x1, yγ = y12 = y2 −y1,

Ω = 1
2


 x1 y1 1

x2 y2 1
x3 y3 1




(19)

where Ω is the area of the triangle in terms of nodal co-
ordinates. On account of (18), equation (17) now reads

∂u
∂x

= −cx′x

( yα

2 Ω
u1 +

yβ

2 Ω
u2 +

yγ

2 Ω
u3

)
,

∂u
∂y

= cy′y

( xα

2 Ω
u1 +

xβ

2 Ω
u2 +

xγ

2 Ω
u3

) . (20)

Substituting (13), (20) in equation (10) and using the in-
tegration formula

1
Ω

∫
Ω

ζp
1 ζq

1ζr
1dΩ =

2!p!q!r!
(2+ p+q+ r)!

, (21)

we derive an explicitly integrated finite element matrix
based on (10). Proceeding in this manner, equations (10),
(11) yield the elemental matrix

T = Ω




m11 . m12 . m13 .
m11 . m12 . m13

m22 . m23 .
m22 . m23

Symm. m33 .

m33




. (22)

The entries of matrix T read as follow:

m11 =
1
6

+c

(
1
4

c2
x′xy2

α
Ω2 +

1
4

c2
y′yx2

α

Ω2

)
,

m12 =
1
12

+c

(
1
4

c2
x′xyβyα

Ω2 +
1
4

c2
y′yxβxα

Ω2

)
,

m13 =
1
12

+c

(
1
4

c2
x′xyγyα

Ω2 +
1
4

c2
y′yxγxα

Ω2

)
, (23)

m22 =
1
6

+c

(
1
4

c2
x′xy2

β

Ω2 +
1
4

c2
y′yx2

β

Ω2

)
,

m23=
1

12
+c

(
1
4

c2
x′xyγyβ

Ω2 +
1
4

c2
y′yxγxβ

Ω2

)
,

m33 =
1
6

+c

(
1
4

c2
x′xy2

γ

Ω2 +
1
4

c2
y′yx

2
γ

Ω2

)
.

We are left to estimate the right-hand side of (10), (11).
Proceeding in a similar manner, we obtain

R = Ω




1
6

uo
1 +

1
12

uo
2 +

1
12

uo
3

1
6

vo
1 +

1
12

vo
2 +

1
12

vo
3

1
12

uo
1 +

1
6

uo
2 +

1
12

uo
3

1
12

vo
1 +

1
6

vo
2 +

1
12

vo
3

1
12

uo
1 +

1
12

uo
2 +

1
6

uo
3

1
12

vo
1 +

1
12

vo
2 +

1
6

vo
3




. (24)

Following computation of the elemental matrix and vec-
tor, standard finite element procedures are adopted that
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result in the estimation of structural deformation. After
the nodal displacements are computed, the strains, as-
signed to the element center, are estimated using (20) and
the definitions

εxx =
∂u
∂x

, εyy =
∂v
∂y

, γxy =
∂u
∂y

+
∂v
∂x

. (25)

4 Computational experiments

Figure 1 shows a two-dimensional tensile notch speci-
men with material and geometrical data. Due to symme-
try, one-quarter of the specimen is discretized with trian-
gular elements and appropriate boundary conditions are
imposed. The gradient coefficient is equal to c=5x10−5

m2. On top of figure 2 is displayed the finite element
mesh including 128 nodes and 215 elements. The struc-
tural deformation as obtained by the solution of the clas-
sical problem is illustrated in the middle of figure 2,
while the displacement field resulted from the gradient
model is presented on the bottom of the same figure.
Figure 3 shows contours of the horizontal displacements
from the solution of the classical problem and figure 4
horizontal displacement contours obtained by the solu-
tion of the gradient equation. We observe that the gra-
dient solution yields more closely spaced deformation
bands. Figures 5, 6 illustrate the vertical displacement
field v. We observe that on the top specimen boundary
the gradient solution yields an noticeable edge effect.

Horizontal displacements across sections A-A, and B-B
for both theories are given in figures 7, 8. Close to the
notch, the gradient theory yields a stiffer response (figure
7), while close to the middle of the specimen and away
from the loaded edge the two theories yield close values
(figure 8).

ν

Figure 1 : Tensile notch specimen

finite element mesh 

classical solution 

gradient solution 

Figure 2 : Finite element mesh of quarter specimen
(top); deformation as obtained by classical solution (mid-
dle); deformation as obtained by gradient solution (bot-
tom)

Figure 3 : Classical horizontal displacement contours
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Figure 4 : Gradient horizontal displacement contours

Figure 5 : Classical vertical displacement contours

Figure 6 : Gradient vertical displacement contours

Figure 7 : Horizontal displacements across section A-A

Figure 8 : Horizontal displacements across section B-B
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As we approach the right edge, the gradient solution
gives a stiffer response. Figure 9 shows the horizontal
strains as computed with classical elasticity. The higher
strains are localized at the notch tip. A similar picture
is obtained for the gradient strains, however the later are
more concentrated on vertical bands as figure 10 indi-
cates. Vertical strain contours are provided in figures 11
and 12. Again, the gradient strains are spread in more
bands and in addition, high strains appear on the top
specimen boundary in contrary to the classical strains
which show on the left boundary and the notch edge. The
classical and gradient shear strains are displayed in fig-
ures 13 and 14. They are both concentrated around the
notch tip, however the gradient shear strains are more lo-
calized. Finally, the effect of the specimen size on the
structural response is assessed. To this purpose, three
specimens with quarter bottom sides a=2mm, 18mm and
100mm are considered and the classical and gradient de-
formation and strain fields are obtained.

Figure 9 : Contours of classical axial strain

Figure 10 : Contours of gradient axial strain

Figure 15 displays the horizontal displacement of point 3
(bottom-right corner) for all specimens for both the clas-
sical and gradient cases. As expected, the classical theory

Figure 11 : Contours of classical vertical strain

Figure 12 : Contours of gradient vertical strain

Figure 13 : Contours of classical shear strain

Figure 14 : Contours of gradient shear strain
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results are independent of the specimen size. However,
gradient theory predicts different displacements for the
three specimens. Notably, the smaller the specimen, the
stiffer the response. We also observe from figure 15 that
as the size of the specimen increases the gradient solu-
tion approaches the classical solution. Figure 16 presents
stress-strain plots for all aforementioned specimen sizes.
The size effect can be clearly discerned from the plot.
Notably, for a specified displacement, the specimen with
side 2mm requires a larger force than the specimens with
sides 18 and 100 mm, respectively. The specimen with
side equal to 18mm (and all other specimen dimensions
increased proportionally) requires a larger force than the
specimen with size 100mm. Thus, the size effect can be
distinguished from figure 16.

Figure 15 : Horizontal displacement of point 3 with
specimen size

Figure 16 : Size effect for tensile notch specimen

Figure 17 : Tensile specimen with a central notch; hori-
zontal displacement fields

We consider next a tensile specimen with a central notch
shown in Fig. 17. The side of the specimen is 16 times
larger than the diameter of the notch. Again, a quarter
of the specimen is discretized with a set of plane trian-
gular elements and symmetry boundary conditions are
imposed so that the left edge cannot move horizontally
(u=0) and the bottom edge cannot move vertically (v=0).
All material parameters are kept the same as for the previ-
ous problem of Fig. 1. The resulting horizontal displace-
ment fields as given by classical and gradient deforma-
tion theories are plotted in the middle and bottom of Fig.
17, respectively. We observe that gradient theory, as for
the previous problem, yields more closely spaced defor-
mation bands and also yields a stiffer structural response.
Figure 18 presents the horizontal strain fields for both
classical (top) and gradient (bottom) models. For both
models, high strain localization occurs near the central
notch and higher strain appears for the classical model.
The latter, predicts strain patterns that emanate from the
notch and propagate throughout the specimen. On the
contrary, for gradient theory horizontal strains are local-
ized at the notch area while at the rest of the specimen
vertical strain bands and patterns are dominant. Thus,
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Figure 18 : Classical and gradient horizontal strains

Figure 19 : Size effect for the tensile notch specimen

the pattern field of the horizontal strains appears differ-
ent for the classical elasticity and the gradient elasticity
theories, respectively. Figure 19 displays the size effect
for the notch specimen of Fig.17. To this purpose, all di-
mensions are increased proportionally, and the nominal
strength versus specimen side are plotted. It is evident
that the smaller specimen displays the higher nominal
strength.

5 Conclusions

A two-dimensional finite element implementation of a
special form of gradient elasticity is developed. A higher-
order constitutive equation is adopted which involves a
gradient term of a special form; the higher-order term
is precisely the second gradient of the lower-order term.
A weak form of the equilibrium equations, based on the
principle of virtual work, is formulated for the classi-
cal problem. The problem in hand, is solved by means
of the finite element method. The limitation of the nu-
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merical procedure lies in the special constitutive relation
adopted and the fact that the stress field remains the same
for both classical and gradient elasticity theories. Two
tensile notch specimens are considered which implement
the theory. For both test problems the size effect is com-
puted.
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